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environments, affecting the probability mass function (PMF) and data labeling. 
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1  Introduction 
This paper presents a study of data augmentation 
when it is applied to processes with long-range 
dependence to show that some augmentation 
techniques may alter or even destroy the long-range 
dependence. This paper is an extension of our 
previous work presented at the IEEE International 
Conference on Cognitive Informatics and Cognitive 
Computing [1] to develop the foundation for our 
research in this area. In this extended paper, we 
delve deeper into the applications of long-range 
dependence and include a more comprehensive set 
of case studies. 

Data augmentation is a commonly employed 
method for enlarging and diversifying datasets 
during the training of neural networks. The 
advantage of data augmentation has been 
demonstrated across various domains, including 
image classification and data modeling, facilitating 
the expansion of training samples, [2]. Bjerrum et 

al. applied extended multiplicative scattering 
(EMSC) to correct the datasets, as well as a spectral 

data augmentation method to augment the datasets 
using random variations in slope and offset, [3]. 

They used convolutional neural networks to extract 
features from the data, and they demonstrated that 
the combination of data augmentation and EMSC 
was the best preprocessing method to enhance test 
results. 

A data augmentation technique is correct and 
useful when the constraints of the dataset are 
preserved. For example, by augmenting an image 
dataset or an audio dataset, the properties of the 
original and augmented dataset remain the same, 
[2]. The principal requirement of any data 
augmentation technique is that it should not alter the 
constraints of a dataset. For example, when an 
augmentation technique modifies the data 
probability mass function (PMF) of an Internet 
dataset, the properties of the dataset are modified. 
Therefore, since the long-range dependence of the 
Internet dataset is altered, the augmentation 
technique is unsuitable. 

This paper examines data augmentation for two 
distinct categories of datasets: (i) Internet traffic 
data with distributed denial of service (DDoS) 
attacks and (ii) the Manitoba Speech Dataset with 
standard voice sound collection, [1]. The study 
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demonstrates that the speech dataset constraints can 
be preserved using the selected data augmentation 
methods, but these methods cannot preserve the 
constraints of the Internet traffic data containing the 
DDoS attacks (DDoS ITD), given its stochastic 
nature. Techniques such as adding noise, mirroring, 
squeezing, and expanding the DDoS ITD alter the 
data's shape and PMF, indicating that conventional 
augmentation methods may not be suitable for 
DDoS ITD. Mono-scale, multi-scale, and poly-scale 
measures are employed to assess the sensitivity of 
these techniques to various factors by analyzing the 
time series datasets before and after augmentation. 

The structure of this paper is outlined as 
follows. Section 2 provides a summary of the 
datasets. Section 3 explains the methods of data 
augmentation. Section 4 introduces the measures 
utilized for dataset analysis. Sections 5 and 6 
present the simulation outcomes and provide an 
explanation and discussion of the results, 
respectively. Section 7 discusses the potential 
applications. Section 8 introduces an extension of 
the research. Section 9 offers concluding remarks. 
 
 
2  Description of the Datasets 
This study uses two types of time series data sets. 
Each complete dataset is referred to as an epoch 
(TE), with individual stationary segments within 
each epoch designated as a frame. The word 
"window" is not used in this paper as it is reserved 
to signify frame data modifications at the edges of 
the frame through a window function (also known 
as a tapering or apodization function) such as the 
Hamming and Hann windows, often employed in 
signal processing. 

In this paper, we consider only discrete signals 
that have been sampled from continuous (analog) 
signals properly to represent the original signal. The 
sampling frequency, fs, is adequate if it is strictly 
above the Nyquist frequency, fs > fN = 2fc. For 
narrowband signals, the critical cutoff frequency, fc, 
is defined at the 3-dB drop in the log-log plot of the 
frequency response of the signal. For broadband 
signals originating from many self-affine processes, 
the frequency is defined at a higher value, fc = fh, 
where the log-log response reaches the noise level 
of the signal. 
 
2.1  Internet Traffic Data 
The dataset employed for training and testing 
purposes in this study was sourced from the trusted 
Center for Applied Internet Data Analysis (CAIDA). 
CAIDA collects a diverse range of real-time 

network traffic from various parts of the world in 
collaboration with research organizations, 
governments, and commercial entities without 
revealing their identities, [4]. 

The CAIDA’s 2007 DDoS attack traffic was 
used as network traffic data and contains TCP, UDP 
Flood, SYN Flood, and ICMP (Ping) Flood packets. 
A packet in network traffic data has the following 
features: source IP address, destination IP address, 
packet arrival time, packet length, and protocol. The 
critical attribute called the packet arrival time series 
signal is computed by calculating the difference 
between a packet’s arrival time at t and its arrival 
time at t-1. The distribution of packets with a 
duration of 0.1 ms within each frame is illustrated in 
Figure 1. 

 

 
Fig. 1: The number of packets within a stationary 
frame size 
 
2.2  Speech Sound Data 
For comparison with the CAIDA dataset, the 
Manitoba Speech Dataset was utilized, obtained 
from the University of Manitoba, [1]. This dataset 
contains recordings of 44 words spoken by 12 
female and 12 male volunteers. This study uses the 
word “test” epoch as a speech sound dataset. 
Figure 2 illustrates the plot of the "test" dataset, 
sampled at a rate of 44.1 kilo samples per second 
(kSps). 
 

 
Fig. 2: Plot of the dataset for the word “test” 
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3  Data Augmentation Techniques 
This study employs the following five distinct 
techniques to generate six augmented sets. 
 
3.1  Mirroring Technique 
The mirroring technique, also known as flipping, 
involves reversing the order of the time series data 
within a stationary frame. In this form of horizontal 
flipping, the first sample in the series becomes the 
last, while the last sample becomes the first. This 
transformation effectively reverses the temporal 
order, introducing a new perspective of the data 
without altering the underlying magnitude or 
amplitude patterns. 
 
3.2  Time Stretching Technique 
Time stretching is a resampling method that aims to 
alter the temporal resolution of the time series data. 
In this technique, the original time series is 
upsampled by inserting additional data points 
between existing samples. The new points are 
generated by calculating the average of neighboring 
values and placing them at even positions within the 
data. Meanwhile, the existing points are shifted to 
the right, increasing the overall length of the time 
series. As illustrated in Figure 3, time stretching 
preserves the general shape and trends of the 
original signal. 
 

 
Fig. 3: The upsampling technique applied to a time 
series dataset 
 
3.3  Squeezing Technique 
The squeezing technique reduces the data resolution 
by removing samples to downsample the time 
series. It is an effective approach for minimizing the 
size of the dataset while retaining key patterns and 
trends. This technique can be accomplished in the 
following two ways: 
 
3.3.1  Downsampling 

This technique selects data points located at odd 
positions within the time series, as illustrated in 
Figure 4. 

 
Fig. 4: Downsampling technique applied to a time 
series dataset, [1] 
 
3.3.2  Wavelet Approximation Coefficients 

Using the Daubechies wavelet transform 2 (db2) 
basis function, this technique downsamples the data 
by extracting approximate coefficients. These 
coefficients are then downsampled within a 
stationary frame, as illustrated in Figure 5. 
 

 
Fig. 5: Downsampling technique applied to a time 
series dataset using the approximate coefficients of 
the dataset 
 
3.4  Random Cut-and-Paste Technique 
The random cut-and-paste technique generates 
augmented data by randomly selecting a segment of 
the original time series and appending it to the end. 
This operation disrupts the natural order of the time 
series, creating a synthetic sequence that may 
combine different temporal patterns. By altering the 
original data flow, this technique introduces new 
transitions and relationships between segments, 
challenging the model to learn more complex 
temporal dependencies. The cut-and-paste approach 
is useful when the dataset is limited, as it can create 
a wide range of augmented samples from a single 
time series. 
 
3.5  Adding White Noise Technique 
The addition of white noise involves injecting a 
random noise component into the time series, 
effectively creating a perturbed version of the 
original data. The white noise is characterized by a 
normal distribution with a mean of zero and a small 
variance, typically set to 0.0001, to ensure minimal 
distortion. This technique simulates random 
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fluctuations and measurement errors that may occur 
in real-world data. 
 
 
4  Selecting Measures for the Analysis 

of Datasets 
In order to assess the sensitivity of the five 
techniques to various factors, seven mono-scale, 
multi-scale, and poly-scale measures are employed 
to analyze the time series of the two datasets as 
described below. 
 
4.1  The Hurst Exponent Measure 
The Hurst exponent (H) serves as a metric 
(measure) for quantifying the degree of long-range 
dependence present in a time series [5], thereby 
detecting its existence. Additionally, the Hurst 
exponent measures the smoothness of self-affine 
processes. It ranges between 0 and 1, where 
different values convey distinct characteristics of the 
time series, [5]. As the H value approaches 1, the 
level of persistence or long-range dependence 
(LRD) increases. This implies that the signal's 
behavior at a given time can be influenced by its 
past values, a concept explained later in this paper. 
A Hurst exponent close to 0.5 suggests a completely 
random process or Brownian motion where there is 
no LRD. In this case, the time series exhibits no 
correlation, and the past values do not influence 
future data points. Such behavior is typical of white 
noise and purely stochastic processes, [5]. On the 
other hand, an H value less than 0.5 indicates an 
anti-persistence or strong negative correlation. In 
this scenario, if the time series has an increasing 
trend, it is likely to reverse and start decreasing, and 
vice versa. 

An N-dimensional object (a 2D signal in our 
case) is said to be self-affine if its smaller fragments 
are scaled-down versions of the entire object and if 
the scaling factors are different in the N dimensions. 
If the scaling factors are the same, the object is 
called self-similar, [6]. Self-affinity refers to the 
persistence of fractal patterns across various scales 
of observation, while self-similarity denotes uniform 
scaling behavior across all dimensions. 

Self-affinity and long-range dependence in a 
signal means that the signal not only exhibits fractal 
patterns at different scales but also these patterns are 
strongly correlated (or dependent) over an extended 
period of time. These relationships can be 
encountered in various real-world phenomena, such 
as financial time series and Internet traffic, where 
bursty operations and packet flows display similar 
behavior. The ability to detect and measure these 

patterns using the Hurst exponent is crucial for 
analyzing the predictability and underlying 
dynamics of time series data.  
 
4.2  The Variance Fractal Dimension 

Trajectory Measure 
The variance (the second moment) of a self-affine 
signal can be used to measure the power-law 
behavior of the signal. To measure and analyze the 
complexity of such broadband self-affine time series 
signals (often characterized by the signal 
stochasticity, non-stationarity, non-differentiability, 
dynamic behavior, and long-range dependence), the 
variance fractal dimension trajectory (VFDT) 
measure has been proposed, [6]. The VFDT has 
been refined to consider all data points, including 
boundary points of time series signals, not solely 
marginal points, [6]. 

When using the VFD with a time series, the 
variance of the amplitude increments over each time 
increment follows a power law relation with that 
time increment, as given by [6]. 

 
2

2 1 2 1var[ ( ) ( )] ~| | H
A t A t t t    (1) 

where var denotes the variance function (the second 
moment), A is the time series signal, H is the Hurst 
exponent, and it represents the discrete time in a 
discrete signal. As explained, the Hurst exponent 
indicates the self-affine characteristics of the signal, 
if any. Taking the logarithm of both sides of Eq. (1), 
the Hurst exponent is calculated from a log-log plot 
and is given by [6]. 
 2

0 2

log [var( ) ]1
( )lim 2 log

n

n

A
H

n



 






  (2) 

where Δn denotes the scale in a discrete-time series 
signal at which the variance is evaluated. Equation 
(2) is used to analyze a time series signal in the time 
domain by calculating the expansion of the time 
series signal amplitude at different scales through its 
variance [6]. 

 
The output of the VFD, denoted by D  is used 

as a measure of signal complexity and is obtained 
from [6]. 
 1D E H      (3) 
where E is the Euclidean dimension and is E = 1 for 
time series signals. Detailed descriptions of the real-
time VFDT algorithm and the second version of the 
VFDT algorithm can be found in [6]. 

 
To validate the VFDT algorithm, the theoretical 

VFDT value for white noise is D  =2, while D  =1 
for a straight line, [6]. Thus, the VFDT values of a 
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self-affine time series signal are bounded between 
the two values. An example of the engineering 
application of the H and the VFD is to facilitate 
anomaly detection in Internet time series traffic. 
 
4.3  Spectral Fractal Dimension Measure 
The spectral fractal dimension (SFD) transforms a 
self-affine time series self-affine signal into its 
power spectrum density [6]. Operating in the 
frequency domain [1], the SFD analyzes the 
properties of frequencies underlying the time series 
signals, [6]. This spectrum discovers inherent 
characteristics of the time series frequencies [6]. For 
the fractal time series signal, the power spectrum 
density follows the spectral power law, as shown in 
Eq. (4), [6]. 
 

1
( ) ~P f

f 
  (4) 

where   is the power spectrum exponent. Taking 
the logarithm of both sides of Eq. (4) yields a linear 
relationship between the power spectrum and its 
frequency, represented by a regression line. The 
slope of this line, denoted by  , serves as the power 
spectrum exponent of the DDoS ITD, as illustrated 
in Figure 6. 
 

 
Fig. 6: The power density spectrum of the DDoS 
ITD and its slope 

 
In Figure 6, the power density spectrum of the 

DDoS ITD is plotted on a log-log scale. The figure 
demonstrates the linear trend in the log-log plot, 
with the slope   representing the power spectrum 
exponent of the DDoS traffic. This exponent 
signifies the self-affine relationship of the time 
series. A slope of zero (  =0) indicates white noise, 
suggesting no correlation within the time series and 
implying purely random behavior. Consequently, an 
increasing slope indicates an increasing correlation. 
The analysis of the power density spectrum in 
Figure 6 indicates strong long-range dependence 
and persistent behavior. This observation is 
consistent with the nature of DDoS attacks, where 

packet bursts and correlated traffic patterns are 
common due to the nature of the DDoS attack. 

Complex self-affine time series, such as the 
Internet time series data, may exhibit multiple   
values due to their multifractal nature. The SFD 
output, serving as a measure of signal complexity 
denoted by D

, is obtained from [6]. 

 (3 )

2
D E


    (5) 

where E is the Euclidean embedding dimension, as 
defined in Eq. (3). This is due to the following 
relationship between the Hurst exponent and the 
power spectrum exponent [6]. 
 2 1H     (6) 
 
4.4  Autocorrelation Function Measure 
Correlation assesses both the strength and direction 
of the linear relationship between two variables, [7]. 
Autocorrelation, on the other hand, approximates 
the similarity between data points separated by 
successive time intervals within a time series signal, 
[8]. Equation (7a) presents the autocorrelation 
function for an energy signal, while Eq. (7b) shows 
the autocorrelation function for a power signal. 

 ( ) ( ) ( )xx
n

r l x n x n l



    (7a) 
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  (7b) 

 
Autocorrelation reveals properties of a 

stationary random process, [9]. The Fourier 
transform is computed from a stationary time series 
signal, allowing for the direct calculation of the 
power density spectrum from the squared magnitude 
of the Fourier transform. In the case of non-
stationary data, the Fourier transform can still be 
calculated from a sequence of stationary frames. 
The Fourier transform of the autocorrelation 
sequence is generally valid for non-stationary data, 
enabling the calculation of the power of the time 
series. Consequently, the Fourier transform of the 
autocorrelation sequence is interpreted as the 
frequency distribution of the signal’s power, 
representing the power density spectrum, [9]. For 
example, analyzing autocorrelation in voice datasets 
aids in pitch detection, while analyzing Internet 
traffic flow datasets facilitates anomaly detection. 
 
4.5  Long-Range Dependence Measure 
In statistical analysis, dependence signifies any 
relation and association between two variables. 
LRD describes the extent to which a time series 
signal is influenced by its past values over an 
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extended period. Unlike short-term dependence, 
where correlations diminish quickly, LRD implies 
that significant correlations persist even as the time 
lag increases, indicating memory and persistence 
within the time series, [10], [11]. The magnitude of 
long-range dependence is typically measured using 
the autocorrelation function, which measures the 
correlation of a time series with its lagged versions. 

In instances where a time series signal exhibits 
long-range dependence, its autocorrelation decays in 
a hyperbolic manner [11], whereas signals with 
short-term dependence experience exponential 
decay [12]. Consequently, the autocorrelation 
distribution of a time series signal with long-range 
dependence tends to be more dispersed compared to 
that of a time series with short-term dependence 
[11], [13]. LRD is a key indicator of the 
effectiveness of data augmentation. Because the 
autocorrelation function decays hyperbolically, the 
power density spectrum for a signal with long-term 
dependence shows an increase without the 
frequency ever reaching zero, [11]. 

Long-range dependence indicates that past 
events can influence future events over an extended 
period, [14]. For example, Internet traffic patterns, 
particularly in scenarios like DDoS ITD, tend to be 
bursty and exhibit LRD [14]. Another example is 
Call Holding Time (CHT), which occurs in a 
stochastic (random) environment and follows a 
heavy-tailed distribution while also showing LRD. 
In telecommunications, CHT, or the duration of a 
phone call, varies randomly due to factors such as 
user behavior, network conditions, and the type of 
call. Processes characterized by long-range 
dependence, such as CHT and Internet traffic, often 
exhibit self-affinity.  As a result of this LRD, 
periods of high activity are likely to be followed by 
similar high activity periods, while low activity 
periods tend to be followed by low activity periods. 
Both CHT and Internet traffic follow a heavy-tailed 
distribution, meaning that extreme values (such as 
unusually very long or very short call durations or 
traffic levels) are common and support the presence 
of bursty patterns. 

The power spectrum exponent indicates the 
presence of long-range dependence within a time 
series signal [11] and can be determined using 
Eq. (6). The time series represents white noise when 
the slope   is zero, indicating no correlation and, 
therefore, no long-range dependence. As the slope 
increases, so does the correlation, subsequently 
enhancing the long-range dependence of the time 
series signal. 
 

4.6  Zero Crossing (ZC) Measure 
The zero crossing (ZC) measure quantifies how 
many times a signal's magnitude crosses a specified 
threshold value, such as zero, within a given interval 
[1]. When the threshold value is set to zero, the ZC 
indicates the rate of transitions between positive and 
negative mathematical signs of the signal within that 
interval. Zero crossing is effective in identifying 
edges and sudden changes within a time series 
signal and is related to the lowest frequency 
component of the signal [15], which can be utilized 
for feature extraction. The zero crossing is 
calculated through the following equation [1], [16]. 

 [| sgn[ ( )] sgn[ ( 1)] |] [ ]
n

ZC x m x m w n m



      (8) 

where sgn[]  denotes the mathematical sign function 
as given by [1], [16]. 

 
1, ( )

sgn[ ( )]
1, ( )

x n threshold
x n

x n threshold

 


 





  (9) 

and []w  denotes a frame containing a stationary 
segment of a time series signal, defined by [16]. 

 
1

, 0 1
[ ] 2

0,

n N
w n N

otherwise

  







  (10) 

 
This measure is computed in the time domain 

and can be performed in real-time. The ZC rate is 
useful for distinguishing speech from noise and for 
determining the start and the end of speech 
segments, [16]. 
 
4.7  Turns Count (TC) Measure 
The turns count (TC) is used to extract features from 
a time series signal based on changes in slope 
direction rather than zero crossings, [15]. A turn is 
counted each time the slope of the signal changes its 
sign, [1], [15]. This technique evaluates signals by 
identifying the number of spikes present within the 
signal [15] and is related to the highest frequency 
component of the signal in the frame. A turn is 
computed from [1]. 
 &( ) ( 1) ( 1) ( 2)itr x n x n x n x n        (11a) 

 &( ) ( 1) ( 1) ( 2)itr x n x n x n x n        (11b) 

where 
i

tr  represents the turn occurring within a time 
interval such as a stationary-frame interval, and x(n) 
denotes an input time series signal. The total turn 
count in the frame is given by [1]. 

 
1

i
i

TC tr




   (12) 
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5  Simulation and Results 
Table 1 and Table 2in Appendix present the 
statistical properties and outcomes related to eight 
mono-scale, multi-scale, and poly-scale assessments 
of both the DDoS ITD and the “test” dataset before 
and after the implemented data augmentation. 
Subsequent discussions will explain the findings of 
the simulated measure proposed.  
 
5.1  Analysis of Stationarity 
Weak stationarity in a dataset is characterized by the 
first two moments falling within specified ranges, 
typically within a 95% confidence interval, [6]. The 
DDoS ITD demonstrated weak stationarity, as 
indicated by the trajectory of the mean falling within 
the range of 0.000782 to 0.003041 and the variance 
trajectory within the range of 1.64E–06 to 8.21E–
06, given a minimum frame size of 8192. The 
skewness trajectory ranged from 1.076 to 2.94, 
while the kurtosis trajectory remained at 1.8. The 
trajectories of the mean and variance are presented 
in Figure 7, while the trajectories of skewness and 
kurtosis are illustrated in Figure 8. 

Recall that the mean represents the typical value 
of a set of data, while variance quantifies how 
spread out the data is from this mean, [7]. Skewness 
signals if the distribution leans towards the right or 
left, [17]. Kurtosis measures the thickness of the 
distribution's tail, with positive values indicating 
distributions with heavier tails.  

 

 
Fig. 7: The trajectories of the mean and variance 
within a stationary frame of samples related to the 
DDoS ITD 

 

 
Fig. 8: The trajectories of skewness and kurtosis 
within a stationary frame of samples related to the 
DDoS ITD 

The “test” speech dataset exhibited weak 
stationarity due to the minimum window size of 
512, resulting in the mean trajectory ranging from–
0.0087 to 0.0049 and the variance trajectory ranging 
from 2.48E–06 to 0.0091. Similarly, the skewness 
trajectory ranged from –2.09 to 1.55, and the 
kurtosis trajectory ranged from 1.56 to 31.03. The 
trajectories of the mean and variance are presented 
in Figure 9, while the trajectories of skewness and 
kurtosis are illustrated in Figure 10. 

 

 
Fig. 9: The trajectories of mean and variance within 
a stationary frame of samples related to the “test” 
dataset 
 

 
Fig. 10: The trajectories of skewness and kurtosis 
within a stationary frame of samples related to the 
“test” dataset 
 
5.2  Probability Mass Function Analysis 
To fit a probability distribution to the time series of 
both datasets, the maximum likelihood estimation 
method and polynomial regression are employed, 
[18]. 

For the DDoS ITD, the probability mass function 
(PMF) reveals a Lévy distribution, where the 
location parameter (µ) is 0.0019223631, and the 
scale parameter (σ) is –0.0004226877 as given by:  

 
2( )

3/2( ) . , , 0
2 ( )

x
e

f x x

x






  
 




    



  (13) 

 
These parameters are determined through 

maximum likelihood estimation. The DDoS ITD’s 
heavy tail becomes apparent when contrasting its 
Lévy distribution with a normal distribution. The 
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presence of self-affinity in the delay of packets 
contributes to the heavy tail distribution, [13]. The 
on-off queuing model, where “on” represents active 
data transmission and “off” represents no 
transmission, generates the traffic model. If the 
durations of “on-off” periods exhibit heavy-tailed 
characteristics, it leads to long-range dependence, 
[5]. Figure 11 illustrates the PMF of the DDoS ITD. 
 

 
Fig. 11: The Probability Mass Function (PMF) of 
the DDoS ITD 

 
The PMF of the “test” speech dataset conforms 

to a distorted (skewed and flattened) normal 
distribution, characterized by a mean (µ) of 
0.090909091 and a standard deviation (σ) of 
0.028493958. These values are obtained through 
maximum likelihood estimation. Figure 12 
illustrates the PMF of the “test” dataset. 
 

 
Fig. 12: The Probability Mass Function (PMF) of 
the “test” dataset 
 
5.3  The Hurst Exponent Analysis 
In this study, the DDoS ITD exhibited Hurst 
exponent (2) values ranging from 0.0063 to 0.0289, 
as illustrated in Figure 13. Similarly, the “test” 
dataset demonstrated Hurst exponent values ranging 
from 0.0137 to 0.8520, as illustrated in Figure 14. 
 

 
Fig. 13: The trajectory of the Hurst exponent for the 
DDoS ITD 

 

 
Fig. 14: The trajectory of the Hurst exponent for the 
“test” dataset 
 
5.4  Variance Fractal Dimension Trajectory 

Analysis 
The VFD algorithm output for the DDoS ITD 
ranged from 1.9711 to 1.9937 using the non-
overlapping frame version, as shown in Figure 15. 
Similarly, for the “test” dataset, the VFD ranged 
from 1.1480 to 1.9863, as illustrated in Figure 16. 
 

 
Fig. 15: The trajectory of the VFD for the DDoS 
ITD 

 
Fig. 16: The trajectory of the VFD for the “test” 
dataset 
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To validate the VFD algorithm results, a 
uniformly distributed white-noise time series with a 
mean of zero, variance of 0.08, and an epoch size of 
220 was generated. This white noise within the 
same frame of 512 samples of stationary time series 
data is shown in Figure 17. 

 

 
Fig. 17: Uniformly distributed white noise is 
illustrated within a 512-element frame 
 

For the white noise epoch, the VFD output 
using the non-overlapping frame version ranged 
from 1.955 to 1.995, with an absolute error of –
0.0241 and an absolute error of –4.15%, confirming 
the accuracy of the algorithm. Figure 18 illustrates 
the VFDT of this white noise signal with zero 
overlapping frames for the epoch. 

 
Fig. 18: The VFDT of the uniform distribution 
white noise signal 
 
5.5  Zero Crossing and Turns Count 

Analysis 
In this study, the DDoS ITD shows 1250 zero-
crossing, and 5349 turns count within a frame size 
of 8192, while the “test” dataset exhibits 145 zero-
crossing and 192 turns count within a frame size of 
512. 
 
 

5.6  Power Density Spectrum Analysis 
The power density spectrum of both the DDoS ITD 
and the “test” datasets are illustrated as log-log plots 
in Figure 19 and Figure 20, respectively. The power 
density spectrum has a slope of 1.9216 for the 
DDoS ITD and 1.4727 for the “test” dataset when 
plotted against frequency. However, according to 
Eq. (6), the power spectrum exponent   is 0.9728 
for the DDoS ITD and 1.6095 for the “test” dataset, 
respectively. 
 

 
Fig. 19: A log-log plot showing the power density 
spectrum against frequency, along with the 
corresponding slope for the DDoS ITD 
 

 
Fig. 20: A log-log plot showing the power density 
spectrum against frequency, along with the 
corresponding slope for the “test” dataset 
 
5.7  Autocorrelation Function Analysis 
The autocorrelation for the DDoS ITD and the “test” 
dataset is illustrated in Figure 21 and Figure 22, 
respectively. 
 

 
Fig. 21: The DDoS ITD’s autocorrelation at 
different lags in the first frame 
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Fig. 22: The “test” dataset’s autocorrelation at 
different lags in the first frame 
 
 
6  Results and Discussion 
This study reveals that data augmentation affects the 
constraints of the DDoS ITD, whereas the 
constraints of the “test” dataset remained 
unchanged. 

Typically, a Lévy distribution exhibits infinite 
mean and variance with undefined skewness and 
kurtosis. Also, in a Lévy distribution, inflection 
points vary in magnitude, making it impossible to 
determine the sigma to find the variance. 
Consequently, these statistical tools are inadequate 
for feature extraction. However, the PMF serves as a 
convenient statistical tool for displaying data 
distribution to check whether the shape of the data 
has changed as a result of the augmentation. 

In this study, the PMF of the DDoS ITD 
followed a Lévy distribution with finite values for 
its first four moments. Although these values were 
finite, they were appropriate since the DDoS ITD 
data had a limited stationary frame size, ensuring 
the data magnitude within this frame remained 
finite. 

The augmentation techniques that violate the 
fundamental characteristics of the data also violate 
the constraints of the time series signals. However, 
the constraints are altered when the augmented 
DDoS ITD does not conform to the Lévy 
distribution. For example, employing the stretching 
technique for data augmentation results in a 
polynomial distribution in the PMF of the DDoS 
ITD. Similarly, utilizing the squeezing technique 
leads to a Pareto distribution in the PMF, while 
employing the random cut-and-paste technique 
results in a Lévy distribution. These distributions are 
illustrated in Figure 23, Figure 24, Figure 25, Figure 
26, and Figure 27, respectively. 

 
 

 
Fig. 23: After applying the stretching technique, the 
PMF of the augmented DDoS ITD results in a 
polynomial of degree 9 distribution. The 
coefficients for this polynomial are [4.7e-09, –4.5e-
07, 1.8e-05, –0.0004, 0.0062, –0.0548, 0.3054, –
1.0178, 1.7902, –1.0285] 
 

 
Fig. 24: After applying the squeezing technique 
(downsampling), the PMF of the augmented DDoS 
ITD results in a Pareto distribution with parameters: 
Shape equal to 1.71292, Scale equal to 0.00601753 
and Threshold equal to 0. 
 

 
Fig. 25: After applying the random cut-and-paste 
technique, the PMF of the augmented DDoS ITD 
results in a Lévy distribution with parameters µ 
equal to 0.07692308 and σ equal to 0.006554275 
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Fig. 26: After applying the mirroring flipping 
horizontally technique, the PMF of the augmented 
DDoS ITD results in a Lévy distribution with 
parameters µ equal to 0.0588451 and σ equal to 
0.00346275 
 

 
Fig. 27: After applying the adding noise technique, 
the PMF of the augmented DDoS ITD results in a 
normal distribution with parameters µ equal to 
0.067 and σ equal to 0.008234 
 

Flipping and random cut-and-paste of the DDoS 
ITD resulted in similar PMF patterns, whereas 
stretching, squeezing, and adding noise did not yield 
similar outcomes. With the horizontal flipping 
technique, the tagging (labeling) of normal or 
anomalous data output cannot be maintained since 
the tag can be altered. Data output was labeled 
according to the packet count within a 0.1 ms 
interval, with fewer than 40 packets considered 
normal and more than 40 packets considered 
anomalous. The horizontal flipping technique 
changed the data output tag and made this 
augmentation technique impractical for machine 
learning model training, [2]. Moreover, the random 
cut-and-paste technique is not suitable for 
adequately expanding small datasets due to their 
non-stationary nature; thus, it is only viable for large 
datasets where augmentation is unnecessary due to a 
large number of data points. Furthermore, the data 
output tag can be modified. 

The PMF distributions of the “test” dataset 
augmented with stretching, squeezing, and random 
cut-and-paste techniques result in normal 
distributions, as illustrated in Figure 28, Figure 29, 
Figure 30, Figure 31 and Figure 32, respectively. 

In voice datasets, flipping, stretching, 
squeezing, and random cut-and-paste techniques 

yielded similar distributions, specifically normal 
distribution. 

 
Fig. 28: After applying the stretching technique, the 
PMF of the augmented “test” dataset results in a 
normal distribution with parameters µ equal to 
0.090909091 and σ equal to 0.011071521 
 

 
Fig. 29: After applying the squeezing technique 
(downsampling), the PMF of the augmented “test” 
dataset results in a normal distribution with 
parameters µ equal to 0.090909091 and σ equal to 
0.032889586 
 

 
Fig. 30: After applying the random cut-and-paste 
technique, the PMF of the augmented “test” dataset 
results in a normal distribution with parameters µ 
equal to 0.076923077 and σ equal to 0.006554275 
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Fig. 31: After applying the mirroring flipping 
horizontally technique, the PMF of the augmented 
“test” dataset results in a normal distribution with 
parameters µ equal to 0.09091 and σ equal to 
0.01415 
 

 
Fig. 32: After applying the squeezing technique 
(wavelet approximation coefficients), the PMF of 
the augmented “test” dataset results in a normal 
distribution with parameters: µ equal to -
0.000743937 and σ equal to 0.001609512 
 
 
7  Discussion on the Applications 
The first application of detecting input-data 
properties, like long-range dependence, is a 
validation of the augmentation process. The second 
application of detecting input-data properties, like 
long-range dependence, is using proper machine 
learning tools to analyze the input data for 
extracting features, classification, or regression. 
Detecting the existence of long-range dependence in 
the input data is important to selecting or designing 
various structures of neural networks. If input data 
do not have long-range dependence, a regular neural 
network or a multiscale neural network structure can 
be sufficient for analyzing the data. If there is long-
range dependence within the input data, designing a 
poly-scale neural network structure could be 
particularly useful. Consequently, a poly-scale 
analysis algorithm is recommended for designing 
the architecture of the poly-scale neural network 
structure, [19], [20], [21]. In contrast with the 
multiscale analysis, where there is no correlation 
between the outcomes at different scales, a poly-
scale analysis measures input data at various scales, 
and its outcome requires all the scales to be used 
simultaneously [6]. Thus, the hidden feature in the 

input data could be extracted using the poly-scale 
neural network. The design of such a poly-scale 
neural network is addressed in [19]. 

Applications of data augmentation include all 
the deep learning and machine learning architectures 
[22], particularly in the convolutional neural 

networks (CNNs) models, whenever there are 
limited sizes of quality data and to improve the 
model’s robustness and performance. It has been 
used in healthcare [23] and autonomous vehicles to 
expand the range of scenarios for self-driving cars 
and drones. It has also been used in natural 

language processing (NLP) to improve its 
performance by synonym augmentation, word 
embedding, character swap, and random insertion 
and deletion, [24]. Automatic speech recognition 
has also benefited significantly from data 
augmentation. Image processing and computer 
vision have also used data augmentation 
extensively. The traditional limitations of data 
augmentation include biases, [25]. Our paper 
identifies another serious limitation of data 
augmentation for data with long-term dependence. 
This insight highlights the need to refine 
augmentation practices in modern communications, 
enhancing the reliability and robustness of models 
used for network monitoring and security 
applications, [26], [27]. 

Moreover, this study shows some data 
augmentation methods and measures that can be 
used for other applications, such as particle filters. 
When using particle filters or sample-based methods 
in general, researchers need sampling. Instead of 
random sampling, one effective approach is 
employing a data augmentation method, such as 
wavelet approximation and detail coefficients. As a 
result, the area that has more information can be 
exaggerated. Then, the area of the input signal with 
more information has a larger amplitude. 
Conversely, areas without any information exhibit 
lower amplitude in the augmented data. Finally, the 
sampling process can be launched from the 
approximation coefficients area where its 
corresponding detail coefficients have high values. 

One application of data augmentation 
techniques that preserves LRD is the effective 
management of big data in communications. By 
maintaining the fundamental properties of the 
original datasets, augmented data can enhance the 
performance of predictive models, anomaly 
detection systems, and traffic management 
strategies. This leads to more accurate analysis, 
improved decision-making, and greater operational 
efficiency in handling the complex, bursty, and 
highly dynamic nature of communications data. 
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Finally, the Hurst exponent and the VFDT can 
also be used to sample particle filters. In normal 
data, the boundaries of VFDT are different from the 
boundaries of anomalous data. Therefore, to extract 
more detailed information from the corresponding 
raw data, it is crucial to find the trajectory of the 
VFD, as this will help identify points that belong to 
anomalous boundaries, providing more insight into 
the underlying patterns. Therefore, more samples 
from this signal area with VFD and anomalous 
boundaries can be obtained. 
 
 
8  Extension of the Work 
In this paper, seven measures are considered to 
analyze the impact of data augmentation on datasets. 
To expand the analysis of the dataset, other 
measures can also be considered, such as the 
discrete wavelet transform (DWT), principal 

component analysis (PCA), the distance between a 
packet’s arrival time with the adjacent packet, and 
the average of the distance between a packet’s 
arrival time with the last five adjacent packets. 
These measures can be utilized to examine the time 
series signals of both pre and post-data 
augmentation. 

For future work, exploring the combined use of 
these additional measures could provide deeper 
insights into the effectiveness of data augmentation 
techniques, particularly for datasets originating from 
stochastic environments like Internet traffic data. 
 
 
9  Concluding Remarks 
This study investigated the impact of five 
augmentation techniques on the long-range 
dependence of the DDoS ITD and the "test" dataset. 
It highlights how these techniques can disrupt the 
LRD of certain time series datasets by altering their 
PMF. 

While none of the augmentation methods 
preserved the original data constraints of the DDoS 
ITD, as indicated by the changes in PMF, the 
augmented "test" dataset closely mirrored the 
original distribution, following a normal distribution 
and thus preserving the constraints. Consequently, 
the proposed augmentation techniques may be 
suitable for audio time series data but not for 
Internet time series data that originate from bursty 
operations. 

This study also demonstrates how LRD can 
serve as a tool to assess the reliability and validity of 
the augmentation process. Moreover, this research 
illustrates the real-time applicability of using PMF 

to evaluate the suitability of data augmentation 
techniques. Furthermore, the PMF validation 
approach is adaptable to various time series datasets, 
offering significant convenience and advantageous 
in determining whether to expand input data for 
machine learning purposes. 

Future work could investigate hybrid 
augmentation methods that integrate domain-
specific constraints. This approach aims to enhance 
the robustness and applicability of augmented 
datasets in modern communications, particularly for 
tasks such as network anomaly detection and 
predictive traffic modeling. 
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APPENDIX 

 
Table 1. The statistical data of the DDoS ITD and the results of eight mono-scale, multi-scale, and poly-scale 

measures both before and after data augmentations for the initial stationary frame of trajectories 
 Raw Data Flipping 

Horizontally 

(Mirroring) 

Stretching Squeeze 

Downsampling 

Squeeze 

Wavelet 

transform 

Random 

Cut-and-

Paste 

Adding 

Noise 

Mean 0.0029 0.0029 0.0027 0.0014 0.0041 0.0030 0.0029 
Median 0.0020 0.0020 0.0023 0 0.0038 0.0021 0.0029 
Mode 5.0000e–06 5.0000e–06 6.0000e–06 0 –0.0014 5.0000e–06 –0.0340 
Variance 7.7418e–06 7.7418e–06 4.4139e–06 5.9432 e–06 6.4685e–06 8.6087e–06 1.1161e–04 
Standard 

deviation 

0.0028 0.0028 0.0021 0.0024 0.0025 0.0029 0.0106 

Skewness 1.2928 1.2928 1.0344 2.1488 0.4927 1.2740 0.0804 
Kurtosis 1.2582 1.2582 0.9338 4.6103 –0.2094 1.1205 3.8383e–04 
Autocorrelation 

(lag 0) 

–3.4694e–18 –3.4694e–18 0 5.2042e–18 3.0095e–07 8.5698e–07 –1.0536e–05 

VFD 1.9931 1.9931 1.9836 1.9880 1.9891 1.9944 1.9864 
Hurst exponent 0.0069 0.0069 0.0164 0.0120 0.0109 0.0056 0.0136 
Slope (  ) 1.0138 1.0138 1.0327 1.0240 1.0218 1.0111 1.0272 
Zero crossing 1250 1250 1008 598 3154 1228 4129 
Turns count 5349 5349 5516 2846 6017 5240 5472 

 
 

Table 2. The statistical information of the word “test” dataset and the results of eight mono-scale, multi-scale, 
and poly-scale measures both before and after data augmentations for the initial stationary frame of trajectories 

 Raw Data Flipping 

Horizontally 

(Mirroring) 

Stretching Squeeze 

Downsampling 

Squeeze 

Wavelet 

transform 

Random 

Cut-and-

Paste 

Adding 

Noise 

Mean –0.0051 –0.0052 –0.0060 –0.0025 –0.0066 –0.0055 –0.0054 
Median –0.0055 –0.0055 –0.0050 0 –0.0078 –0.0013 –0.0073 
Mode –0.0429 –0.0429 –0.0050 0 –0.1583 –0.0119 –0.1361 
Variance 0.0015 0.0015 0.0017 7.3658e–04 0.0026 0.0013 0.0016 
Standard 

deviation 

0.0383 0.382 0.0410 0.0271 0.0508 0.0358 0.0397 

Skewness 0.0917 0.0890 0.0834 0.0068 0.0525 0.0151 0.1513 
Kurtosis 0.3912 0.4106 0.2173 2.7957 0.6188 0.2191 0.4643 
Autocorrelation 

(lag 0) 

0.0010 0.0010 –0.0003 0 –0.0024 –4.0610e–05 0.0025 

VFD 1.9412 1.9412 1.9273 1.9867 1.9835 1.9007 1.9767 
Hurst exponent 0.0588 0.0588 0.0727 0.0133 0.165 0.0993 0.0233 
Slope (  ) 1.1177 1.1117 1.1455 1.0267 1.0330 1.1987 1.0466 
Zero crossing 145 145 139 123 250 114 159 
Turns count 192 192 418 150 290 171 226 
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