
 

 

      Wireless Sensor Networks (WSNs) are sink-based 
networks in which assigned sinks gather all data sensed by 
lightweight devices that are distributed and deployed in 
natural areas [3][9]. They are used for specific applications 
to monitor certain conditions such as temperature, pressure, 
physical motions, and humidity. As a result, the special 
capabilities of WSNs have led to implement it in many 
areas like environmental monitoring, traffic control and 
marine applications [2][4][13].  

      WSNs are also used in highly critical fields such as 
military, medical health, coal mines, and even nuclear and 
radiation monitoring where hazardous environments exist 
[1][9]. Implementing WSNs in such a wide range of critical 
applications requires a highly efficient design of this 
technology. Moreover, specific performance metrics are 
demanded to be considered with the designation process 
[2][13]. 

      According to [4], the most critical resource in WSNs is 
energy. Thus, almost every protocol designed with respect 
to WSNs is as close as possible to the term 'energy-
efficient'. Therefore, it is reasonable to focus on energy 
while designing models in WSNs such that they consume 
as less energy as possible [9]. 

      Many techniques and mechanisms have been developed 
to reduce energy consumption in WSNs. Some important 
techniques are reducing communication distances among 
the sensor devices and data aggregation [2][8][11].  

      First, sending and receiving data through long 
communication ranges and distances consume large 
amounts of energy in a sensor device [8]. Secondly, the 
idea of data aggregation is to combine data gathered from 
various sources in order to eliminate redundancy and 
minimize the number of transmissions which in turn 
reduces the overall consumed energy within the network 
[1][2][11]. 
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Abstract—Wireless Sensor Networks (WSNs) are sink-based networks in which assigned sinks gather 

all data sensed by lightweight devices that are deployed in natural areas. The sensor devices are energy-

scarce, therefore, energy-efficient protocols need to be designed for this kind of technology. Power-

Efficient GAthering in Sensor Information Systems (PEGASIS) protocol is an energy-efficient data 

gathering protocol in which a chain is constructed using a greedy approach. This greedy approach has 

appeared to have unbalanced distances among the nodes which result in unfair energy consumption. 

Tree traversal algorithms have been used to improve the constructed chain to distribute the energy 

consumption fairly. In this research, however, a new segmentbased tree traversal approach is introduced 

to further improve the constructed chain. Our new proposed algorithm first constructs initial segments 

based on a list of nodes that are sorted according to post-order traversal. Afterwards, it groups these 

segments and concatenates them one by one according to their location; thus, our proposed approach 

uses location-awareness to construct a single balanced chain in order to use it for the data gathering 

process. This approach has been evaluated under various numbers of sensor devices in the network field 

with respect to various crucial performance metrics. It is shown in our conducted simulation results that 

our proposed segment-based chain construction approach produces shorter chains and shorter 

transmission ranges which as a result has improved the overall energy consumption per round, network 

lifetime, and end-to-end delay.  
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      Many protocols have been developed to minimize the 
long ranged data transmissions in addition to data reduction 
through data aggregation technique. Some of the most 
popular protocols regarding this subject are Low Energy 
Adaptive Clustering Hierarchy (LEACH) and Power-
Efficient GAthering in Sensor Information Systems 
(PEGASIS) [3][12][13]. 

      PEGASIS is a near optimal chain based protocol. The 
key idea of PEGASIS is to form a long single chain that 
connects all nodes in the network which afterwards enables 
these nodes to communicate and exchange data among 
each other. The chain that is constructed in PEGASIS is 
formed using greedy algorithm. In this chain, each node 
transmits data to a close neighbor. Clearly, this is a simple 
approach that motivates sensor devices to transmit through 
shorter distances, thus, reducing energy consumption. 
Additionally, while nodes are transmitting data, they also 
aggregate and fuse data along the way [12]. 

      Using greedy algorithms for chain formation in 
PEGASIS protocol rarely yields optimal solutions. 
Therefore, it is hypothesized that node lifetime and energy 
consumption in PEGASIS protocol whose chain is built 
using greedy approach can be further improved [10]. 

      The work in [10] is mainly aimed at using the 
traditional graph theory tree traversal algorithms to form 
the chain in PEGASIS instead of using the greedy 
algorithm in [12]. First, a rooted directed minimum-weight 
spanning tree of the whole WSN is generated. To construct 
the rooted directed minimum spanning tree, Kruskal’s 
algorithm is used to obtain an undirected unrooted 
minimum spanning tree. Then, a Breadth First Search 
(BFS) algorithm is run on the tree to obtain a rooted 
directed minimum spanning tree. Furthermore, it is 
important to mention that the root of the tree is the node 
that is closest to the center of the network area. At the end, 
post-order tree traversal algorithm is used to form a 
sequence of ordered nodes based on the rooted directed 
MST; this chain is used in PEGASIS data gathering 
protocol [10]. 

      Simulations have been conducted in [10] for three types 
of tree traversal algorithms (pre-order, in-order and post-
order); results show that post-order traversal outperforms 
other tree traversal methods, thus, we will only consider 
this traversing algorithm in our research. 

It is reported in [10] that the post-order approach has a 
longer network lifetime than the greedy approach in [12] for 
TDMA systems. This is explained in [10] by referring to the 
fact that the physical distances among the nodes in the 
greedy chain get larger when more nodes are added to the 
chain. Furthermore, the distances among the nodes in the 
second half of the chain are larger than the distances in the 
first half of the chain. Due to these reasons, premature node 
failures occur more often in the second half of the chain 
compared to the first half. In tree traversal approach, on the 

other hand, the nodes are relatively more equally spaced; 
this results in less consumption in the overall energy and it 
does not vary much along the chain. Another important 
point mentioned in [10] is that choosing the tree’s root node 
to be closest node to the center of the network field yields a 
tree with greater depth; hence, node lifetime has 
significantly improved. However, it is concluded in [10] 
that the greedy approach records better energy lost per 
round results than the post-order approach. 

      Transmitting data over a wireless medium consumes a 
relatively big amount of energy. It is important to note that 
transmitting one bit of data consumes more energy than 
processing this data in a sensor device. In other words, 
energy consumption resulting from communication is 
higher than energy consumption resulting from 
computation [8]. Thus, energy consumption can be reduced 
by reducing the communication range; as a result, 
decreasing the distances among the communicating sensor 
devices can expand the network lifetime. 

      We propose in this research paper a chain formation 
approach that aims to produce a more balanced and 
efficient chain than the one suggested in [10]; this chain is 
used for the data gathering process in PEGASIS protocol 
[10][12]. We believe that producing an improved chain can 
result in an improved data gathering process, thus, 
improving the network’s overall performance. Our goal is 
to improve certain performance metrics such as energy lost 
per round [10], network lifetime [10] and end-to-end delay 
[14][15].  We define our proposed algorithm as Segment-
Based Tree Traversal algorithm (SBTT). 

      In reality, our actual work starts after obtaining a chain 
of post-order traversal using the same methods proposed in 
[10]. SBTT algorithm is consisted of two phases. The first 
phase is concerned with segments construction, while the 
second phase groups directly connected segments and 
incrementally concatenate them one by one until a single 
segment is conducted. 

      The first phase of SBTT algorithm is illustrated in 
Algorithm 1. Note that N represents the number of nodes in 
the network field. The algorithm initially starts with POS 
which is a list of N vertices (nodes) that are ordered 
according to post-order traversal. Another list known as 
list_of_segments contains the existing segments. Therefore, 
list_of_segments is a list of lists and initially it contains 
only one segment which is         . In addition, 
          is initially empty (it contains no nodes initially). 
Moreover, two variables i and j are defined and initially 
assigned the value 1. Variable i is used to move 
incrementally along the nodes in POS while j is used to 
move along the segments in list_of_segments. Furthermore, 
the two conditions in the if statement in lines 8 and 9 are 
processed with respect to the rooted directed minimum 
spanning tree. 

2. Literature Review 

3. The Proposed Idea 

3.1 Formal Algorithm 
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Algorithm 1 First phase of SBTT algorithm 

Input: Post-order List (POS) and the Rooted-Directed 
Minimum Spanning Tree (directed-MST (V, E)) 
Output: List of Segments (list_of_segments) 
1: POS := {   ,   ,   , … ,    } 
2: list_of_segments := {          } 
3:          := { Φ } 
4: i ← 1 
5: j ← 1 
6:        until i > N 
7:       add    to end of          
8:       if    in POS has more than one child or      is not 
9:       parent of    then 
10:          create a new empty            
11:          add            to rear of list_of_segments 
12:          increment j 
13:          increment i 
14:          go back to line 6 
15:     end-if 
16:     increment i 
17: end-      
                  
      After constructing the required segments in phase 1, we 
move to phase 2 which is illustrated in Algorithm 2. 
Initially, all segments in list_of_segments are marked. The 
purpose of marking and unmarking segments is to prevent 
segments that have been concatenated from being 
processed and concatenated again in the same iteration. 
Moreover, the value α represents the total number of 
segments in list_of_segments. Additionally, the first 
condition in the if statement checks if there are two nodes 
in each of the currently processed segments are directly 
connected with respect to the minimum spanning tree. This 
specific condition is the key step to connect one segment to 
another one that is close to it (if there exists a short link 
between its nodes) which minimizes the long transmission 
ranges in post-order chain. 

      To illustrate the process in lines 11-14, suppose that we 
intend to concatenate the two segments { a, b, c } and { d, 
e, f }. According to the algorithm, the outcome 
concatenated segment should look like this: { d, e, f, a, b, c 
} since the first segment is added to the end of the second 
segment. However, to improve the distances among the 
nodes in the segment, a reversing technique is used to 
connect the closest ends of each segment. The ends of the 
first segment are nodes a and c while the ends of the 
second segment are nodes d and f. Consider the case in 
which the distance between nodes c and d is shorter than 
the distance between nodes a and f (which are connected in 
the concatenated segment { d, e, f, a, b, c }). Therefore, a 
modification needs to take place in order to concatenate the 

two segments in a way that nodes c and d become the 
connecting points of the two segments instead of nodes a 
and f. As a result, a reversing operation on both segments 
before connecting them yields the following concatenated 
segment: { f, e, d, c, b, a }. Hence, a shorter bridge between 
the two segments is constructed by reversing one of the 
segments (or both) before concatenating them. These 
procedures are repeated until all the segments that have 
been created initially are fused into one single segment. 
After achieving this one single segment in line 24, Cross 
Elimination method is applied on this segment. The process 
of this method takes place in lines 25-31 in Algorithm 2. 

 

Algorithm 2 Second phase of SBTT algorithm 

Input: List of Segments (list_of_segments) 
Output: Segment-based Chain 
1:  unmark all segments in list_of_segments 
2:  j ← 1 
3:  α ← number of segments in list_of_segments  
4:       until list_of_segments contains only one segment 
5:            until j > α 
6:           k  ← 1 
7:                 until k > α 
8:                 if          and          are directly 
9:                 connected in MST (V, E) and          
10:               and          are unmarked and j ≠ k then 
11:                     add          to rear of          with 
12:                     reversing segments if necessary such that 
13:                     the closest ends of each segment are  
14:                     connected 
15:                          remove          from list_of_segments 
16:                          mark            
17:                          go back to line 5 
18:                end-if 

19:                    increment k 
20:               end-      

21:            increment j 
22:       end-      

23:       unmark all segments in list_of_segments 
24: end-      

25: front_node ← 1 
26: rear_node ← 5 
27:       until rear_node > N 

28:      apply Cross Elimination method on nodes from 
29:     front_node to rear_node in Segment-based Chain 
30:      increment front_node and rear_node 
31: end-         
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      Cross Elimination method [6] is used to further 
improve the distances among the nodes in a chain. This 
mechanism adjusts the path among four selected nodes. 
However, we extend this concept into selecting five nodes. 
For example, suppose that we intend to adjust the path 
along the five nodes: 1, 2, 3, 4, 5. Hence, we examine all 
the possible combinations that represent distinct paths from 
node 1 to node 5. At the end, the path that yields the 
shortest distance from node 1 all the way to node 5 is 
selected and according to which, the path from node 1 to 
node 5 is modified and adjusted. Therefore, the following 
distances are calculated, and the shortest version is chosen 
and based on which the path is adjusted: (where d (x, y) is 
the physical distance between node x and node y)  
 

 d (1, 5) = d (1, 2) + d (2, 3) + d (3, 4) + d (4, 5)  

 d (1, 5) = d (1, 3) + d (3, 2) + d (2, 4) + d (4, 5)  
 d (1, 5) = d (1, 3) + d (3, 4) + d (4, 2) + d (2, 5)  
 d (1, 5) = d (1, 4) + d (4, 3) + d (3, 2) + d (2, 5)  
 d (1, 5) = d (1, 4) + d (4, 2) + d (2, 3) + d (3, 5)  
 d (1, 5) = d (1, 2) + d (2, 4) + d (4, 3) + d (3, 5)  

 
      This method is applied on the first 5 nodes in the 
segment-based chain. Then, the method is applied on the 
nodes from 2 to 6 in the chain. Afterwards, nodes from 3 to 
7 are processed. The same mechanism keeps going forward 
until the last five nodes in the chain are processed. 

      To further illustrate the SBTT chain formation 
algorithm with a detailed example, consider the post-order 
chain in the example in Fig. 1. Consequently, the SBTT 
algorithm initially starts with the list of vertices POS as 
follows: { 7, 11, 14, 1, 6, 0, 2, 3, 10, 5, 4, 13, 9, 8, 12 }. 
Next, a sequence of initial segments is constructed in phase 
1 using Algorithm 1. The resulted segments at the end of 
phase 1 are: : { 11, 7 }, { 14, 1 }, { 6, 0, 2, 3, 10, 5, 4 }, { 
13, 9 } and { 8, 12 }. Then, segments { 11, 7 } and { 14, 1 
} are concatenated (segment { 11, 7 } is reversed before 
concatenation because the distance between nodes 7 and 1 
is the shortest among the end nodes of each segment). 

 
Figure 1. First phase of SBTT algorithm. 

 
Figure 2. Comparison between post-order chain and final SBTT chain. 

 

      Then, segments { 6, 0, 2, 3, 10, 5, 4 } and { 13, 9 }  are 
concatenated with the reversion of segment { 6, 0, 2, 3, 10, 
5, 4 }. The resulted segments after this iteration are: { 14, 1, 
11, 7 }, { 13, 9, 4, 5, 10, 3, 2, 0, 6 }, and { 8, 12 }. 
Afterwards, segments { 14, 1, 11, 7 } and { 8, 12 } are 
concatenated and none is reversed before concatenation. 
After this iteration, two segments are left: { 13, 9, 4, 5, 10, 
3, 2, 0, 6 } and { 8, 12, 7, 11, 1, 14 }. Eventually, these two 
final segments are concatenated to produce the final single 
segment. Before concatenation, segment { 8, 12, 7, 11, 1, 14 
} is reversed. The final single segment is: { 14, 1, 11, 7, 12, 
8, 13, 9, 4, 5, 10, 3, 2, 0, 6 }.  

      The final SBTT chain after applying the modified 5-
nodes version of Cross Elimination method is: { 14, 7, 11, 
1, 12, 8, 13, 9, 4, 5, 10, 3, 2, 0, 6 }. This final segment is 
illustrated in Fig. 3. 

      The complexity of running the segment-based 
algorithm goes as follows. First of all, it takes O (N) to 
execute phase 1 of the algorithm where N is number of 
nodes in the network. After phase 1 is completed, a number 
of S segments are constructed. Next, each segment is 
inspected and processed in order to determine which one of 
the other segments is the most suitable one to be 
concatenated with.  

 
Figure 3. Segment-based chain after applying Cross Elimination method. 

3.2 Example 

3.3 Complexity Analysis 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2021.20.8 Mohammad A. Jassim,, Wesam A. Almobaideen

E-ISSN: 2224-2872 69 Volume 20, 2021



      The total cost of doing this process for each segment is 
O (   ) where S is the number of currently existing 
segments. Furthermore, the last procedure gets repeated all 
over again until all segments are concatenated into one 
single segment; this is repeated p times where p keeps 
decreasing with each iteration until it equals 1. 
Additionally, it takes O (N - 4) to run the Cross Elimination 
method. On the whole, the total cost of running the 
segment-based algorithm (Algorithm 1 and Algorithm 2) 
is:  

𝑁 +       + (𝑁−4) = 𝑂 (𝑁 +      ) 

      Nevertheless, it is important to mention that S is rather 
small compared to N. For instance, N=15 and S=5 initially 
in Fig. 2. Furthermore, S decreases after each iteration of p. 
In the previous example in sub-section B, S initially equals 
5, but then it decreases to 3, 2, and finally to 1. Another 
important note is that p is also relatively small compared to 
N iterations and it is dependent on S; that is, when S=1 then 
p reaches its final iteration.  

      Finally, the total complexity of running the segment-
based algorithm as a whole system is 𝑂 (𝑁 +      ) in 
addition to the post-order complexity which is calculated in 
[10]. According to [10], it takes O (N + E *log E) to 
construct the rooted directed minimum spanning tree where 
N is the number of nodes in the network and E is the 
number of edges. Moreover, it takes O (N) to run the post-
order tree traversal algorithm which yields the post-order 
chain. 

 

      To further achieve accurate simulations as much as 
possible, we have implemented greedy algorithm, post-
order traversal and SBTT in C++ language using two 
simulating applications. First, we have implemented the 
algorithm using a network simulator developed in C++ by 
the authors of this research. Then, extended experiments 
have been carried out using QualNet simulator. 

      A token-passing approach has been used to run the 
PEGASIS data gathering protocol where it has been 
applied on the three studied algorithms (greedy, post-order 
and SBTT). The token-passing approach has been adopted 
in [10]. The simulations have been carried out on a Time 
Division Multiple Access (TDMA) system (also adopted in 
[10]). Sensor nodes are assumed to be capable of adjusting 
their transmission ranges depending on the distance to the 
receiving node [10][12]. Every sensor device in the 
network knows the physical coordinates of every other 
device. Furthermore, the highest-energy node selection 
strategy which is discussed in [5] is implemented for leader 
node selection. 

      In addition, we have assumed that the sink node is 
located at coordinates (50, 300) in a 100m x 100m network 
field [10][12]. In [10], 100-nodes have been located 

randomly in the network area; we have extended this to 
three categories: 10-nodes, 50-nodes, and 90-nodes. 
Moreover, packet size is set to 2000 bits and it does not 
change with data fusion, and the initial energy supplied to 
all sensor devices in the network is set to 1 Joule [10][12]. 

      The radio model that has been used in our simulations 
is the same model used in [10][12]. In this radio model, the 
radio dissipates       = 50 nJ/bit to run the transmitter or 
receiver circuitry, and     = 100 pJ/bit/    for the 
transmitter amplifier. To compute the transmission costs, 
the following formulas are used:  

 Energy lost in transmitting a k-bit message over a 
distance d is given by:     (k, d) =       * k +      * 
k *    

 Energy lost in receiving a k-bit message:      (k) = 
       * k  

 Energy lost in data fusion is 5 nJ/bit/message.  

      The main performance metrics that have been studied 
in this research are energy lost per round, network lifetime, 
and end-to-end delay. 

      There are three main performance metrics that have 
been studied in this research. The first one is the energy 
lost per round. It represents the average energy lost among 
all the nodes in the chain per round. This is an important 
performance metric that reflects the system’s overall 
energy consumption. The second performance metric is the 
network lifetime. This is determined when the first node 
failure event occurs during the data gathering process. We 
measure this performance metric by the recorded number 
of successful rounds. The third and final performance 
metric is the end-to-end delay. We define this performance 
metric as the time that the data gathering process takes 
starting from the first data transmission (by one of the end 
nodes in the chain) until the leader node successfully 
transmits the aggregated data to the sink node. 

      We have conducted simulation experiments for these 
three main performance metrics in QualNet under three 
different values for N (where N is the number of nodes in 
the network field); these values have been increased from 
10, to 50 and finally to 90. 

      Nevertheless, there are two important factors that 
directly affect these performance metrics; these factors are 
the average total length of the chain and the highest 
transmission range in the chain.  

      Naturally, the average total length of the chain is an 
essential factor that directly affects the overall energy 
consumption among the nodes. Needless to say, the shorter 
the chain is (physically speaking), the less energy it 
consumes.  Additionally, the average total length of the 
chain is also an integral factor in the end-to-end delay 
performance metric. The highest transmission range in a 
chain is defined as the highest physical distance that exists 

4. Simulation Experiments and Results 

4.1 Simulation Environment 
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between two nodes in the chain. This metric is directly 
responsible for the network lifetime.  

      We have studied these two metrics under our developed 
C++ simulator by conducting 100 simulation trials for each 
value of N starting from N=10, N=11, N=12, … , up to 
N=200.  

1) Average Chain Length: Fig. 4 shows that the chain 
length in the three algorithms is relatively close for a small 
number of sensor devices. However, it can be observed 
from the figure that the difference between post-order chain 
length and the other two chain lengths increases and gets 
larger when number of sensor devices is increased.  

      One more observation is that our segment-based 
approach has a less chain length than the greedy approach; 
nonetheless, the difference is relatively small and they 
follow the same growth pattern. The increasing gap in 
chain length between post-order algorithm and the other 
two algorithms can be explained by inspecting the 
approach that each algorithm uses to traverse the nodes. If 
we go back to the definitions of the three approaches we 
find out that each one has a main traversing behavior as 
follows; greedy approach goes to the nearest node, post-
order approach traverses sub-trees recursively in a left-
most, root, and then right-most fashion, and SBTT goes to 
the nearest segment.  

      It is clear from the previous definitions that the greedy 
and SBTT approaches have something in common: 
location awareness. That is, the traversing process is done 
with respect to the nearest available units. On the other 
hand, post-order approach can be described as a blind 
traversal approach with respect to locations of nodes in the 
network field. The traversing process in post-order 
approach is carried out according to the order of the 
children of a certain node regardless of their physical 
locations in the network field. Additionally, cross 
elimination method has minimized the chain length in the 
simulation results for SBTT. 

 

 
 Figure 4. Simulation results for average chain length. 

 
     Figure 5. Simulation results for Highest Transmission Range (HTR). 

 
2) Highest Transmission Range (HTR): The Highest 

Transmission Range (HTR) factor directly affects the 
network lifetime which we examine according to the first 
node failure occurrence in the network. Naturally, the node 
that is most likely to be the first node to encounter a failure 
due to energy depletion is the node that is losing energy 
faster than any other node in the network. In comparison 
with post-order traversal, segment-based traversal seems to 
have shorter and more balanced transmission ranges. For 
instance, if we compare the HTR in the example shown in 
Fig. 2 for post-order chain (edge E (1, 6)) with the HTR for 
segment-based chain (edge E (7, 12)), we will find out that 
there is an improvement in segment-based traversal with 
respect to this metric. 

      Fig. 5 shows that post-order approach records the 
highest values for HTR until around 40 nodes; SBTT 
approach records the lowest HTR values in this interval. 
After 40 nodes and up to 200 nodes, post-order approach 
starts recording lower values than greedy approach, and the 
values keep on decreasing until it records the same values 
of SBTT. Nevertheless, SBTT always records better values 
(shorter highest transmission ranges) than greedy approach 
at all value of N, and it also records better values than post-
order approach up to 200 nodes. 

      The rapid improvement in post-order approach is due to 
the fact that post-order algorithm traverses the next left-
most node (sub-tree) regardless of the physical distance 
between them. When the density of nodes is low in a 
network field, few sub-trees exist and these sub-trees are 
wide spread across the network field. However, the more 
nodes we have, the denser the tree becomes (sub-trees 
become closer to each other). As a result, the inefficient 
long distance traversals from root nodes to the next 
destination (next left-most sub-tree) is reduced. Moreover, 
SBTT algorithm is based on the minimum spanning tree 
topology which covers the shortest possible edges in the 
graph. This mechanism, in addition to minimizing the long 
inefficient communication ranges which used to result in 
post-order chain produces lower HTR values, thus, 
favoring SBTT in this field. 

4.2 Simulation Results and Discussion 
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Figure 6. Simulation results for Energy Lost per Round (ELR). 

 

 
Figure 7. Simulation results for network lifetime. 

       

3) Energy Lost per Round (ELR): Fig. 6 shows the 
results of our simulation experiments for Energy Lost per 
Round (ELR) performance metric. It can be concluded 
from the figure that post-order approach consumes more 
energy than the other two approaches. Moreover, our 
proposed segment-based approach consumes less energy 
than greedy approach. We believe that the chain length is 
directly related to the ELR results. Needless to say, the 
longer the chain is, the more energy it consumes.  

      The simulation results of the average chain length 
metric have shown that the chain that is obtained using 
post-order algorithm has the longest length among the three 
algorithms. The second longest chain is the one conducted 
using greedy algorithm, and finally, our proposed segment-
based algorithm yields the shortest chain. These 
observations on the chain length results indeed match the 
ELR results that are shown in Fig. 6. 

4) Network Lifetime: The simulations results for the 
network lifetime are shown in Fig. 7. At the first glance, we 
can observe that the simulation results are indeed directly 
related to the HTR metric. The results seem to be a 
reflection of the results for HTR. That is, high values of 
HTR produce opposite low values in the network lifetime  

 
Figure 8. Simulation Results for end-to-end delay. 

 

at the same number of sensor devices, and vice versa. Our 
proposed segment-based approach has the longest network 
lifetime in low dense networks (up until approximately 200 
nodes). 

5) End-to-end Delay: Fig. 8 illustrates the simulation 
results that have been conducted for the end-to-end delay 
among the three studied approaches. According to Kurose 
and Ross [7], end-to-end delay can be calculated as 
indicated in (1), where 𝑁 is the number of links,       is 
the processing delay,        is the transmission delay, and 
      is the propagation delay. 

         𝑁                          (1) 

      Each delay is defined as follows. The processing delay 
is the required time to process the packets at each node. 
The transmission delay is the time that it takes each node to 
push the packet bits into the link. Finally, the propagation 
delay is the time that it takes each node to push the packet 
bits into the link. 

      Nevertheless, no queuing delay exists because of 
adopting the token-passing protocol. In our case, the 
processing delay is the same for each approach, and the 
transmission delay is equal among the three approaches 
too. However, the only delay factor that affects the overall 
end-to-end delay in each approach is the propagation delay.       

      Propagation delay is equal to  /  where d is the 
distance of the link and s is the wave propagation speed 
(which in wireless environment is equal to the speed of 
light). Therefore, the only factor that determines the 
difference in the end-to-end delay among the three 
approaches is the distances between the nodes, or more 
specifically the chain length. 

      The results show that end-to-end delay seems to 
increase when the chain gets longer. End-to-end delay is 
defined as the time that the data gathering process spends 
from the first transmission operation in the chain until the 
leader node delivers the final aggregated data to the sink 
node. Therefore, this performance metric represents the 
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time that the protocol spends to execute a successful round, 
hence, it is directly affected by the length of the chain.  

      As a result, post-order approach has been observed to 
yield the longest end-to-end delay values. Moreover, the 
more sensor devices are added to the network the more 
end-to-end delay is recorded with the post-order approach. 
On the other hand, our proposed segment-based approach 
produces the least end-to-end delay values; this is due to its 
capability of producing chains with the least lengths among 
the three algorithms. The greedy chain produces higher 
end-to-end delay than the segment-based chain. One last 
note is that the difference in end-to-end delay between the 
post-order approach and the other two algorithms gets 
gradually higher with the increase in number of sensor 
devices in the network.  

      Table I. presents the percentages of improvements in 
segment-based approach over the greedy and post-order 
approaches at 90 nodes for the studied performance 
metrics. 

TABLE I. PERCENTAGES OF IMPROVEMENT IN SEGMENT-BASED 
APPROACH OVER GREEDY AND POST-ORDER APPROACHES AT 90 NODES 

Metric 
Improvement over 
Greedy Approach 

Improvement over Post-
order Approach 

Chain Length 5% 16% 

HTR 30% 21% 

ELR 1% 2% 

Network Lifetime 57% 41% 

End-to-end Delay 9% 43% 

 

      This research paper presents a Segment-Based Tree 
Traversal algorithm (SBTT). It is a location-aware 
algorithm that is used to construct an improved chain for 
PEGASIS protocol in WSNs. The chain which is 
constructed using SBTT algorithm has shorter physical 
distances among its nodes and has lower HTR values. 
These qualities have in turn enhanced the overall data 
gathering process, thus, improving the overall network 
performance. The proposed approach has slightly improved 
the energy lost per round compared to the greedy and post-
order approaches in chain construction. Additionally, it has 
improved the network lifetime and the end-to-end delay. 
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