

 Efficient Communication Protocols for Non DHT-based Pyramid

Tree P2P Architecture

1INDRANIL ROY, 1SWATHI KALUVAKURI, 1KOUSHIK MADDALI, 2ZIPING LIU, and
1BIDYUT GUPTA,

1School of Computing

Southern Illinois University

 Carbondale, IL, USA

2Department of Computer Science

Southeast Missouri State University

Cape Girardeau, MO, USA

Abstract : In this paper, we have considered a recently reported 2-layer non-DHT-based structured P2P network.

Residue Class based on modular arithmetic has been used to realize the overlay topology. At the heart of the

architecture (layer-1), there exists a tree like structure, known as pyramid tree. It is not a conventional tree. A node

i in this tree represents the cluster-head of a cluster of peers which are interested in a particular resource of type Ri

 (i.e. peers with a common interest). The cluster-head is the first among these peers to join the system. Root of the

tree is assumed to be at level 1. Such a tree is a complete one if at each level j, there are j number of nodes. It is an

incomplete one if only at its leaf level, say k, there are less than k number of nodes. Layer 2 consists of the

different clusters. The network has some unique structural properties, e.g. each cluster has a diameter of only 1

overlay hop and the diameter of the network is just (2+2d); d being the number of levels of the layer-1 pyramid

tree and d depends only on the number of distinct resources. Therefore, the diameter of the network is independent

of the number of peers in the whole network. In the present work, we have used some such properties to design low

latency intra and inter cluster data lookup protocols. Our choice of considering non-DHT and interest-based

overlay networks is justified by the following facts: 1) intra-cluster data lookup protocol has constant complexity

and complexity of inter-cluster data lookup is O(d) if tree traversal is used and 2) search latency is independent of

the total number of peers present in the overlay network unlike any structured DHT- based network (as a matter

fact unlike any existing P2P network, structured or unstructured). Experimental results as well show superiority of

the proposed protocols to some noted structured networks from the viewpoints of search latency and complexity

involved in it. In addition, we have presented in detail the process of handling churns and proposed a simple yet

very effective technique related to cluster partitioning, which, in turn, helps in reducing the number of messages

required to be exchanged to handle churns.

Keywords: Structured P2P network, interest-based systems, residue class, pyramid tree, communication

protocol, churn

Received: February 15, 2021. Revised: June 29, 2021. Accepted: July 15, 2021. Published: July 23, 2021.

1. Introduction
Peer-to-Peer (P2P) overlay networks are widely used

in distributed systems due to their ability to provide

computational and data resource sharing capability in

a scalable, self-organizing, distributed manner. There

are two classes of P2P networks: unstructured and

structured ones. In unstructured systems [2] peers are

organized into arbitrary topology. It takes help of

flooding for data look up. Problem arising due to

frequent peer joining and leaving the system, also

known as churn, is handled effectively in

unstructured systems. However, it compromises with

the efficiency of data query and the much-needed

flexibility. Besides, in unstructured networks,

lookups are not guaranteed. On the other hand,

structured overlay networks provide deterministic

bounds on data discovery. They provide scalable

network overlays based on a distributed data

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 108 Volume 20, 2021

structure which actually supports the deterministic

behavior for data lookup. Recent trend in designing

structured overlay architectures is the use of

distributed hash tables (DHTs) [3] - [5]. Such overlay

architectures can offer efficient, flexible, and robust

service [3] - [5], [7], [8]. However, maintaining

DHT-based structures in presence of churn is a

complex task and needs substantial amount of effort

to handle the problem of churn. So, the major

challenge facing such architectures is how to reduce

this amount of effort while still providing an efficient

data query service. In this direction, there exist

several important works, which have considered

designing DHT-based hybrid systems [1], [6], [9] -

[11]; these works attempt to include the advantages

of both structured and unstructured architectures.

However, these works have their own pros and cons.

Another design approach has attracted much

attention; it is non-DHT based structured approach

[12], [14]-[18], [26]. It offers advantages of DHT-

based systems, while it attempts to reduce the

complexity involved in churn handling. Authors in

[16], [17] have considered one such approach and

have used an already existing architecture, known as

Pyramid tree architecture, originally applied to the

research area of ‘VLSI design for testability’ [13]. In

the present work, we have considered such an

architecture as a part of the overlay network to design

efficient communication protocols.

1.1 Our contribution

Our main objective is to show the superiority of our

non-DHT and interest-based architecture over DHT-

based architectures from the viewpoints of search

latency and data look up complexity. We have

considered a number theoretic approach to build the

architecture. Our choice of considering such an

architecture is justified by the following facts: 1)

intra-cluster data lookup protocol has constant

complexity and complexity of inter-cluster data

lookup is O(d) if tree traversal is used, d is the

number of levels of the tree and number of distinct

resource types, n ≈ 2d and 2) search latency is

independent of the total number of peers present in

the overlay network unlike any structured DHT-

based network (as a matter fact unlike any P2P

network, structured or unstructured). Experimental

results obtained as well show superiority of the

proposed protocols to some noted structured

networks from the viewpoints of search latency and

complexity involved in it. In addition, we have

presented in detail the process of handling churns

and proposed a simple yet very effective technique

related to cluster partitioning, which, in turn, helps

in reducing the number of messages required to be

exchanged to handle churns. Most of the existing

interest-based architectures [19]-[25] are built on an

ad-hoc basis without having any solid mathematical

foundation. Hence, we have highlighted the main

differences of our interest-based architecture with

some such existing ones using architectural aspects

only and the related pros and cons of those

architectures.

 The organization of the paper is as follows. In

Section 2, we talk about some related preliminaries

from our recently reported works. In Section 3, we

present the data lookup protocols and a comparison

of their performance with some noted DHT-based

systems. In Section 4, we have presented our works

on churn handling; we have presented an effective

way of cluster partitioning in order to reduce the

number of messages needed to restructure the

network after peers join and leave. In Section 5, to

we have compared our proposed work with some

existing interest-based works from the viewpoint of

the main features of the different architectures

considered in these works. Section 6 draws the

conclusion.

2. Preliminaries

In this section, we present some relevant results

from our recent work on the Pyramid tree based P2P

architecture [16], [17] for interest-based peer-to-

peer system.

Definition 1. We define a resource as a tuple ˂Ri,

V˃, where Ri denotes the type of a resource and V is

the value of the resource.

 Note that a resource can have many values. For

example, let Ri denote the resource type ‘songs’ and

V' denote a particular singer. Thus ˂Ri, V'˃

represents songs (some or all) sung by a particular

singer V'.

Definition 2. Let S be the set of all peers in a peer-

to-peer system with n distinct resource types (i.e. n

distinct common interests). Then S = {Ci}, 0 ≤ i ≤ n-

1, where Ci denotes the subset consisting of all peers

with the same resource type Ri. In this work, we call

this subset Ci as cluster i. Also, for each cluster Ci,

we assume that Ci
h is the first peer among the peers

in Ci to join the system. We call Ci
h as the cluster-

head of cluster Ci.

2.1 Pyramid Tree

The following overlay architecture has been

proposed in [16].

1) The tree consists of n nodes (n resource

types). The ith node is the ith cluster head Ci
h.

The tree forms the layer-1 and the clusters

corresponding to the cluster-heads form the

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 109 Volume 20, 2021

layer-2 of the architecture. Also, n ≈ 2d where

d is the number of levels of the tree.

2) Root of the tree is at level 1.

3) Edges of the tree denote the logical link

connections among the n cluster-heads. Note

that edges are formed according to the pyramid

tree structure [13].

4) A cluster-head Ci
h represents the cluster Ci. Each

cluster Ci is a completely connected network of

peers possessing a common resource type Ri,

resulting in the cluster diameter of 1.

5) The tree is a complete one if at each level j, there

are j number of nodes (i.e. j number of cluster-

heads). It is an incomplete one if only at its leaf

level, say k, there are less than k number of

nodes.

6) Any communication between a peer pi ϵ Ci and

a peer pj ϵ Cj takes place only via the respective

cluster-heads Ci
h and Cj

h and with the help of

tree traversal wherever applicable.

7) Joining of a new cluster always takes place at

the leaf level.

8) A node that does not reside either on the left

branch or on the right branch of the root node is

an internal node.

9) Degree of an internal non-leaf node is 4.

10) Degree of an internal leaf node is 2.

11) Diameter of the network is (2+2d); d is the

number of levels of the pyramid tree at layer 1.

2.2 Residue Class

 Modular arithmetic has been used to define the

pyramid tree architecture of the P2P system.

Consider the set Sn of nonnegative integers less than

n, given as Sn = {0, 1, 2,.… (n – 1)}. This is referred

to as the set of residues, or residue classes (mod n).

That is, each integer in Sn represents a residue class

(RC). These residue classes can be labelled as [0],

[1], [2], …, [n – 1], where [r] = {a: a is an integer, a

≡ r (mod n)}.

 For example, for n = 3, the classes are:

 [0] = {…., ─ 6, ─ 3, 0, 3, 6, …}

 [1] = {…., ─ 5, ─ 2, 1, 4, 7, …}

 [2] = {…., ─ 4, ─ 1, 2, 5, 8, …}

 In the P2P architecture, we use the numbers

belonging to different classes as the logical (overlay)

addresses of the peers with a common interest (i.e.

peers in the same cluster) and the number of residue

classes is the number of distinct resource types; for

the sake of simplicity we shall use only the positive

integer values.

Before we present the mechanism of logical address

assignments, we state the following relevant

property of residue class.

Lemma 1. Any two numbers of any class r of Sn are

mutually congruent.

Proof. Let us consider any two numbers N' and N" of

class r. these numbers can be written as

N' ≡ r (mod n); therefore, (N' – r) / n = an integer, say

I' (1) and

N" ≡ r (mod n); therefore, (N" – r) / n = an integer, say

I" (2)

Using (1) and (2) we get the following, (N' – N") / n

=((N' – r) – (N" – r)) / n = I' – I" = an integer.

Therefore, N' is congruent to N"; that is, N' ≡ N" (mod

n); also, N" ≡ N' (mod n) because congruence

relation (≡) is symmetric. Hence, the proof. □

2.3 Assignments of Overlay (Logical) Addresses

 Assume that in an interest-based P2P system

there are n distinct resource types. Note that n can be

set to an extremely large value a priori to

accommodate large number of distinct resource

types. Consider the set of all peers in the system

given as S = {Ci}, 0 ≤ i ≤ n-1. Also, as mentioned

earlier, for each subset Ci (i.e. cluster Ci) peer Ci
h is

the first peer with resource type Ri to join the system

and hence, it is the cluster-head of cluster Ci.

The assignment of overlay addresses to the peers in

the clusters and the resources happens as follows:

1) The first cluster-head to join the system is

assigned with the logical (overlay) address 0 and is

denoted as C0
h. It is also the root of the tree formed

by newly arriving cluster-heads (see the example in

Fig. 1).

2) The (i+1)th newly arriving cluster-head

possessing the resource type Ri is denoted as Ci
h and

is assigned with the minimum nonnegative number

(i) of residue class i (mod n) of the residue system

Sn as its overlay address.

3) In this architecture, cluster-head Ci
h is assumed

to join the system before the cluster-head Ci+1
h.

4) All peers having the same resource type Ri (i.e.

'common interest' defined by Ri) will form the

cluster Ci. Each new peer joining cluster Ci is given

the cluster membership address (i + j.n), for i = 0, 1,

2, …

5) Resource type Ri possessed by peers in Ci is

assigned the code i which is also the logical address

of the cluster-head Ci
h of cluster Ci.

Definition 3. Two peers of a cluster Cr are logically

linked together if their assigned logical addresses

are mutually congruent.

Lemma 2. Each cluster Cr forms a complete graph.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 110 Volume 20, 2021

Proof. According to Definition 3, two peers of any

cluster Cr are logically linked together if their

assigned logical addresses are mutually congruent.

Also, from Lemma 1, we note that any two numbers

of any class r of Sn are mutually congruent.

Therefore, every peer has direct logical connection

with every other peer in the same cluster Cr. Hence,

the proof. □

Observation 1. Any intra-cluster data look up

communication needs only one overlay hop.

Observation 2. Search latency for inter-cluster data

lookup algorithm is bounded by the diameter of the

tree.

2.4 Scalability

 It may be noted that number of distinct resource

types is very small compared to the number of peers

in any overlay network [28]. To avoid the possibility

of redesigning the architecture as new clusters are

formed, a very large value of n can be selected at the

design phase to accommodate very large number of

possible resource types (if needed in future). It

means that if at the beginning number of resource

types present is small, only the first few of the

residue classes will be used initially for addressing;

and as new clusters are formed in future with new

resource types in the system, more residue classes in

sequence will be available for their addressing. For

example, say initially n is set at 1000; so, there are

1000 possible residue classes, starting from [0], [1],

[2], [4], [5], …., [999]. If initially there are only

three clusters of peers present with three distinct

resource types, the residue classes [0], [1], [2] will

be used for addressing the peers in the three

respective clusters. If later two new clusters are

formed with two new resource types, the residue

classes [3] and [4] will be used for addressing the

pears in the two new clusters in sequence of their

joining the system. Moreover, as we see, there is no

limit on the size of any cluster because any residue

class can be used to address logically up to infinite

number of peers with a common interest. Therefore,

the proposed architecture does not have any negative

issue with scalability.

2.5 Virtual Neighbors [17]

 An example of a complete pyramid tree of 5

levels is shown in Fig. 1. It means that it has 15

nodes/clusters (clusters 0 to 14, corresponding to 15

distinct resource types owned by the 15 distinct

clusters). It also means that residue class with mod

15 has been used to build the tree. The nodes’

respective logical addresses are from 0 to 14 based

on their sequence of joining the P2P system.

 Each link that connects directly two nodes on a

branch of the tree is termed as a segment. In Fig. 1,

a bracketed integer on a segment denotes the

difference of the logical addresses of the two nodes

on the segment. It is termed as increment and is

denoted as Inc This increment can be used to get the

logical address of a node from its immediate

predecessor node along a branch. For example, let X

and Y be two such nodes connected via a segment

with increment Inc, such that node X is the

immediate predecessor of node Y along a branch of

a tree which is created using residue class with mod

n. Then, logical address of Y = (logical address of X

+ Inc) mod n.

Thus, in the example of Fig. 1,

Logical address of the leftmost leaf node = (logical

address of its immediate predecessor along the left

branch of the root + Inc) mod 15 = (6 + 4) mod 15

= 10.

 Also, note that a left branch originating at node 2

on the right branch of the root node is 2 → 4 → 7 →

11. Similarly, we can identify all other left branches

originating at the respective nodes on the right

branch of the root node. In a similar way, we can

identify as well all right branches originating at the

respective nodes on the left branch of the root node

as well.

Fig. 1 A complete pyramid tree with root 0

Remark 1. The sequence of increments on the

segments along the left branch of the root, appears

to form an AP series with 1st term as 1 and common

difference as 1.

Remark 2. The sequence of increments on the

segments along the right branch of the root, appears

to form an AP series with 1st term as 2 and common

difference as 1.

Remark 3. Along the 1st left branch originating at

node 2, the sequence of increments appears to form

an AP series with 1st term as 2 and common

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 111 Volume 20, 2021

difference as 1. Note that the 1st term is the

increment on the segment 0 → 2.

Remark 4. Along the 2nd left branch originating at

node 5, the sequence of increments is an AP series

with 1st term as 3 and common difference as 1. Note

that the 1st term is the increment on the segment 2 →

5.

Fig. 2 A complete pyramid tree with root 13

 Authors [17] have presented some important

structural properties of the pyramid tree P2P system.

According to the authors, no existing structured P2P

system, either DHT or non-DHT based, possesses

these properties. These are stated below.

 Let SY be the set of logical links that connect a

node Y to its neighbors in a complete pyramid tree

TR with root R. Assume that the tree has n nodes (i.e.

n cluster heads / n clusters). Let another tree T'R be

created with the same n nodes but with a different

root R'. Let S'Y be the set of logical links connecting

Y to its neighbors in the tree T'R.

Property 1. SY ≠ S'Y

Property 2. Diameter of TR = Diameter of T'R

Property 3. Number of levels of TR = Number of

levels of T'R

Property 4. Complexity of broadcasting in TR with

root R as the source of broadcast is the same for T'R

with root R'

Property 5. Both TR and T'
R are complete pyramid

trees.

An example: Consider the complete pyramid tree of

5 levels as shown in Fig. 2. Note that root of this tree

is node 13, whereas root of the tree of Fig. 1 is 0.

It is seen that S'4 = {1,8,9} and S4 = {1,2,7,8}.

Therefore, Property 1 holds.

 Diameters of both trees are same; it is 8 in terms

of number of overlay hops. Besides, both trees use

the same 15 nodes and have the same total number

of levels. Complexity of broadcasting from either

root 0 in the tree of Fig. 1 or from root 13 in the tree

of Fig. 2 is bounded by the number of levels of each

of the trees (here it is 4 in each). Finally, both trees

are complete pyramid trees. Thus, all properties as

mentioned above hold. These properties have been

used to design very high bandwidth efficient inter-

cluster broadcast protocols for the overlay network

with both complete and incomplete pyramid trees at

layer-1 of the architecture [27].

Remark 5. Set of the neighbors of a given node Z

may vary as the root of the tree varies. Hence, it is

termed ‘virtual’. However, time complexity of

broadcasting remains same, i.e. it is O(d) where d

denotes the number of levels of the tree [27].

3. Data Look-up

 Data lookup can be either intra-cluster or inter-

cluster. The former one means that a peer pi' (ϵ Ci)

requests for some resource ˂Ri,V"˃ which it does

not possess. Note that only some peer(s) pi" (ϵ Ci)

can possess ˂Ri,V"˃ if at all; no other peer in any

other cluster Ck can possess it since it is an interest

based architecture.

 The inter-cluster data lookup is invoked when a

peer pi' (ϵ Ci) requests for resource ˂ Rj,V*˃, that can

only be possessed, if at all, by some peer pj' in cluster

Cj.

 The following data structures will be used for

efficient data lookup. Every cluster-head Ci
h will

maintain its table of information (TOI) in the

following way. We assume that when a new cluster-

head joins an existing tree, it contacts cluster-head

0, i.e. C0
h which, in turn, assigns the newly joined

one with the next logical address available for

assignment (i.e. the next integer in the set Sn = {0, 1,

2,.… (n – 1)}, not yet assigned to any cluster-head).

Therefore, this logical address becomes the largest

address assigned so far in the tree. C0
h broadcasts

this information to all other cluster-heads in the tree

[27]. Each receiving node, Ci
h then updates its table

of information (TOI) that contains a tuple for each

node Ck
h (cluster-head h). The tuple for Ck

h appears

as

< logical address, IP address, resource code of the

resource owned by Ck
h >. Recall that C0

h is the first

one to arrive and it forms the tree with only one

node. It is seen that the table remains sorted after

addition of any latest entry based on the logical

addresses. Also, note that the code of a resource type

Ri is the same as the logical address of the

corresponding cluster-head Ci
h.

 In addition, each member peer in a cluster Ci

maintains a list of all its neighbors present in the

cluster. Each entry is a tuple consisting of a peer’s

logical and IP addresses. This list remains sorted

w.r.to the logical addresses of the peers joining Ci

because any new peer joining this cluster will have

the next highest available address from the residue

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 112 Volume 20, 2021

class [i] used for addressing the peers in the cluster

Ci. This information helps to achieve fault tolerance

in the event that Pi crashes or leaves (churn

handling).

3.1 Intra-Cluster Data Lookup

 Without any loss of generality, let us consider a

data lookup in cluster Ci by a peer p' possessing

˂Ri,V'˃ and requesting for ˂Ri,V"˃. The protocol

appears below.

Protocol Intra-Data-Lookup

1. p' broadcasts its request in Ci for ˂Ri,V"˃

 / one hop communication since diameter of Ci is one

2. if ∃ p" with ˂Ri,V"˃

 p" unicasts ˂Ri,V"˃ to p'

 else

 search for ˂Ri,V"˃ fails

 / search latency is minimum, i.e. only two hops

3.2 Inter-Cluster Data Lookup

 In our proposed architecture, any communication

between a node pi ϵ Ci and pj ϵ Cj takes place only

via the respective cluster-heads Ci
h and Cj

h. Without

any loss of generality let a peer pi' (ϵ Ci) request for

˂Rj,V*˃. Note that Peer pi' knows that Rj ∉ Ci.

Protocol Inter-Data-Lookup

1. pi' sends a data lookup request for ˂ Rj,V*˃ to its

cluster-head Ci
h

 / one hop communication

2. Ci
h determines the cluster-head Cj

h 's IP address

from its TOI using Cj
h 's resource code

 / logical address of Cj
h = resource code of Rj = j

 Ci
h unicasts the request to Cj

h

3. if Cj
h possesses ˂Rj,V*˃

 Cj
h unicasts ˂Rj,V*˃ to pi'

 else

 Cj
h broadcasts the request for ˂Rj,V*˃ in Cj

 / one hop communication

4. if ∃ pj" (ϵ Cj) with ˂Rj,V*˃

 pj" unicasts ˂Rj,V*˃ to pi'

 else

 Cj
h unicasts ‘search fails’ to pi'

 3.3 Data Lookup Complexity

 Analytical comparison with some noted DHT-

based P2P networks [3]-[5] etc. has appeared in

Table 1. Observe that our non DHT-based system

offers much better search latency than DHT-based

systems. In addition, in the present work, intra-

cluster data lookup protocol has constant complexity

and complexity of inter-cluster lookup is O(d) if tree

traversal is used; otherwise a maximum of only four

hops is required. Note that n ≈ 2d and hence d is even

much smaller than n, the number of distinct resource

types. Anyway, search latency is independent of the

number of peers in the whole network unlike the

works in [3]-[5]. Thus, we infer that the proposed

structured interest-based overlay architecture can be

the choice over the non-interest-based structured

ones, mainly because of its much smaller search

latency.

 The point to mention is that use of the same code

to denote a resource type Ri and the corresponding

cluster-head Ci has made the search process simple

and efficient. Note that we do not need to save both

logical address as well as the resource code in each

entry of TOI. One of these two will denote the other

one. Therefore, we save only one of the two in

addition to the IP address of a cluster-head. It

reduces the table size. Besides, only the number of

distinct resource types limits the size of the TOI

table. Fact is, total number of peers N is much larger

than the number of distinct resource types n [28] and

the size of the TOI is independent of the total number

of peers present in the P2P system. Besides, TOI

grows dynamically as new cluster-heads join;

therefore, the newly joining one will always have the

largest logical address. Hence, TOI always remains

sorted with respect to the logical addresses of the

cluster-heads; thereby any searching in TOI

becomes very efficient.

Observe that a cluster-head unicasts to another

cluster-head in case of inter-cluster data look up. It

makes the communication protocol simpler than

following the idea of tree traversal to reach a

destination cluster. However, even if tree traversal is

followed, search latency is independent of the total

number of peers present in the overlay system as is

proven below in the following theorem.

Theorem 1. Search latency for inter-cluster data

lookup algorithm is bounded by the diameter of the

tree and is independent of the total number of peers

present in the system.

Proof. Let us consider a peer ps in a cluster Cm as the

source of unicast communication. Let us consider a

destination peer pd in a cluster Ck. To maximize

latency, we assume that both ps and pd are not

cluster-heads. So, it takes one overlay hop for the

packet to arrive at the cluster-head Cm
h of cluster Cm.

Thus, in a d level tree, it takes a maximum of 2(d-1)

overlay hops to reach the cluster-head Ck
h from

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 113 Volume 20, 2021

cluster-head Cm
h. Finally, one more overlay hop is

needed to reach the destination peer pd from the

cluster-head Ck
h. Therefore, maximum latency is

[2(d-1) + 2] = 2d hops. Hence, search latency is not

a function of the total number of peers present in the

system. It is a function of the number of cluster-

heads, i.e. the number of distinct resource types that

defines the value of d. □

Table 1 Analytical Comparison of Data Lookup Complexity

CAN Chord

Pastry

RC-Based Pyramid

Tree

Architecture
DHT-based

Structured P2P

DHT-based

Structured P2P

 DHT – based

 Structured P2P

Non-DHT - based

Structured P2P

Parameters

N-number of

peers in network

 d-number of

dimensions.

N-number of

peers in network.

N-number of

peers in network,

b-number of bits

(B= 2b) used for

the base of the

chosen identifier.

d - Number of levels of

the tree

N - number of peers in

network.

n – number of distinct

resource types

d << N & d< n

Lookup

Performance

O(d N 1/d)

O(log N)

O(log BN)

Inter-Cluster: tree

traversal

O(d)

Intra-cluster:

O(1)

3.4 Experiments

Earlier we have mentioned that the main objective

of the present work is to show the superiority of our

non-DHT and interest-based architecture over DHT-

based architectures from the viewpoints of search

latency and data look up complexity. Therefore, in

addition to the analytical comparison, we have

performed three experiments to compare the data

lookup latency in terms of overlay hops of the

Pyramid tree p2p architecture with those of the three

prominent p2p architectures, viz., CAN [3], Pastry

[4] and Chord [5], Results of the experiments with

three different numbers of distinct resource types are

shown in Figures 3,4, and 5.

Fig. 3 Lookup latency with 15 resource types

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 114 Volume 20, 2021

Fig. 4 Lookup latency with 35 resource types

 In Fig. 3 we have considered pyramid tree

overlay networks with 15 distinct resource types;

number of peers in each of the 15 clusters

corresponding to the 15 unique resource types has

been increased gradually resulting finally in a total

of 1026 number of peers in the system. Fig. 4 and Fig.

5 correspond to 35 and 65 distinct resource types

respectively. Consider N as the total number of peers

in the overlay network. Data lookup latency for

CAN is known to be O(dN1/d); dimension of the co-

ordinate space, d is considered as 5 (according to the

specification of CAN [3]). For CHORD [5] the data

lookup latency is O(log2N), For PASTRY, the data

lookup latency is O(logBN), where N is the total

number of peers in the system and B = 2b. We have

selected b = 4 as specified in [4].

 It is observed in each figure that with the increase

in the number of peers in the system, the data lookup

latency each for CAN, CHORD, and PASTRY

increases because this latency depends on the total

number of peers N in the system. However, in the

pyramid tree architecture, the inter-cluster data

lookup latency is independent of both individual

cluster sizes as well as the total number of peers N

in the system. It varies only with the diameter of the

tree measured in the number of overlay hops, which

depends only on the number of distinct resource

types present in the system. Effectively, on an

average, the inter-cluster data lookup latency will be

half the tree diameter.

 Therefore, with the increase in the number of the

peers in the system, the pyramid tree architecture

will have a constant data lookup latency as is seen in

each of the three figures as a straight line with zero

gradient. Note that in the figures the respective

diameters of the pyramid tree architectures

considered are 8, 14, and 20. It may be noted that

diameter of each cluster is 1 and so, for an inter

cluster communication there will be a maximum of

2 hops more in addition to the ‘half of the diameter’

(average number of hops travelled from a source

cluster-head to a destination cluster-head) provided

both sender and receiver are not cluster-heads.

Therefore, we have ignored the extra possible 2 hops

as it has no impact on our observations of the

comparisons of the different latencies.

Fig. 5 Lookup latency with 65 resource types

 In each of the three figures, we observe

significant improvement of inter-cluster data lookup

latency which our proposed architecture offers

compared to the three other prominent ones

especially when the total number of peers N

increases beyond 108, 1010, and 1011 as shown in the

respective three figures. In fact, our architecture

offers much smaller latency than CAN and Chord

even for much lower number of peers than the

above-mentioned numbers; differences with Pastry

becomes significant when we consider much larger

number of peers as mentioned above.

4. Churn Handling

 The process of joining and leaving of peers is

known as churn. We first consider churn inside a

cluster. After that we will consider the pyramid tree.

4.1 Churn inside a cluster

 Let us start with the joining of new peers in a

cluster, say Ci. Let the new peer be p possessing an

instance of the resource type Ri. We have mentioned

earlier that each member peer in a cluster maintains

locally a list of all its neighbors (i.e. all peers in this

cluster) present in the cluster. We denote the list by

Li for the cluster Ci. Each entry in Li is a tuple

consisting of a peer’s IP and logical addresses. The

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 115 Volume 20, 2021

joining peer p is directed by the DNS or the cluster-

head C0
h to contact Ci

h because peer p has the same

resource type Ri which is also owned by peers in the

cluster Ci. Cluster-head Ci
h broadcasts the IP address

and the logical address of peer p to all other peers in

the cluster; each receiving peer updates its list.

Cluster head Ci
h also updates its list and unicasts the

updated list to the joining peer p. Note that cluster Ci

is a complete network (a complete graph), therefore,

the cluster remains a complete network after the

joining of any new peer. Hence, structurally the

cluster remains a complete network with overlay

diameter 1. Therefore, nothing else need to be done

from the viewpoint of maintenance of the structure

of the cluster after a join.

 Next, we consider that a peer p' leaves cluster Ci.

We assume graceful leaving, that is, prior to leave,

it broadcasts a leave message in the cluster. After

receiving this message each peer in Ci just deletes

the address information of peer p' from its list. Note

that cluster Ci remains a complete network after the

leave. So, nothing else is needed to maintain the

structure.

 If the cluster-head Ci
h leaves, prior to leaving it

takes the following sequence of three actions:

1. It selects the peer with the next higher overlay

address as the new cluster head,

2. It assigns the new cluster-head with its own

logical address i, It is done so in order to keep the

cluster-head’s overlay address and the resource code

of Ri identical,

3. The leaving cluster-head broadcasts a leave

message to all peers in the cluster and leaves the

network.

 The above sequence of actions is followed by the

following sequence of three more actions to

complete the process of reorganization of the cluster.

4. The new cluster-head broadcasts the tuple <

logical address, IP address of the new cluster-head,

i > to all existing peers in Ci,

5. Each peer in Ci after receiving these two broadcast

messages deletes the entry corresponding to the old

cluster-head in Li and updates the information

received in the message about the new cluster-head,
6. The new cluster-head unicasts its IP address and

logical address to all other cluster-heads. Each

receiving cluster-head on the pyramid tree replaces

in its global table, i.e. TOI, the entry for the old tuple

of Ci
h with the new one < logical address, IP

address of the new cluster-head Ci
h, resource code i

of the resource owned by Ci
h .

We observe that there are two broadcasts involved

(steps 3 and 4) above, one by the leaving cluster-

head (step 3), the other one by the new cluster-head

(step 4). It can be reduced to only one broadcast in

the following way. After the new cluster-head is

selected (steps 1 and 2), the old cluster-head leaves

(no need for step 3) and the new cluster-head

broadcasts a message containing the tuple < IP

address of the new cluster-head, i > to all existing

peers in Ci. Each peer in Ci interprets this message

as ‘leaving of the old cluster-head’ and so it deletes

the entry corresponding to the old cluster-head in Li

and updates the information received in the message

about the new cluster-head.

 From the above discussion we note the following:

1) Let Numi be the number of peers in cluster Ci

prior to the joining of a new peer. Number of

messages used for the joining of a peer is ((Numi

-1) + 1), i.e. Numi and number of overlay hops

needed is simply (1+1=2); We use the fact that

broadcast in a complete network (as in cluster

Ci) is a one-overlay-hop process.

2) Number of messages used to deal with the

leaving of a peer is (Numi – 1) and number of

overlay hops needed is just 1.

3) Number of messages used in Ci when cluster-

head Ci
h leaves is (Numi – 2). It is the number of

messages broadcasted by the new cluster-head

to its peers in cluster Ci (only one broadcast is

required). Number of messages to update the

rest of the (n-1) cluster-heads is (n-1). So total

number of messages used is

[(Numi – 2) + (n-1)] = [Numi + n-3]. Number of

overlay hops required is (1 + (n-1) = n).

4.2 Churn in the pyramid tree at layer-1

 Consider first joining of a new cluster head. We

assume that there are already n distinct resource

types present; so, the existing cluster-heads are C0
h,

C1
h, …, Cn-1

h. Hence the newly joining cluster-head

will be Cn
h. It means that a new peer possessing an

instance of a new resource type Rn wants to join.

This joining peer contacts first the root cluster head

C0
h of the tree. The root assigns a logical address n

to this peer and this peer becomes the new cluster

head Cn
h. The root will update its TOI with the IP

and logical addresses of the new cluster head; it will

then unicast this table to all cluster heads including

the new one: thereby, requiring a total of n

messages.

 We now consider the case when an existing

cluster head other than the root cluster-head leaves

while this cluster does not have any other peer

except the leaving cluster head itself. We assume

graceful leaving. Therefore, right before leaving the

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 116 Volume 20, 2021

network, the leaving cluster head will send a ‘leave’

message to the root C0
h. The root will update its table

(TOI) by deleting the entry corresponding to the

leaving cluster head. It will assign new (secondary)

logical addresses to some existing cluster heads as

needed. For example, if the leaving one has logical

address (primary) X, the root will assign the existing

cluster head with primary address (X+1) an

additional logical address X (secondary); similarly,

the one with existing primary address (X+2) will

have (X+1) as its secondary address, etc. However,

addresses of cluster heads with addresses less than

X will not have any secondary addresses. Therefore,

only those cluster-heads with primary addresses

larger than X will have both primary and secondary

addresses. Also note that in the updated TOI primary

address X does not exist. We observe that primary

addresses till (X-1) along with secondary addresses

starting from X maintain the sequencing of

addresses (i.e. (X-1) is followed by X etc.), which is

required for the broadcast protocol to work

correctly, Effectively, secondary logical addresses

as well as those primary addresses not having any

corresponding secondary addresses are used by the

broadcast protocol for forwarding a broadcast

packet. However, only primary addresses will be

used to look for resources, since they represent the

unique codes for the resources. The root will unicast

this updated TOI to all other cluster heads, i.e. (n-2)

cluster-heads, thereby requiring (n-2) massages.

Therefore, a total of ((n-2) + 1), i.e. (n-1) messages

are needed to handle the leaving process. As stated

above, note that in the updated table primary address

X does not exist, i.e. there does not exist any cluster

possessing the resource type X; therefore, any

lookup request by a peer in a cluster Ci for resource

X will eventually fail as the corresponding cluster

head Ci
h will not find it appearing as a primary

address in its TOI. However, note that any look up

for a request with resource code (X+1) the cluster-

head Ci
h will unicast to the IP address corresponding

to the cluster with primary address as (X+1) and

secondary address as X.

 If the root node leaves, it unicasts a leave

message to the node with primary address 1 and the

later becomes the new root and its new address

(secondary) becomes 0. This new root now deletes

the entry for the leaving node from its TOI. This new

root keeps the existing primary addresses of all other

cluster-heads as well as their new secondary logical

addresses in its TOI; i.e. a cluster-head with existing

primary address X will have a secondary logical

address as (X-1) as well in the TOI. The new root

unicasts to the (n-2) cluster-heads the updated TOI.

It thus requires a total of ((n-2) + 1), i.e. (n-1)

messages.

 If two or more nodes want to leave

simultaneously, they leave in the sequence of

arrivals of their ‘leave request’ messages to the root

node. Observe that whatever is required to maintain

the structure after any join/leave is done centrally by

the current root cluster-head just with the help of few

unicasts of the updated TOI, approximately equal to

the number of distinct resources. It makes the

process of churn handling quite simple and efficient.

4.3. Partitioning of a Cluster into Sub-Clusters

 Broadcasting by a cluster-head Ci
h is a key factor

related to both data lookup algorithms and churn

handling in our proposed overlay network. In order

to reduce the load (in terms of the number of

messages to broadcast in cluster Ci) by the cluster-

head Ci
h, we propose the following idea of dividing

a cluster, say Ci in several small sub-clusters.

 Let us consider that a cluster, say Ci be divided into

sub-clusters of identical size each, say Z. Let there

be k number of sub-clusters. So, Numi is equal to

(k.Z). Of course, it is most likely that the last sub-

cluster will have less than Z number of peers;

however, it has no effect on our explanation of the

idea used for partitioning. Let the k sub-clusters be

denoted as Ci1, Ci2, …, Cik. We assume that peers in

these sub-clusters are in increasing order of their

logical addresses. Therefore, the last peer to join will

have the largest logical address among all in the

parent cluster Ci. It means that any new join always

occurs in the last sub-cluster. If the last one Cik

already has Z peers, the new peer will form a new

sub-cluster Ci(k+1) and it becomes its own sub-cluster

head Ci(k+1)
h as well; otherwise the new one will join

as a member of the sub-cluster Cik.. Note that cluster-

head Ci
h is also the sub-cluster head Ci1

h of the first

sub-cluster Ci1.

An example: We illustrate the partitioning process

using the following example. let us consider a

cluster Ci with cluster-head Ci
h. Let Ci consist of 40

peers. Assume that Ci is divided into four sub-

clusters Ci1, Ci2, Ci3, and Ci4 with 10 peers each. It is

shown in Fig. 6. Observe that in general the last sub-

cluster not necessarily will have the same size as

others; it depends on the number of peers initially

present in the parent cluster Ci and the number of

sub-clusters to be formed; however, as mentioned

earlier that it has no effect on our explanation of the

idea.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 117 Volume 20, 2021

Fig. 6 Partitioning of cluster Ci into four sub-clusters Ci1, Ci2, Ci3, and Ci4

 Let the logical address of the cluster-head Ci
h be

i based on the mod value of n used in designing the

RC-based overlay architecture. Then, the other 39

peers in Ci will have the respective overlay addresses

as (i+n), (i+2n), …, (i+39n) based on their sequence

of joining the cluster. Addresses of the four sub-

cluster heads are i, (i+10n), (i+20n), and (i+30n)

respectively. Since Ci is completely connected,

therefore, any two peers in the cluster have direct

logical connections. However, in this partitioning

method, we assume the presence of the logical links

that connect the neighboring sub-cluster heads as

well as the links that connect the first sub-cluster

head, Ci
h (i.e. Ci1

h) and the other three cluster-heads.

 Cluster-head Ci
h assigns the addresses (i+n) to

(i+9n) to the first nine peers joining the cluster

besides the cluster-head itself. It forms the sub-

cluster Ci1 with itself as the its sub-cluster head.

Cluster-head Ci
h assigns the next 10 arriving peers

with addresses (i+10n) to (i+19n) and imparts the

responsibility of becoming the sub-cluster head of

the sub-cluster Ci2 to the peer with address (i+10n).

In this way, the other sub-clusters are also formed.

As pointed out earlier, in general the last sub-cluster

may have a smaller number of peers than the other

clusters at the time of formation. It depends on the

present number of peers in a given cluster and the

number of sub-clusters. For example, if cluster Ci

initially has 39 peers instead of 40, the last sub-

cluster Ci4 will have 9 peers, one less than the

number of peers in the other sub-clusters of Ci.

Note that sub-cluster size can be a choice of the

designers and it can be dynamically changed based

on the total current number of peers present in the

cluster Ci.

4.3.1 Reduction of the number of messages

broadcasted by Ci
h due to partitioning

 Cluster-head Ci
h keeps address information of the

peers in its own sub-cluster Ci1 and the address

information of all the other sub-cluster heads. It also

knows the largest logical address used so far in this

cluster Ci. Any other peer in this sub-cluster (Ci1)

will keep the address information of all peers in this

sub-cluster only. Therefore, when needed, the

cluster-head Ci
h will broadcast only to peers in its

own sub-cluster and to the other sub-cluster heads

(in fact, only to the next sub-cluster head is needed).

 A peer in any other sub-cluster Cij will just keep

the address information of only the peers in this sub-

cluster; the corresponding sub-cluster-head Cij
h will

keep the same information; in addition it will keep

the address information of the cluster-head Ci
h and

those of its two neighboring sub-cluster heads Ci(j-1)
h

and Ci(j+1)
h. The sub-cluster head Cij

h will be

responsible for broadcasting only inside this sub-

cluster. Therefore, whenever needed the load on Ci
h

caused by broadcasting can be distributed among the

sub-cluster heads. Below we assume that each sub-

cluster consists of Z peers.

Lemma 3. Number of hops required to broadcast in

cluster Ci is k.

Proof. Broadcasting uses the idea of pipe lining in

the following sense.

Broadcasting in cluster Ci takes place as follows.

Cluster head Ci
h starts broadcasting in the first sub-

cluster Ci1 followed by unicasting of the message to

its neighbor sub-cluster head Ci2
h. Broadcasting in

Ci1 takes only 1 hop as Ci1 is a complete network.

Also, the unicast transmission takes only 1 hop.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 118 Volume 20, 2021

Therefore, broadcasting is completed in Ci1 when the

message arrives at Ci2
h. In this way, at the time the

broadcast message arrives at Ci(j+1)
h from Cij

h,

broadcasting is already completed in the later sub-

cluster (hence the pipe lining idea). Thus, after the

last sub-cluster head Cik
h receives the message from

sub-cluster head Ci(k-1)
h, broadcasting takes place in

the last sub-cluster, which takes 1 hop and there are

(k-1) hops needed for the message to travel from the

first sub-cluster head to the last one; hence the total

number of hops is (1 + (k-1)), i.e. k. □

Observation 3. Size of the list Lij maintained by each

peer in any cluster Cij reduces approximately from

(k.Z) to Z.

Observation 4. Number of messages to be

broadcasted by cluster-head Ci
h of cluster Ci is ((Z-

1) +1), i.e. Z; The 1st term is due to broadcast inside

the first sub-cluster Ci1 and the 2nd term for

communication from Ci
h to C(i+1)

h.

Observation 5. Number of messages to be

broadcasted by any sub cluster-head Cij
h other than

the first and the last ones is ((Z-1) +1), i.e Z; The 1st

term is due to broadcast inside the sub-cluster Cij

and the 2nd term for communication from Cij
h to

Ci(j+1)
h.

Observe that for the last sub-cluster head it will be

at most (Z-1).

4.3.2 Churn handling in a partitioned cluster

 In dealing with churn, we mainly focus on the

number of messages required to handle different

situations, e.g. peer joining, peer leaving etc.

because it is directly related to bandwidth utilization.

 Let us consider the k sub-clusters Ci1, Ci2, …, Cik.

Peers in these sub-clusters are in their increasing

order of their logical addresses. Therefore, the last

peer to join will have the largest logical address

among all in the parent cluster Ci. It means that any

new join always occurs in the last sub-cluster.

4.3.2.1 Peer joining

 The joining peer p is directed by the DNS or the

cluster-head C0
h to contact Ci

h because peer p has the

same resource type Ri which is also owned by peers

in cluster Ci. Cluster-head Ci
h assigns the largest

logical address to the peer and gives the IP address

of the current last sub-cluster head Cik
h to the joining

peer p and the joining peer p contacts the last sub-

cluster head.

 If the last one Cik already has Z peers, the new

peer will form a new sub-cluster Ci(k+1) and it

becomes its own sub-cluster head Ci(k+1)
h; otherwise

the new one will join the sub-cluster Cik.. In the

second case, sub-cluster head Cik
h broadcasts the IP

address and the logical address of peer p to all other

peers in its sub-cluster; number of such messages is

(Z-1) and the broadcast will take 1 hop. Each

receiving peer in sub-cluster Cik updates its list Lik.

Cluster head Cik
h also updates its list and unicasts the

updated list to the joining peer p. Therefore, total

number of messages needed to handle the join

process is (Z-1+1), i.e. Z and the required number of

hops is only 2. It may be noted that if the joining peer

becomes a new sub-cluster head Ci(k+1)
h, it will

unicast this information to the first sub-cluster head

Ci1
h (i.e. Ci

h) and the last sub-cluster head Cik,

requiring only two message transmissions.

 Note that initially there are couple other

messages used for contacting the last sub-cluster

head and it is the same for any join. So, we have

ignored it. We basically focus on two parameters,

viz., number of partitions and size of a cluster for

determining the number of messages because values

of these two related parameters can be of interest to

the network designers from the viewpoint of

reasonably efficient bandwidth utilization.

Observation 6. Number of messages to handle a

joining process is at most Z, where as it is (k.Z) if

partitioning is not used.

4.3.2.2 Peer leaving

 When a non-cluster head peer in a cluster Cij

leaves, it only broadcasts (Z-1)) leave messages in

its sub-cluster. So, the number of such leave

messages reduces to (Z-1) from (k.Z).

 If sub-cluster head Cij
h leaves, the number of

messages broadcasted by the new cluster-head to its

peers in cluster Cij that has now (Z-1) peers is (Z-2)

(only one broadcast is required). Number of

messages required to update the two neighboring

sub-cluster heads and the first one about this new

sub-cluster head is 3. If this sub-cluster is eventually

the last one, number of messages is just 2, one to the

first sub-cluster head and the other to the previous

sub-cluster head. So total number of messages used

is at most (Z+1) compared to (K.Z-1) if partitioning

is not used and when sub-cluster head is not the

cluster head.

 If the cluster-head Ci
h leaves, the number of

messages broadcasted by the new cluster-head to

peers in the first sub-cluster Ci1 is (Z-2) (only one

broadcast is required); number of messages required

to update the (k-1) other sub-cluster heads in Ci

about this new sub-cluster head is (k-1); and number

of messages required to update the rest of the (n-1)

cluster-heads at level 1 is (n-1). Hence, total number

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 119 Volume 20, 2021

of messages used is ((Z-2) + (k-1) + (n-1)), i.e. (Z +

k + n - 4).

Observation 7. Without partitioning, when a cluster-

head Ci
h leaves, total number of messages required

to handle a leaving process is at least k.Z compared

to a maximum of (Z + k + n - 4) when partitioning is

used.

To achieve substantial reduction in the number of

messages to handle churn caused by the above

leaving process, a designer’s objective should be to

consider those values of Z and k for a given Numi

that will maximize [k.Z – (Z + k + n – 4)]. Since the

number of clusters, i.e. the number of distinct

resources denoted as n is not a designer’s choice,

therefore, the revised objective should be to

maximize [k.Z – (Z + k)]. Also, care should be taken

to select the value of Z because Z is also the number

of messages required to handle a joining process.

4.3.3 Churn handling in Pyramid tree at layer-1

 There is no effect on churn handling at layer-1

due to partitioning of clusters; it is the same as

appeared in Section 4.2.

4.3.4 Churn Handling under Capacity

Constrained Situation

 Restricted capacity of a peer does not change the

number of messages required to handle churn in the

network. However, it may take more time (i.e. larger

number of hops) to reorganize the network after

joining and leaving of peers. For example, even if a

cluster is divided logically into sub-clusters of

diameters 1 each, the number of hops required to

broadcast in a sub-cluster is logc
Z [18] instead of 1

hop, given that average capacity of a peer is c. It

delays reorganization.

Experiments

 In the following experiments, we have compared

performance of the proposed partitioned architecture

with the performance of Chord, arguably the most

noted DHT-based structured overlay architecture.

Performance has been measured using the number

of messages required to maintain the overlay

architecture after a peer joins or leaves the system.

Results of our observations in the four experiments

have appeared in Figs. 7, 8, 9, and 10 with respective

cluster sizes as 500, 1000, 2000, 3000 peers. In the

experiments cluster sizes have been kept constant;

the number of distinct resources n in the system has

been varied from 20 to a maximum of 40; it also

means that number of clusters of a given size varies

from 20 to a maximum of 40.

 We have considered partitioning of a cluster Ci

into k sub-clusters each with Z number of peers to

achieve reduction in the number of messages to

handle churn when a cluster-head Ci
h or any other

peer in the cluster leaves. As mentioned earlier that

this reduction due to a cluster-head leaving can be

maximum when for a cluster-size of k.Z, values of Z

and k are so selected that maximizes [k.Z – (Z + k +

n – 4)] for a given n. For example, in Fig. 7, we

found the respective values of Z and k as 25 and 20

for the cluster size of 500. In the other three figures

we have mentioned values of Z and k corresponding

to the respective cluster sizes used in the three other

experiments.

 In addition, in Fig. 7, when Numi is 102, the

corresponding number of clusters is 20 which is

written right below 104 in the figure. This number 20

also represents the number of distinct resource types

n. Similarly, when Numi is 2x104, number of

corresponding clusters is 40, which is also the

number of resource types. It means that for a given

cluster size, say 500 peers, we increase the total

number of peers in the system by increasing the

number resource types n. This is true for the other

three experiments as well.

 Note that the graphs showing the effects of new

cluster-head join / existing cluster-head leaves with

no more peer left in the cluster, are overlapped; for

example, it is the second one from the bottom in Fig.

7. Since the number of messages required to handle

such a join / leave is directly proportional to n, hence

the variable used here along the horizontal axis is n

which is specified as (n) below each Numi.

Similarly, the variable n is used to draw the graph

when a cluster-head leaves and the cluster still

exists; it is the second one from the top in Fig. 7.

 Besides, the graphs for a peer joining or leaving

a sub-cluster are overlapped, for example in Fig. 7 it

is the bottom most graph. The reason is that for such

a joining the number of messages is at most Z and

for leaving it is either at most (Z+1) or (Z-1)

depending on if the leaving peer is a sub-cluster-

head or not. So, we have considered just the value Z

for both joining and leaving.

 Each diagram shows reasonable improvement in

terms of requiring a smaller number of messages to

handle different kinds of joins and leaves of our

design with partitioned clusters when compared to

Chord.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 120 Volume 20, 2021

Fig. 7 Cluster size (k.z) = 500, k =25, z = 20

Fig. 8 Cluster size (k.z) = 1000, k = 40, z = 25

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 121 Volume 20, 2021

Fig. 9 Cluster size (k.z) = 2000, k = 50, z = 40

Fig. 10 Cluster size (k.z) = 3000, k =60, z = 50

5. Discussion on some Existing

Interest Based P2P Architectures

In this section, we have considered several

noteworthy interest-based P2P systems [19]-[25]

and briefly state their main features from the

viewpoint of their proposed architecture. Then we

state the same of our work and justify why our

design is superior to these works.

 All these works have incorporated the idea of

peer heterogeneity in their design. In doing so the

work in [19] has used the existing idea of super peer.

Besides, gossiping has been used for cluster

formation with peers of common interest.

 The work in [20] uses the idea of popular peer

which is quite similar to the idea of super peer. The

base architecture is an unstructured network.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 122 Volume 20, 2021

 In [21], authors have considered super peer. It is

a hybrid architecture that uses both chord and

unstructured network.

 In [22], gossiping has been used for cluster

formation. Besides, at the time of joining a new peer

searches from a list of known peers for a particular

peer which has most links among all in the list and

then gets connected to it.

 In [23], authors have considered DHT-based

structured P2P system considering both proximity -

aware and interest-based cluster formation. Aim is

to improve file location efficiency considering

physically close peers with common interest. The

work starts with the formation of a cluster consisting

of physically close peers; it then forms sub-clusters

with peers having common interest. Reasonable

improvement of file location efficiency has been

achieved. However, they have not considered the

following highly probable situation: assume that

there are q number of such clusters scattered around;

each of them has a sub-cluster formed with

physically close peers with the same interest, say i.

Then what will be the inter-sub-cluster lookup

efficiency? This problem has not been addressed in

this research. Therefore, the work remains

incomplete, even though the basic idea is good.

 In [24], a pastry-based P2P e-commerce model

based on interest community has been proposed.

Users with similar interest form an interest

community and the users in such a community are

not necessarily physically close. Authors have

assumed that all such users are directly connected,

i.e. such a cluster has the overlay diameter of one

hop. However, there is no mathematical basis for

such an assumption.

 In [25], Authors have considered the adaptation

of P2P architecture to support social network

characteristics. This P2P architecture is based on the

idea of Chord. Peers with similar interest are linked

and these links are created dynamically based on

previous communication messages among the peers.

These links are called interest links. Authors have

proposed an efficient routing algorithm based on

such links.

 In our proposed work, we do not use gossiping

for cluster formation; we do not consider either

super peer or popular peer or even a joining peer

does not look for the best peer to be connected to as

in [22]. We now justify why it is so in our work. First

the existing idea of gossiping is not at all an efficient

way to form clusters of peers of common interests.

Second, when new peers join, there is always some

probability that the new one will be better than an

existing super peer or a popular peer. So, again a

new one may have to be selected. It wastes time,

particularly when several peers join at the same time

or peers join frequently. The joining of a new peer

[22] incurs unnecessary waste of time to search for

the best peer to connect to. In addition, some of the

above works have considered unstructured network.

So, it may involve the typical searching problem

inherent to unstructured networks. Work in [23] is

quite important because it has considered both

physical closeness of peers and peers with common

interest. However, inter-cluster communication

among clusters of peers with similar interest has not

been addressed. Works in [23]-25] are all DHT

based approaches. So, they cannot avoid the

problems of maintaining the architecture in presence

of churn.

 We have used modular arithmetic (residue class)

to build the clusters with peers of common interests.

It is a non-DHT based approach. This mathematical

tool helps in assigning overlay addresses to peers in

a way that any cluster with peers of common interest

becomes a complete network (i.e. from graph

theoretic viewpoint, a complete graph). Therefore,

the overlay diameter of a cluster is just 1 and hence

search latency for intra-cluster communication is

O(1). Diameter of the whole architecture is just (2d

+ 2) where d is the number of levels of the pyramid

tree. Therefore, search latency for inter-cluster

communication is O(d). Note that nodes on the tree

are only the cluster-heads which represent the

different distinct resources and value of d only

depends on the number of such nodes; therefore, d is

negligibly small compared to the total number of

peers in the system; note that a cluster may contain

any number of peers and we do not put any

restriction on the size of a cluster.

 Finally, during design phase we have not

specifically focused on peer heterogeneity; it has

made our design process very simple. So, there is no

need to select any super or a popular peer. We do not

need to consider any capacity constrained

communication between cluster-heads, because on

the pyramid tree no cluster-head (a node on the tree)

can have more than four overlay links and in fact,

we use a maximum of three links of a cluster-head

in the proposed broadcast protocol and realistically

any node usually has these many number of links or

more. We have earlier mentioned that work is under

progress for designing capacity constrained

communication protocols (broadcast and multicast)

inside a cluster; fact is, our objective is to

incorporate peer heterogeneity only during

broadcast and multicast inside a cluster.

 Finally, our process of churn handling is one of

the simplest known ones. Since a cluster is a

complete network, any new join or a leave does not

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 123 Volume 20, 2021

change its diameter; thereby restructuring of a

cluster is very simple. Besides, location of a new

cluster-head with a new resource type is always at

the leaf level. Realistically, we believe that our work

is a challenge to any existing DHT based

architecture from the viewpoints of overlay search

latency and churn handling. Churn handling has

been discussed in detail in the next section.

6. Conclusion

 In this paper, we have considered a 2-layer non-

DHT and interest based structured P2P architecture,

also known as pyramid tree architecture. Residue

Class based on modular arithmetic has been used to

realize the overlay topology. Use of such

mathematical tool has helped in obtaining some very

important structural properties of the network. Our

main objective has been to show the superiority of

our non-DHT and interest-based architecture over

DHT-based architectures from the viewpoints of

search latency and data look up complexity. In

designing the data lookup protocols, we have used

some of the structural properties of our architecture,

e.g. each cluster has a diameter of only 1 overlay hop

and the diameter of the network is just (2+2d); d is

the number of levels of the layer-1 pyramid tree and

d depends only on the number of distinct resources.

Therefore, the diameter of the network is

independent of the number of peers in the whole

network. As a result, the proposed intra-cluster data

lookup protocol has constant complexity and

complexity of inter-cluster data lookup is O(d) if tree

traversal is used; note that n ≈ 2d and hence d is even

much smaller than n, the number of distinct resource

types. The noteworthy point is that search latency is

independent of the total number of peers present in

the overlay network unlike any structured DHT-

based network (as a matter fact unlike any P2P

network, structured or unstructured). We have

presented both analytical and experimental results

comparing the proposed ones with some of the most

noted DHT-based structured overlay networks.

 We have presented in detail the process of

handling churns and proposed a simple yet very

effective technique related to cluster partitioning,

which, in turn, helps in reducing the number of

messages required to be exchanged to handle churns.

Most of the existing interest-based architectures are

built on an ad-hoc basis without having any solid

mathematical foundation. Hence, we have

highlighted the main differences of our interest-

based architecture with some such existing ones

using architectural aspects only and the related pros

and cons of these architectures.

 The present work is part of an ongoing research

project; currently we are working on designing P2P

Federation using our model architecture as the basic

architectural component of the Federation.

References
[1] P. Ganesan, Q.Sun, and H. Garcia-Molina,

“Yappers: A peer-to-peer lookup service over

arbitrary topology,” Proc. IEEE Infocom 2003, San

Francisco, USA, pp. 1250-1260, Vol. 2,March 30 -

April 1 2003.

[2] Y. Chawathe, S. Ratnasamy, L. Breslau, N.

Lanham, and S. Shenker, “Making gnutella-like p2p

systems scalable,” Proc. ACM SIGCOMM,

Karlsruhe, Germany, August 25-29 2003.

[3] S. Ratnasamy, P. Francis, M. Handley, R. Karp,

and S. Shenker, “A scalable content-addressable

network, CAN,” Vol. 31, No. 4, pp. 161-172, ACM,

2001.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable,

Distributed Object Location and Routing for Large

Scale Peer-to-Peer Systems”, Proc. FIP/ACM Intl.

Conf. Distributed Systems Platforms (Middleware),

pp. 329-350, 2001.

[5] I. Stocia, R. Morris, D. Liben-Nowell, D. R.

Karger, M. Kaashoek, F. Dabek, and H.

Balakrishnan, “Chord: A Scalable Peer-to-Peer

Lookup Protocol for Internet Applications”,

IEEE/ACM Tran. Networking, vol. 11, No. 1, pp.

17-32, Feb. 2003.

[6] M. Yang and Y. Yang, “An Efficient Hybrid

Peer-to-Peer System for Distributed Data Sharing”,

IEEE Trans. Computers, vol. 59, no. 9, pp. 1158-

1171, Sep. 2010.

[7] M. Xu, S. Zhou, and J. Guan, “A New and

Effective Hierarchical Overlay Structure for Peer-

to-Peer Networks”, Computer Communications,

vol. 34, pp. 862-874, 2011.

[8] D. Korzun and A. Gurtov,” Hierarchical

Architectures in Structured Peer-to-Peer Overlay

Networks”, Peer-to-Peer Networking and

Applications, Springer, pp. 1-37, March 2013

[9] Z. Peng, Z. Duan, J.Jun Qi, Y. Cao, and E. Lv,

“HP2P: a hybrid hierarchical p2p network,” Proc.

Intl. Conf. Digital Society, pp. 86-90, 2007.

[10] K. Shuang, P Zhang, and S. Su, “Comb:resilient

and efficient two-hop lookup service for distributed

communication system,” Security and

Communication Networks, vol. 8(10), pp. 1890

1903, 2015.

[11] M. Kleis, E. K. Lua,, and X. Zhou,

“Hierarchical Peer-to-Peer Networks using

LightweightSuperPeer Topologies,” Proc. IEEE

Symp. Computers and Communications, pp. 1-6,

2005.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 124 Volume 20, 2021

[12] Bidyut Gupta, Nick Rahimi, Shahram Rahimi,

and Ashraf Alyanbaawi, “Efficient Data Lookup in

Non-DHT Based Low Diameter Structured P2P

Network,” Proc. IEEE 15th Int. Conf. Industrial

Informatics (IEEE INDIN), pp. 944-950, July 2017,

Emden, Germany.

[13] Bidyut Gupta and Mohammad Mohsin, “Fault-

Tolerance in Pyramid Tree Network Architecture,”

J. Computer Systems Science and Engineering,

Vol. 10, No. 3, pp. 164-172, July 1995

[14] N. Rahimi, K. Sinha, B. Gupta, and S. Rahimi,

LDEPTH: A Low Diameter Hierarchical P2P

Network Architecture, Proc. IEEE 14th Int. Conf. on

Industrial Informatics (IEEE INDIN), Poitiers,

France, pp. 832-837, July 2016.

[15] Indranil Roy, Koushik Maddali, Swathi

Kaluvakuri, Banafsheh Rekabdar, Ziping Liu,

Bidyut Gupta, Narayan Debnath, Efficient Any

Source Overlay Multicast In CRT-Based P2P

Networks ─ A Capacity - Constrained Approach,

Proc. IEEE 17th Int. Conf. Industrial Informatics

(IEEE INDIN), July 2019, Helsinki, 1351-1357,

Finland.

[16] Indranil Roy, Bidyut Gupta, Banafsheh

Rekabdar, and Henry Hexmoor, A Novel Approach

Toward Designing A Non-DHT Based Structured

P2P Network Architecture, EPiC Series in

Computing, Volume 63, 2019, pages 121-129,

(Proceedings of 32nd Int. Conf. Computer

Applications in Industry and Engineering).

[17] Indranil Roy, Nick Rahimi, Koushik Maddali,

Swathi Kaluvakuri, Bidyut Gupta and Narayan

Debnath, Design of Efficient Broadcast Protocol for

Pyramid Tree-based P2P Network Architecture,

EPiC Series in Computing, Volume 63, 2020, pages

182-188, (Proceedings of 33rd Int. Conf. Computer

Applications in Industry and Engineering, San

Diego).

[18] Shiping Chen, Baile Shi, Shigang Chen, and Ye

Xia, ACOM: Any-Source Capacity-Constrained

Overlay Multicast in Non-DHT P2P networks, IEEE

Tran. Parallel and Distributed Systems, vol. 18, no.

9, pp. 1188-1201, Sep. 2007.

[19] S. K. A. Khan and L. N. Tokarchuk, "Interest-

Based Self Organization in Cluster-Structured P2P

Networks," 2009 6th IEEE Consumer

Communications and Networking Conference, Las

Vegas, NV, 2009, pp. 1-5, doi:

10.1109/CCNC.2009.4784959.

[20] Wen-Tsuen Chen, Chi-Hong Chao and Jeng-

Long Chiang, "An Interested-based Architecture for

Peer-to-Peer Network Systems," 20th International

Conference on Advanced Information Networking

and Applications - Volume 1 (AINA'06), Vienna,

2006, pp. 707-712, doi: 10.1109/AINA.2006.93.

[21] Z. Tu, W. Jiang and J. Jia, "Hierarchical Hybrid

DVE-P2P Networking Based on Interests

Clustering," 2017 International Conference on

Virtual Reality and Visualization (ICVRV),

Zhengzhou, China, 2017, pp. 378-381, doi:

10.1109/ICVRV.2017.00087.

[22] Khambatti, Mujtaba & Ryu, Kyung &

Dasgupta, Partha. (2003). Structuring Peer-to-Peer

Networks Using Interest-Based Communities.

Lecture Notes in Computer Science, 1st International

Workshop, DBISP2P 2003, Berlin, September 2003.

[23] H. Shen, G. Liu and L. Ward, "A Proximity-

Aware Interest-Clustered P2P File Sharing System,"

in IEEE Transactions on Parallel and Distributed

Systems, vol. 26, no. 6, pp. 1509-1523, 1 June 2015,

doi: 10.1109/TPDS.2014.2327033.

[24] M. Hai and Y. Tu, "A P2P E-Commerce Model

Based on Interest Community," 2010 International

Conference on Management of e-Commerce and e-

Government, Chengdu, 2010, pp. 362-365, doi:

10.1109/ICMeCG.2010.80.

[25] L. Badis, M. Amad, D. Aîssani, K. Bedjguelal

and A. Benkerrou, "ROUTIL: P2P routing protocol

based on interest links," 2016 International

Conference on Advanced Aspects of Software

Engineering (ICAASE), Constantine, 2016, pp. 1-5,

doi: 10.1109/ICAASE.2016.7843852.

[26] Swathi Kaluvakuri, Koushik Maddali, Nick

Rahimi, Bidyut Gupta, and Narayan Debnath,

“Generalization of RC-Based Low Diameter

Hierarchical Structured P2P Network Architecture,”

IJCA, Vol. 27, No. 2, June 2020, pp. 74-83.

[27] Koushik Maddali, Indranil Roy, Swathi

Kaluvakuri, Ziping Liu, and Bidyut Gupta,

“Design of Novel Low Latency and High

Bandwidth-Efficient Broadcast Protocols for Non

DHT-based Pyramid Tree P2P Architecture,”

submitted to International Journal of Computers and

Their Applications (IJCA).

[28] Jie Cheng and Ryder Donahue, “The Pirate Bay

Torrent Analysis and Visualization,” IJCSET, Vol.

3, Issue 2, pp. 38-42, Feb. 2013

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2021.20.13

Indranil Roy, Swathi Kaluvakuri,
Koushik Maddali, Ziping Liu, Bidyut Gupta

E-ISSN: 2224-2872 125 Volume 20, 2021

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

	830 WSEAS Computers

