

 Wireless Sensor Networks (WSNs) are sink-based
networks in which assigned sinks gather all data sensed by
lightweight devices that are distributed and deployed in
natural areas [3][9]. They are used for specific applications
to monitor certain conditions such as temperature, pressure,
physical motions, and humidity. As a result, the special
capabilities of WSNs have led to implement it in many
areas like environmental monitoring, traffic control and
marine applications [2][4][13].

 WSNs are also used in highly critical fields such as
military, medical health, coal mines, and even nuclear and
radiation monitoring where hazardous environments exist
[1][9]. Implementing WSNs in such a wide range of critical
applications requires a highly efficient design of this
technology. Moreover, specific performance metrics are
demanded to be considered with the designation process
[2][13].

 According to [4], the most critical resource in WSNs is
energy. Thus, almost every protocol designed with respect
to WSNs is as close as possible to the term 'energy-
efficient'. Therefore, it is reasonable to focus on energy
while designing models in WSNs such that they consume
as less energy as possible [9].

 Many techniques and mechanisms have been developed
to reduce energy consumption in WSNs. Some important
techniques are reducing communication distances among
the sensor devices and data aggregation [2][8][11].

 First, sending and receiving data through long
communication ranges and distances consume large
amounts of energy in a sensor device [8]. Secondly, the
idea of data aggregation is to combine data gathered from
various sources in order to eliminate redundancy and
minimize the number of transmissions which in turn
reduces the overall consumed energy within the network
[1][2][11].

Received: November 17, 2020. Revised: April 5, 2021. Accepted: April 21, 2021. Published: April 30, 2021.

A Segment-based Tree Traversal Algorithm for Enhancing Data

Gathering in Wireless Sensor Networks

MOHAMMAD A. JASSIM

Department of Computer Science, KASIT

The University of Jordan Amman,

JORDAN

WESAM A. ALMOBAIDEEN

Department of Computer Science, KASIT

The University of Jordan Amman,

JORDAN

Abstract—Wireless Sensor Networks (WSNs) are sink-based networks in which assigned sinks gather

all data sensed by lightweight devices that are deployed in natural areas. The sensor devices are energy-

scarce, therefore, energy-efficient protocols need to be designed for this kind of technology. Power-

Efficient GAthering in Sensor Information Systems (PEGASIS) protocol is an energy-efficient data

gathering protocol in which a chain is constructed using a greedy approach. This greedy approach has

appeared to have unbalanced distances among the nodes which result in unfair energy consumption.

Tree traversal algorithms have been used to improve the constructed chain to distribute the energy

consumption fairly. In this research, however, a new segmentbased tree traversal approach is introduced

to further improve the constructed chain. Our new proposed algorithm first constructs initial segments

based on a list of nodes that are sorted according to post-order traversal. Afterwards, it groups these

segments and concatenates them one by one according to their location; thus, our proposed approach

uses location-awareness to construct a single balanced chain in order to use it for the data gathering

process. This approach has been evaluated under various numbers of sensor devices in the network field

with respect to various crucial performance metrics. It is shown in our conducted simulation results that

our proposed segment-based chain construction approach produces shorter chains and shorter

transmission ranges which as a result has improved the overall energy consumption per round, network

lifetime, and end-to-end delay.

Keywords-component; Wireless Sensor Networks (WSNs); data aggregation; energy-efficient; greedy

algorithm; PEGASIS protocol; tree traversal; Minimum Spanning Tree (MST); Segment-Based Tree

Traversal (SBTT); cross elimination method; Highest Transmission Range (HTR); C++; QualNet;

Time Devision Multiple Access (TDMA); Energy Lost per Round (ELR); network lifetime; end-to-

end delay

1. Introduction

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.8 Mohammad A. Jassim,, Wesam A. Almobaideen

E-ISSN: 2224-2872 66 Volume 20, 2021

 Many protocols have been developed to minimize the
long ranged data transmissions in addition to data reduction
through data aggregation technique. Some of the most
popular protocols regarding this subject are Low Energy
Adaptive Clustering Hierarchy (LEACH) and Power-
Efficient GAthering in Sensor Information Systems
(PEGASIS) [3][12][13].

 PEGASIS is a near optimal chain based protocol. The
key idea of PEGASIS is to form a long single chain that
connects all nodes in the network which afterwards enables
these nodes to communicate and exchange data among
each other. The chain that is constructed in PEGASIS is
formed using greedy algorithm. In this chain, each node
transmits data to a close neighbor. Clearly, this is a simple
approach that motivates sensor devices to transmit through
shorter distances, thus, reducing energy consumption.
Additionally, while nodes are transmitting data, they also
aggregate and fuse data along the way [12].

 Using greedy algorithms for chain formation in
PEGASIS protocol rarely yields optimal solutions.
Therefore, it is hypothesized that node lifetime and energy
consumption in PEGASIS protocol whose chain is built
using greedy approach can be further improved [10].

 The work in [10] is mainly aimed at using the
traditional graph theory tree traversal algorithms to form
the chain in PEGASIS instead of using the greedy
algorithm in [12]. First, a rooted directed minimum-weight
spanning tree of the whole WSN is generated. To construct
the rooted directed minimum spanning tree, Kruskal’s
algorithm is used to obtain an undirected unrooted
minimum spanning tree. Then, a Breadth First Search
(BFS) algorithm is run on the tree to obtain a rooted
directed minimum spanning tree. Furthermore, it is
important to mention that the root of the tree is the node
that is closest to the center of the network area. At the end,
post-order tree traversal algorithm is used to form a
sequence of ordered nodes based on the rooted directed
MST; this chain is used in PEGASIS data gathering
protocol [10].

 Simulations have been conducted in [10] for three types
of tree traversal algorithms (pre-order, in-order and post-
order); results show that post-order traversal outperforms
other tree traversal methods, thus, we will only consider
this traversing algorithm in our research.

It is reported in [10] that the post-order approach has a
longer network lifetime than the greedy approach in [12] for
TDMA systems. This is explained in [10] by referring to the
fact that the physical distances among the nodes in the
greedy chain get larger when more nodes are added to the
chain. Furthermore, the distances among the nodes in the
second half of the chain are larger than the distances in the
first half of the chain. Due to these reasons, premature node
failures occur more often in the second half of the chain
compared to the first half. In tree traversal approach, on the

other hand, the nodes are relatively more equally spaced;
this results in less consumption in the overall energy and it
does not vary much along the chain. Another important
point mentioned in [10] is that choosing the tree’s root node
to be closest node to the center of the network field yields a
tree with greater depth; hence, node lifetime has
significantly improved. However, it is concluded in [10]
that the greedy approach records better energy lost per
round results than the post-order approach.

 Transmitting data over a wireless medium consumes a
relatively big amount of energy. It is important to note that
transmitting one bit of data consumes more energy than
processing this data in a sensor device. In other words,
energy consumption resulting from communication is
higher than energy consumption resulting from
computation [8]. Thus, energy consumption can be reduced
by reducing the communication range; as a result,
decreasing the distances among the communicating sensor
devices can expand the network lifetime.

 We propose in this research paper a chain formation
approach that aims to produce a more balanced and
efficient chain than the one suggested in [10]; this chain is
used for the data gathering process in PEGASIS protocol
[10][12]. We believe that producing an improved chain can
result in an improved data gathering process, thus,
improving the network’s overall performance. Our goal is
to improve certain performance metrics such as energy lost
per round [10], network lifetime [10] and end-to-end delay
[14][15]. We define our proposed algorithm as Segment-
Based Tree Traversal algorithm (SBTT).

 In reality, our actual work starts after obtaining a chain
of post-order traversal using the same methods proposed in
[10]. SBTT algorithm is consisted of two phases. The first
phase is concerned with segments construction, while the
second phase groups directly connected segments and
incrementally concatenate them one by one until a single
segment is conducted.

 The first phase of SBTT algorithm is illustrated in
Algorithm 1. Note that N represents the number of nodes in
the network field. The algorithm initially starts with POS
which is a list of N vertices (nodes) that are ordered
according to post-order traversal. Another list known as
list_of_segments contains the existing segments. Therefore,
list_of_segments is a list of lists and initially it contains
only one segment which is . In addition,
 is initially empty (it contains no nodes initially).
Moreover, two variables i and j are defined and initially
assigned the value 1. Variable i is used to move
incrementally along the nodes in POS while j is used to
move along the segments in list_of_segments. Furthermore,
the two conditions in the if statement in lines 8 and 9 are
processed with respect to the rooted directed minimum
spanning tree.

2. Literature Review

3. The Proposed Idea

3.1 Formal Algorithm

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.8 Mohammad A. Jassim,, Wesam A. Almobaideen

E-ISSN: 2224-2872 67 Volume 20, 2021

Algorithm 1 First phase of SBTT algorithm

Input: Post-order List (POS) and the Rooted-Directed
Minimum Spanning Tree (directed-MST (V, E))
Output: List of Segments (list_of_segments)
1: POS := { , , , … , }
2: list_of_segments := { }
3: := { Φ }
4: i ← 1
5: j ← 1
6: until i > N
7: add to end of
8: if in POS has more than one child or is not
9: parent of then
10: create a new empty
11: add to rear of list_of_segments
12: increment j
13: increment i
14: go back to line 6
15: end-if
16: increment i
17: end-

 After constructing the required segments in phase 1, we
move to phase 2 which is illustrated in Algorithm 2.
Initially, all segments in list_of_segments are marked. The
purpose of marking and unmarking segments is to prevent
segments that have been concatenated from being
processed and concatenated again in the same iteration.
Moreover, the value α represents the total number of
segments in list_of_segments. Additionally, the first
condition in the if statement checks if there are two nodes
in each of the currently processed segments are directly
connected with respect to the minimum spanning tree. This
specific condition is the key step to connect one segment to
another one that is close to it (if there exists a short link
between its nodes) which minimizes the long transmission
ranges in post-order chain.

 To illustrate the process in lines 11-14, suppose that we
intend to concatenate the two segments { a, b, c } and { d,
e, f }. According to the algorithm, the outcome
concatenated segment should look like this: { d, e, f, a, b, c
} since the first segment is added to the end of the second
segment. However, to improve the distances among the
nodes in the segment, a reversing technique is used to
connect the closest ends of each segment. The ends of the
first segment are nodes a and c while the ends of the
second segment are nodes d and f. Consider the case in
which the distance between nodes c and d is shorter than
the distance between nodes a and f (which are connected in
the concatenated segment { d, e, f, a, b, c }). Therefore, a
modification needs to take place in order to concatenate the

two segments in a way that nodes c and d become the
connecting points of the two segments instead of nodes a
and f. As a result, a reversing operation on both segments
before connecting them yields the following concatenated
segment: { f, e, d, c, b, a }. Hence, a shorter bridge between
the two segments is constructed by reversing one of the
segments (or both) before concatenating them. These
procedures are repeated until all the segments that have
been created initially are fused into one single segment.
After achieving this one single segment in line 24, Cross
Elimination method is applied on this segment. The process
of this method takes place in lines 25-31 in Algorithm 2.

Algorithm 2 Second phase of SBTT algorithm

Input: List of Segments (list_of_segments)
Output: Segment-based Chain
1: unmark all segments in list_of_segments
2: j ← 1
3: α ← number of segments in list_of_segments
4: until list_of_segments contains only one segment
5: until j > α
6: k ← 1
7: until k > α
8: if and are directly
9: connected in MST (V, E) and
10: and are unmarked and j ≠ k then
11: add to rear of with
12: reversing segments if necessary such that
13: the closest ends of each segment are
14: connected
15: remove from list_of_segments
16: mark
17: go back to line 5
18: end-if

19: increment k
20: end-

21: increment j
22: end-

23: unmark all segments in list_of_segments
24: end-

25: front_node ← 1
26: rear_node ← 5
27: until rear_node > N

28: apply Cross Elimination method on nodes from
29: front_node to rear_node in Segment-based Chain
30: increment front_node and rear_node
31: end-

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.8 Mohammad A. Jassim,, Wesam A. Almobaideen

E-ISSN: 2224-2872 68 Volume 20, 2021

 Cross Elimination method [6] is used to further
improve the distances among the nodes in a chain. This
mechanism adjusts the path among four selected nodes.
However, we extend this concept into selecting five nodes.
For example, suppose that we intend to adjust the path
along the five nodes: 1, 2, 3, 4, 5. Hence, we examine all
the possible combinations that represent distinct paths from
node 1 to node 5. At the end, the path that yields the
shortest distance from node 1 all the way to node 5 is
selected and according to which, the path from node 1 to
node 5 is modified and adjusted. Therefore, the following
distances are calculated, and the shortest version is chosen
and based on which the path is adjusted: (where d (x, y) is
the physical distance between node x and node y)

 d (1, 5) = d (1, 2) + d (2, 3) + d (3, 4) + d (4, 5)

 d (1, 5) = d (1, 3) + d (3, 2) + d (2, 4) + d (4, 5)
 d (1, 5) = d (1, 3) + d (3, 4) + d (4, 2) + d (2, 5)
 d (1, 5) = d (1, 4) + d (4, 3) + d (3, 2) + d (2, 5)
 d (1, 5) = d (1, 4) + d (4, 2) + d (2, 3) + d (3, 5)
 d (1, 5) = d (1, 2) + d (2, 4) + d (4, 3) + d (3, 5)

 This method is applied on the first 5 nodes in the
segment-based chain. Then, the method is applied on the
nodes from 2 to 6 in the chain. Afterwards, nodes from 3 to
7 are processed. The same mechanism keeps going forward
until the last five nodes in the chain are processed.

 To further illustrate the SBTT chain formation
algorithm with a detailed example, consider the post-order
chain in the example in Fig. 1. Consequently, the SBTT
algorithm initially starts with the list of vertices POS as
follows: { 7, 11, 14, 1, 6, 0, 2, 3, 10, 5, 4, 13, 9, 8, 12 }.
Next, a sequence of initial segments is constructed in phase
1 using Algorithm 1. The resulted segments at the end of
phase 1 are: : { 11, 7 }, { 14, 1 }, { 6, 0, 2, 3, 10, 5, 4 }, {
13, 9 } and { 8, 12 }. Then, segments { 11, 7 } and { 14, 1
} are concatenated (segment { 11, 7 } is reversed before
concatenation because the distance between nodes 7 and 1
is the shortest among the end nodes of each segment).

Figure 1. First phase of SBTT algorithm.

Figure 2. Comparison between post-order chain and final SBTT chain.

 Then, segments { 6, 0, 2, 3, 10, 5, 4 } and { 13, 9 } are
concatenated with the reversion of segment { 6, 0, 2, 3, 10,
5, 4 }. The resulted segments after this iteration are: { 14, 1,
11, 7 }, { 13, 9, 4, 5, 10, 3, 2, 0, 6 }, and { 8, 12 }.
Afterwards, segments { 14, 1, 11, 7 } and { 8, 12 } are
concatenated and none is reversed before concatenation.
After this iteration, two segments are left: { 13, 9, 4, 5, 10,
3, 2, 0, 6 } and { 8, 12, 7, 11, 1, 14 }. Eventually, these two
final segments are concatenated to produce the final single
segment. Before concatenation, segment { 8, 12, 7, 11, 1, 14
} is reversed. The final single segment is: { 14, 1, 11, 7, 12,
8, 13, 9, 4, 5, 10, 3, 2, 0, 6 }.

 The final SBTT chain after applying the modified 5-
nodes version of Cross Elimination method is: { 14, 7, 11,
1, 12, 8, 13, 9, 4, 5, 10, 3, 2, 0, 6 }. This final segment is
illustrated in Fig. 3.

 The complexity of running the segment-based
algorithm goes as follows. First of all, it takes O (N) to
execute phase 1 of the algorithm where N is number of
nodes in the network. After phase 1 is completed, a number
of S segments are constructed. Next, each segment is
inspected and processed in order to determine which one of
the other segments is the most suitable one to be
concatenated with.

Figure 3. Segment-based chain after applying Cross Elimination method.

3.2 Example

3.3 Complexity Analysis

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.8 Mohammad A. Jassim,, Wesam A. Almobaideen

E-ISSN: 2224-2872 69 Volume 20, 2021

 The total cost of doing this process for each segment is
O () where S is the number of currently existing
segments. Furthermore, the last procedure gets repeated all
over again until all segments are concatenated into one
single segment; this is repeated p times where p keeps
decreasing with each iteration until it equals 1.
Additionally, it takes O (N - 4) to run the Cross Elimination
method. On the whole, the total cost of running the
segment-based algorithm (Algorithm 1 and Algorithm 2)
is:

𝑁 + + (𝑁−4) = 𝑂 (𝑁 +)

 Nevertheless, it is important to mention that S is rather
small compared to N. For instance, N=15 and S=5 initially
in Fig. 2. Furthermore, S decreases after each iteration of p.
In the previous example in sub-section B, S initially equals
5, but then it decreases to 3, 2, and finally to 1. Another
important note is that p is also relatively small compared to
N iterations and it is dependent on S; that is, when S=1 then
p reaches its final iteration.

 Finally, the total complexity of running the segment-
based algorithm as a whole system is 𝑂 (𝑁 +) in
addition to the post-order complexity which is calculated in
[10]. According to [10], it takes O (N + E *log E) to
construct the rooted directed minimum spanning tree where
N is the number of nodes in the network and E is the
number of edges. Moreover, it takes O (N) to run the post-
order tree traversal algorithm which yields the post-order
chain.

 To further achieve accurate simulations as much as
possible, we have implemented greedy algorithm, post-
order traversal and SBTT in C++ language using two
simulating applications. First, we have implemented the
algorithm using a network simulator developed in C++ by
the authors of this research. Then, extended experiments
have been carried out using QualNet simulator.

 A token-passing approach has been used to run the
PEGASIS data gathering protocol where it has been
applied on the three studied algorithms (greedy, post-order
and SBTT). The token-passing approach has been adopted
in [10]. The simulations have been carried out on a Time
Division Multiple Access (TDMA) system (also adopted in
[10]). Sensor nodes are assumed to be capable of adjusting
their transmission ranges depending on the distance to the
receiving node [10][12]. Every sensor device in the
network knows the physical coordinates of every other
device. Furthermore, the highest-energy node selection
strategy which is discussed in [5] is implemented for leader
node selection.

 In addition, we have assumed that the sink node is
located at coordinates (50, 300) in a 100m x 100m network
field [10][12]. In [10], 100-nodes have been located

randomly in the network area; we have extended this to
three categories: 10-nodes, 50-nodes, and 90-nodes.
Moreover, packet size is set to 2000 bits and it does not
change with data fusion, and the initial energy supplied to
all sensor devices in the network is set to 1 Joule [10][12].

 The radio model that has been used in our simulations
is the same model used in [10][12]. In this radio model, the
radio dissipates = 50 nJ/bit to run the transmitter or
receiver circuitry, and = 100 pJ/bit/ for the
transmitter amplifier. To compute the transmission costs,
the following formulas are used:

 Energy lost in transmitting a k-bit message over a
distance d is given by: (k, d) = * k + *
k *

 Energy lost in receiving a k-bit message: (k) =
 * k

 Energy lost in data fusion is 5 nJ/bit/message.

 The main performance metrics that have been studied
in this research are energy lost per round, network lifetime,
and end-to-end delay.

 There are three main performance metrics that have
been studied in this research. The first one is the energy
lost per round. It represents the average energy lost among
all the nodes in the chain per round. This is an important
performance metric that reflects the system’s overall
energy consumption. The second performance metric is the
network lifetime. This is determined when the first node
failure event occurs during the data gathering process. We
measure this performance metric by the recorded number
of successful rounds. The third and final performance
metric is the end-to-end delay. We define this performance
metric as the time that the data gathering process takes
starting from the first data transmission (by one of the end
nodes in the chain) until the leader node successfully
transmits the aggregated data to the sink node.

 We have conducted simulation experiments for these
three main performance metrics in QualNet under three
different values for N (where N is the number of nodes in
the network field); these values have been increased from
10, to 50 and finally to 90.

 Nevertheless, there are two important factors that
directly affect these performance metrics; these factors are
the average total length of the chain and the highest
transmission range in the chain.

 Naturally, the average total length of the chain is an
essential factor that directly affects the overall energy
consumption among the nodes. Needless to say, the shorter
the chain is (physically speaking), the less energy it
consumes. Additionally, the average total length of the
chain is also an integral factor in the end-to-end delay
performance metric. The highest transmission range in a
chain is defined as the highest physical distance that exists

4. Simulation Experiments and Results

4.1 Simulation Environment

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.8 Mohammad A. Jassim,, Wesam A. Almobaideen

E-ISSN: 2224-2872 70 Volume 20, 2021

between two nodes in the chain. This metric is directly
responsible for the network lifetime.

 We have studied these two metrics under our developed
C++ simulator by conducting 100 simulation trials for each
value of N starting from N=10, N=11, N=12, … , up to
N=200.

1) Average Chain Length: Fig. 4 shows that the chain
length in the three algorithms is relatively close for a small
number of sensor devices. However, it can be observed
from the figure that the difference between post-order chain
length and the other two chain lengths increases and gets
larger when number of sensor devices is increased.

 One more observation is that our segment-based
approach has a less chain length than the greedy approach;
nonetheless, the difference is relatively small and they
follow the same growth pattern. The increasing gap in
chain length between post-order algorithm and the other
two algorithms can be explained by inspecting the
approach that each algorithm uses to traverse the nodes. If
we go back to the definitions of the three approaches we
find out that each one has a main traversing behavior as
follows; greedy approach goes to the nearest node, post-
order approach traverses sub-trees recursively in a left-
most, root, and then right-most fashion, and SBTT goes to
the nearest segment.

 It is clear from the previous definitions that the greedy
and SBTT approaches have something in common:
location awareness. That is, the traversing process is done
with respect to the nearest available units. On the other
hand, post-order approach can be described as a blind
traversal approach with respect to locations of nodes in the
network field. The traversing process in post-order
approach is carried out according to the order of the
children of a certain node regardless of their physical
locations in the network field. Additionally, cross
elimination method has minimized the chain length in the
simulation results for SBTT.

 Figure 4. Simulation results for average chain length.

 Figure 5. Simulation results for Highest Transmission Range (HTR).

2) Highest Transmission Range (HTR): The Highest

Transmission Range (HTR) factor directly affects the
network lifetime which we examine according to the first
node failure occurrence in the network. Naturally, the node
that is most likely to be the first node to encounter a failure
due to energy depletion is the node that is losing energy
faster than any other node in the network. In comparison
with post-order traversal, segment-based traversal seems to
have shorter and more balanced transmission ranges. For
instance, if we compare the HTR in the example shown in
Fig. 2 for post-order chain (edge E (1, 6)) with the HTR for
segment-based chain (edge E (7, 12)), we will find out that
there is an improvement in segment-based traversal with
respect to this metric.

 Fig. 5 shows that post-order approach records the
highest values for HTR until around 40 nodes; SBTT
approach records the lowest HTR values in this interval.
After 40 nodes and up to 200 nodes, post-order approach
starts recording lower values than greedy approach, and the
values keep on decreasing until it records the same values
of SBTT. Nevertheless, SBTT always records better values
(shorter highest transmission ranges) than greedy approach
at all value of N, and it also records better values than post-
order approach up to 200 nodes.

 The rapid improvement in post-order approach is due to
the fact that post-order algorithm traverses the next left-
most node (sub-tree) regardless of the physical distance
between them. When the density of nodes is low in a
network field, few sub-trees exist and these sub-trees are
wide spread across the network field. However, the more
nodes we have, the denser the tree becomes (sub-trees
become closer to each other). As a result, the inefficient
long distance traversals from root nodes to the next
destination (next left-most sub-tree) is reduced. Moreover,
SBTT algorithm is based on the minimum spanning tree
topology which covers the shortest possible edges in the
graph. This mechanism, in addition to minimizing the long
inefficient communication ranges which used to result in
post-order chain produces lower HTR values, thus,
favoring SBTT in this field.

4.2 Simulation Results and Discussion

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.8 Mohammad A. Jassim,, Wesam A. Almobaideen

E-ISSN: 2224-2872 71 Volume 20, 2021

Figure 6. Simulation results for Energy Lost per Round (ELR).

Figure 7. Simulation results for network lifetime.

3) Energy Lost per Round (ELR): Fig. 6 shows the
results of our simulation experiments for Energy Lost per
Round (ELR) performance metric. It can be concluded
from the figure that post-order approach consumes more
energy than the other two approaches. Moreover, our
proposed segment-based approach consumes less energy
than greedy approach. We believe that the chain length is
directly related to the ELR results. Needless to say, the
longer the chain is, the more energy it consumes.

 The simulation results of the average chain length
metric have shown that the chain that is obtained using
post-order algorithm has the longest length among the three
algorithms. The second longest chain is the one conducted
using greedy algorithm, and finally, our proposed segment-
based algorithm yields the shortest chain. These
observations on the chain length results indeed match the
ELR results that are shown in Fig. 6.

4) Network Lifetime: The simulations results for the
network lifetime are shown in Fig. 7. At the first glance, we
can observe that the simulation results are indeed directly
related to the HTR metric. The results seem to be a
reflection of the results for HTR. That is, high values of
HTR produce opposite low values in the network lifetime

Figure 8. Simulation Results for end-to-end delay.

at the same number of sensor devices, and vice versa. Our
proposed segment-based approach has the longest network
lifetime in low dense networks (up until approximately 200
nodes).

5) End-to-end Delay: Fig. 8 illustrates the simulation
results that have been conducted for the end-to-end delay
among the three studied approaches. According to Kurose
and Ross [7], end-to-end delay can be calculated as
indicated in (1), where 𝑁 is the number of links, is
the processing delay, is the transmission delay, and
 is the propagation delay.

 𝑁 (1)

 Each delay is defined as follows. The processing delay
is the required time to process the packets at each node.
The transmission delay is the time that it takes each node to
push the packet bits into the link. Finally, the propagation
delay is the time that it takes each node to push the packet
bits into the link.

 Nevertheless, no queuing delay exists because of
adopting the token-passing protocol. In our case, the
processing delay is the same for each approach, and the
transmission delay is equal among the three approaches
too. However, the only delay factor that affects the overall
end-to-end delay in each approach is the propagation delay.

 Propagation delay is equal to / where d is the
distance of the link and s is the wave propagation speed
(which in wireless environment is equal to the speed of
light). Therefore, the only factor that determines the
difference in the end-to-end delay among the three
approaches is the distances between the nodes, or more
specifically the chain length.

 The results show that end-to-end delay seems to
increase when the chain gets longer. End-to-end delay is
defined as the time that the data gathering process spends
from the first transmission operation in the chain until the
leader node delivers the final aggregated data to the sink
node. Therefore, this performance metric represents the

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.8 Mohammad A. Jassim,, Wesam A. Almobaideen

E-ISSN: 2224-2872 72 Volume 20, 2021

time that the protocol spends to execute a successful round,
hence, it is directly affected by the length of the chain.

 As a result, post-order approach has been observed to
yield the longest end-to-end delay values. Moreover, the
more sensor devices are added to the network the more
end-to-end delay is recorded with the post-order approach.
On the other hand, our proposed segment-based approach
produces the least end-to-end delay values; this is due to its
capability of producing chains with the least lengths among
the three algorithms. The greedy chain produces higher
end-to-end delay than the segment-based chain. One last
note is that the difference in end-to-end delay between the
post-order approach and the other two algorithms gets
gradually higher with the increase in number of sensor
devices in the network.

 Table I. presents the percentages of improvements in
segment-based approach over the greedy and post-order
approaches at 90 nodes for the studied performance
metrics.

TABLE I. PERCENTAGES OF IMPROVEMENT IN SEGMENT-BASED
APPROACH OVER GREEDY AND POST-ORDER APPROACHES AT 90 NODES

Metric
Improvement over
Greedy Approach

Improvement over Post-
order Approach

Chain Length 5% 16%

HTR 30% 21%

ELR 1% 2%

Network Lifetime 57% 41%

End-to-end Delay 9% 43%

 This research paper presents a Segment-Based Tree
Traversal algorithm (SBTT). It is a location-aware
algorithm that is used to construct an improved chain for
PEGASIS protocol in WSNs. The chain which is
constructed using SBTT algorithm has shorter physical
distances among its nodes and has lower HTR values.
These qualities have in turn enhanced the overall data
gathering process, thus, improving the overall network
performance. The proposed approach has slightly improved
the energy lost per round compared to the greedy and post-
order approaches in chain construction. Additionally, it has
improved the network lifetime and the end-to-end delay.

[1] D. I. Sacaleanu, D. M. Ofrim, R. Stoian, V. Lazarescu, “In node data

processing for increasing the lifetime of a wireless sensor network”,
Proceedings of the 5th WSEAS International Conference on Sensors

and Signals (SENSIG ’12), Sliema, Malta, September 2012,
Advances in Sensors, Signals, Visualization, Imaging and
Simulation ISBN: 978-1-61804-119-7 WSEAS Press 2012.

[2] E. De Poorter, S. Bouckaert, I. Moerman, and P. Demeester, "Non-
intrusive aggregation in wireless sensor networks", Elsevier B.V.
Journal, E. De Poorter et al. / Ad Hoc Networks 9 (2011). J. Clerk
Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2.
Oxford: Clarendon, 1892, pp.68–73.

[3] H. Alhasan, M. Qatawneh, A. Sleit, W. Almobaideen, “EAPHRN:
energy-aware PEGASIS-based hierarchal routing protocol for
wireless sensor networks”, Journal of American Science, 2011.

[4] H. Min, S. Yi, J. Heo, and Y. Cho, "Energy-efficient data
aggregation protocol for location-aware wireless sensor networks",
International Symposium on Parallel and Distributed Processing
with Applications 2008, IEEE DOI 10.1109/ISPA.2008.38.

[5] I. Shukla and N. Meghanathan, “Impact of leader selection strategies
on the PEGASIS data gathering protocol for wireless sensor
networks,” Ubiquitous Computing and Communication Journal, vol.
4, no. 5, December 2009.

[6] J. Gómez, R. Poveda, and E. León, “Grisland: a parallel genetic
algorithm for finding near optimal solutions to the travelling
salesman problem”, GECCO ’09 Montréal Québec, Canada, ACM
978-1-60558-505-5/09/07.

[7] J. Kurose and K. Ross, “Computer networking: a top-down
aproach”, 5th edition, Pearson Press, ISBN-10: 0-13-136548-7, 2010-
02-08.

[8] K. Patel, C. Patel, S. S. Rizvi, K. M. Elleithy, “An efficient approach
to reduce energy consumption in wireless sensor networks through
active nodes optimization”, URI - NE ASEE 2007 Conference.

[9] M. A. Jassim, “A multi-function energy-efficient system model for
location-aware wireless sensor networks”, master’s thesis,
Department of Computer Science, The University of Jordan,
Amman, December 2011.

[10] N. Meganathan, “Use of tree traversal algorithms for chain
formation in the PEGASIS data gathering protocol for wireless
sensor networks”, KSII TRANSACTIONS ON INTERNET AND
INFORMATION SYSTEMS VOL. 3, NO. 6, December 2009.

[11] N. S. Patil and P. R. Patil, “Data aggregation in wireless sensor
network”, 2010 IEEE International Conference on Computational
Intelligence and Computing Research.

[12] S. Lindsey and C. S. Raghavendra, “PEGASIS: power-efficient
gathering in sensor information systems”, Aerospace Conference
Proceedings, 2002. IEEE.

[13] S. Rachamalla, A. Sheela, “Routing protocols for wireless sensor
networks – a survey”, Proceedings of WSEAS International
Conferences in Cambridge, MA, USA, January – February, 2013,
Recent Advances in Electrical and Computer Engineering, ISBN:
978-1-61804-156-2 WSEAS Press 2013.

[14] W. Almobaideen, “SPDA: stability based partially disjoint
AOMDV”, European Journal of Scientific Research, vol.27 No.3,
pp.342-348, 2009.

[15] W. Almobaideen, D. Alkhateeb, A. Sleit, M. Qatawneh, K.
Qadadeh, R. Alkhdour, H. Abu Hafeeza, “ Improved stability based
partially disjoint AOMDV”, Int. J. Communications, Network and
System Sciences, doi:10.4236/ijcns.2013.65027, May 2013.

5. Conclusion

References

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.8 Mohammad A. Jassim,, Wesam A. Almobaideen

E-ISSN: 2224-2872 73 Volume 20, 2021

