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Abstract: - In many applied areas there is a clear need for the extended forms of the well-known distributions.The
new distributions are more flexible to model real data that present a high degree of skewness and kurtosis, such
that each one solves a particular part of the classical distribution problems. In this paper, a new two-parameter
Generalized Odd Gamma distribution, called the (GOGaU) distribution, is introduced and the fitness capability of
this model are investigated. Some structural properties of the new distribution are obtained. The different meth-
ods including: Maximum likelihood estimators, Bayesian estimators (posterior mean and maximum a posterior),
least squares estimators, weighted least squares estimators, Cramér-von-Mises estimators, Anderson-Darling and
right tailed Anderson-Darling estimators are discussed to estimate the model parameters. In order to perform the
applications, the importance and flexibility of the new model are also illustrated empirically by means of two real
data sets. For simulation Stan and JAGS software were utilized in which we have built the GOGaU JAGS module.
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1 Introduction
The statistical analysis and modeling of data sets
are essential in almost all applied sciences including,
biomedical science, engineering, finance, agriculture
and insurance, amongst others.
Even though the new distributions sometimes include
complicatedmathematical formulations, each of them
is able to model particular state of real data properly.
Since the new processors computers are readily able
to accomplish the accurate and fast numerical com-
putations, there is no concern for good estimation of
parameters, and this achievement has presented a re-
markable help to this field of statistics.

Based on T-X idea by Alzaatreh et al. [2], GOGa-
G is introduced by Hosseini et al. [12] with cumula-
tive distribution function(cdf) given by

F (x;α, β, ξ) =

∫ G(x;ξ)β

1−G(x;ξ)β

0

tα−1e−t

Γ(α)
dt

=
γ
(
α, G(x;ξ)β

1−G(x;ξ)β

)
Γ(α)

x ∈ R.(1)

where α, β > 0 are two additional shape parameters,
ξ is the parameter for baseline cdf G and γ(α, x) =∫ x
0 tα−1e−tdt denote the incomplete gamma function.
If G is standard uniform (U(0,1)), and X is a ran-
dom variable such thatX ∼ GOGaU (α, β) then fol-
lowing probability density function (pdf) and hazard

function (hrf) of GOGaU are obtained as follows:

f(x;α, β) =
βxαβ−1e

−xβ

1−xβ

Γ (α) (1− xβ)
α+1 , 0 ≤ x ≤ 1.(2)

and

τ(x;α, β) =
βxαβ−1e

−xβ

1−xβ

(1− xβ)
α+1

[
Γ (α)− γ

(
α, xβ

1−xβ

)] ,
0 ≤ x ≤ 1. (3)

As it is shown in Figure 1, the curves with different
states of density function including symmetric den-
sity function (approximately), mild and high skewed
(right and left) are produced. In Figure 2 one can see
some curves of the hazard function of the GOGaU
distribution for some parameters. Moreover, the U
shape and increasing hazard functions are producible
by GOGaU.

Some relations between the GOGaU family and
gamma distribution are provided by the following
proposition:

Proposition 1.1. Let X ∼ GOGaU (α, β) and Y =
Xβ

1−Xβ , then Y ∼ Γ(α, 1).

The rest of this paper is presented in different sec-
tions as follows:
In Section 2, we discuss the distributional proper-
ties of the proposed distribution, including quan-
tile functions, asymptotes, expansions for pdf and
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Figure 1: The sample curves of density function of
GOGU01.

cdf, moments and antropy. In Section 3, parame-
ters are estimated by Maximum likelihood, Bayesian
(posterior mean and maximum a posterior), least
squares, weighted least squares, Cramér–von-Mises,
Anderson-Darling and right tailed Anderson-Darling
methods. In Section 4, a simulation study is con-
ducted to compare the performance of estimators. For
this section, the GOGaU JAGS module is built. In
Section 5, Applications with real data sets and com-
pared to other famous well known competing are con-

sidered. Finally, Section 6 offers some concluding re-
marks.
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Figure 2: The sample curves of hazard function of
GOGU01.

2 Statistical properties
In this section Some statistical properties of the new
model such as Quantile function, limit behavior, mo-
ments, moment generating function, entropy are de-
rived.

2.1 Quantile function
Considering (1) quantile function (qf) X is obtained
as follows: If V ∼ Γ(α, 1) then the solution of non-

linear equation xv =
(

V
1+V

) 1

β has cdf (1).

2.2 Limit behavior
Proposition 2.1. The asymptotic of equation (1), (2)
and (3) when x → 0 are given by

F (x) ∼ xαβ

αΓ (α)

f(x) ∼ βxαβ−1

Γ (α)

τ(x) ∼ βxαβ−1

Γ (α)
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Proposition 2.2. The asymptotic of equation (1), (2)
and (3) when x → 1 are given by

F̄ (x) ∼ 1−
γ
(
α, 1

β(1−x)

)
Γ (α)

f(x) ∼ e
−1

β(1−x)

βαΓ (α) (1− x)α+1

τ(x) ∼ g(x)e
−1

β(1−x)

βα
[
Γ(α)− γ

(
α, 1

β(1−x)

)]
(1− x)α+1

We can evaluate the effect of the parameters on the
tails of the distribution using the above equations.

2.3 Expansion for Pdf and Cdf and hrf
Using generalized binomial and Taylor expansion one
can obtain the following equation:

f(x) =
βxαβ−1

Γ (α) (1− xβ)
α+1

∞∑
i=0

(−1)i

i!

(
xβ

1− xβ

)i

=
β

Γ (α)

∞∑
i=0

∞∑
j=0

(−1)i

i!

(
−α− i− 1

j

)
xβ(α+i+j)−1

=

∞∑
i=0

∞∑
j=0

wi,jhβ(α+i+j)(x) (4)

where wi,j =
(−1)i(−α−i−1

j )
i![α+i+j]Γ(α) and hβ(x) = βxβ−1,

denote the pdf of Beta distribution with parameters β
and 1.

2.4 Moments
The rth ordinary moment of X is given by follows:

µ′
r = E(Xr) =

∫ +∞

0
xrf(x)dx

=

∞∑
i=0

∞∑
j=0

wi,j

∫ +∞

0
xr hβ(α+i+j)(x)dx

=

∞∑
i=0

∞∑
j=0

wi,j
(k + 1)rs+k+1

r + k + 1
(5)

The skewness and kurtosis measures can be calcu-
lated from the ordinary moments using well-known
relationships. The nth central moment of X , say
Mnis

Mn = E(X − µ)n =

n∑
h=0

(−1)h
(
n
h

)(
µ′

1

)n
µ′

n−h .

The cumulants (κn) of X follow recursively from

κn = µ′
n −

n−1∑
r=0

(
n− 1
r − 1

)
κrµ

′
n−r

where,

κ1 = µ′
1, κ2 = µ′

2−µ′
1
2
, κ3 = µ′

3−3µ′
2µ

′
1+µ′

1
3
,

etc.
The main application of the first incomplete moment
refers to Bonferroniand Lorenz curves which are very
useful in economics, reliability, demography, insur-
ance and medicine. The answers to many important
questions in economics require more than just know-
ing the mean of the distribution, its shape as well. The
sth incomplete moments, say φs (t), is given by the
following:

φs (t) =

∫ t

0
xsf(x)dx

=

t∑
i=0

∞∑
j=0

wi,j

∫ t

0
xs hβ(α+i+j)(x)dx

=

∞∑
i=0

∞∑
j=0

wi,j
(k + 1)ts+k+1

s+ k + 1
(6)

The first incomplete of the GOGaU family, φ1 (t),
can be obtained by setting s = 1 in (6).
In Figure 3, one can see 3-D surfaces of mean, vari-
ance, skewness and kurtosis of the GOGaU distribu-
tion.

2.5 Entropy
Entropy is an index for measuring variation or uncer-
tainty of a random variable. The measure of entropy,
Rrnyi [15], is d

IR(γ) =
1

1− γ
log

(∫ ∞

0
fγ(x)dx

)
,

for γ > 0 and γ ̸= 1.

The Shannon entropy measure is also defined by
E {− log [f(x)]} that is a special state of the Rényi
entropy when γ ↑ 1, as the following:

f(x)γ =

 βxαβ−1e
−xβ

1−xβ

Γ(α)[1− xβ]
α+1

γ

=
βγxγ(αβ−1)e

−xβ

1−xβ

[Γ(α)]γ [1− xβ]
γ(α+1)

=
βγ

[Γ(α)]γ

∞∑
i=0

(−1)i

i!
γi
xγ(αβ−1)+βie

−xβ

1−xβ

[1− xβ]
γ(α+1)+i
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Figure 3: Surfaces of mean, variance, skewness and
kurtosis for GOGaU.

=
βγ

[Γ(α)]γ

∞∑
i=0

∞∑
j=0

(−1)i+j

i!

×
(
−γ (α+ 1)− i

j

)
γixγ(αβ−1)+β(i+j)

⇒ IR(γ) =
1

1− γ
log

[∫ +∞

−∞
fγ(x)dx

]
=

γ

1− γ
log

[
β

Γ(α)

]

+
1

1− γ
log

 ∞∑
i=0

∞∑
j=0

vi,jI (γ, α, β, i, j)

 .

where

vi,j =
(−1)i+jγi

i!

(
−γ (α+ 1)− i

j

)

I (γ, α, β, i, j) =

∫ 1

0
xγ(αβ−1)+β(i+j)dx

=
1

γ (αβ − 1) + β (i+ j) + 1
.

In Figure 4, one can see some 3-D surfaces of the en-
tropy function of the GOGaU distribution.

3 Estimation Methods
3.1 Maximum Likelihood Estimator
The Maximum Likelihood Estimator (MLE) is one of
the most common point estimators, and it is very ap-
plicable in confidence intervals and hypothesis test-
ing. By MLE, various statistics are built for as-
sessing the goodness-of-fit in a model, such as: the
maximum log-likelihood (ℓ̂max), Akaike Informa-
tion Criterion (AIC), Bayesian Information Crite-
rion (BIC), Anderson-Darling (A∗) and Cramér–von
Mises (W ∗), described by Chen and Balakrishnan [6].
The lower values of these statistics indicate that the
model has better fitting. These statistics are used in
section 5.

For calculating the MLE, assuming
thatx1, x, ..., xn are observations from pdf (2).
In this case, by letting θ = (α, β) can be written as
follows:

ℓn(θ) = n ln(β) + (αβ − 1)

n∑
i=0

ln(xi)−
n∑

i=0

xi
β

1− xiβ
− n ln(Γ(α))

−(α+ 1)

n∑
i=0

ln(1− xi
β).

By numerically solving the following equations, the
maximum likelihood estimators can be obtained.

∂ℓn(θ)
∂α = β

n∑
i=0

ln(xi)− nΓ′(α)
Γ(α) +

n∑
i=0

ln(1− xβi ) = 0

∂ℓn(θ)
∂β = n

β + α
n∑

i=0
lnxi −

n∑
i=0

xβ
i lnxi

(1−xβ
i )

2

+(α+ 1)
n∑

i=0

xβ
i lnxi

(1−xβ
i )

= 0

3.2 The Bayesian Estimators: Posterior
Mean and Maximum-a-Posteriori

As flexible statistical estimators, Bayesian estimators
have significant applications in a wide variety of sta-
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tistical studies. They provide good estimation for pa-
rameters by combining past experience with current
observations. In the following and Section 4, Pos-
terior Mean (PM) and Maximum-a-Posteriori (MAP)
estimator are examined to the estimation of distribu-
tion parameters. In Bayesian analysis after specifying
the prior distribution of parameter, posterior distribu-
tion can be obtained as follows:

θ ∼ π (θ)

f(x|θ) =
n∏

i=1

f(xi|θ)

π(θ|x) = cπ(θ)f(x|θ); c =

(∫
Θ
π(θ)f(x|θ)dθ

)−1

Now if one consider mean squared error loss func-
tion, PosteriorMean (PM) will be the bayes estimator.
Also, the mode of posterior, Maximum-a-Posteriori
(MAP), is other estimator that is equivalent to MLE
in bayesian statistics; It means:

PM = E (θ|x)

MAP = argmax
θ

π (θ|x)

3.3 The other estimation methods
There are several approaches to estimate the param-
eters of distributions and each has its own character-
istic features and benefits. In this subsection five of
those methods are briefly introduced and numerically
investigated in the simulation study section (5). A
useful summary of these methods can be seen in Dey
et al. [11]. Here {ti; i = 1, 2, ..., n} is the associated
order statistics and F is the distribution function of
GOGaU.

Least squares and weighted least squares
estimators
The Least Squares (LSE) and weighted Least Squares
Estimators (WLSE) are introduced by Swain et al.
[16]. The LSEs and WLSEs are obtained by mini-
mizing the following functions:

SLSE(α, β) =

n∑
i=1

(
F (ti;α, β)−

i

n+ 1

)2

SWLSE(α, β) =

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

×
(
F (ti;α, β)−

i

n+ 1

)2

Cramér–von–Mises estimator
Cramér–von–Mises Estimator (CME) is introduced
by Choi and Bulgren [7]. The CMEs is obtained by
minimizing the following function:

SCME(α, β) =
1

12n
+

n∑
i=1

(
F (ti;α, β)−

2i− 1

2n

)2

Anderson–Darling and right-tailed
Anderson–Darling
The Anderson–Darling (ADE) and Right-Tailed
Anderson–Darling Estimators (RTADE) are intro-
duced by Anderson and Darling [3]. The ADEs and
RTADEs are obtained by minimizing the following
functions:

SADE(α, β) = −n− 1

n

n∑
i=1

(2i− 1){logF (ti;α, β)

+ logF (tn+1−i;α, β)}

SRTADE(α, β) =
n

2
− 2

n∑
i=1

F (ti;α, β)

− 1

n

n∑
i=1

(2i− 1) logF (tn+1−i;α, β)

where F (·) = 1− F (·).

4 Simulation study
In this Section MLE, PM and MAP estimators are
examined using pdf (2) simulation. In order to do
that, two pdf of Figure 5 were selected in which
two deferent cases of GOGaU distribution are visi-
ble: (α, β) = (1.1, 0.45) skewed right and (α, β) =
(0.5, 3.5) skewed left.

4.1 MLE, Bayes and MAP
To verify the validity of the estimators, Bias and
Mean Square Error (MSE) of the Estimate have
been used. For example, as described in Sub-
section 2.1, for (α, β) = (0.5, 3.5), samples of
n = 20, 40, 70, 100, 140, 200, 270, 350, 450, 600 of
GOGaU(0.5, 3.5) are generated for N = 5000
times. For PM and MAP, the noninformative α, β ∼
Γ(0.01, 0.01) is used. This prior has a large standard
deviation and there is no information on the positive
parameters used. According to Subsection 3.2 and us-
ing these priors, MAP and MLE produce similar re-
sults approximately. To obtain the posterior distribu-
tion we have the following relationships:

π(α, β) =
0.010.01

Γ (0.01)
α−0.99e−0.01α× 0.010.01

Γ (0.01)
β−0.99e−0.01β
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f(xi|α, β) =
βxαβ−1

i e

−x
β
i

1−x
β
i

Γ (α)
(
1− xβi

)α+1 , i = 1, 2, ...n

π(α, β|x) ∝ (αβ)−0.99e−0.01(α+β)
n∏

i=1

βxαβ−1
i e

−x
β
i

1−x
β
i

Γ (α)
(
1− xβi

)α+1

π(α, β|x) is not a known distribution and the value of
PM obtains using MCMC methods.

In this study, two different MCMC methods are
applied and their gained results are compared. Per-
haps, the most well-known method of MCMC would
be Gibbs sampling that utilizes marginal densities to
make simulation accurately. This method is tech-
nically applied in the two popular Bayesian soft-
ware programs, WINDBAGS and JAGS, as well as
many other relevant statistical packages. In this work,
JAGS (Plummer [14]) is utilized. To define the new
distribution in JAGS some techniques such as zero′s
trick that can be used, has remarkable Monte Carlo
Error. The best way is to create new distribution
module and launch it on JAGS (Wabersich and Van-
dekerckhove [17]); this module is made for GOGaU.
rjags package needs to run JAGS and above men-
tioned module in R.

Furthermore, Hamiltonian Monte Carlo (HMC) is
another method of MCMC simulation, applying Stan
software (Carpenter et al. [5]), which is becoming
more popular. In this method the gradient of the
log posterior is utilized. Contrary to JAGS and Win-
BUGS, defining a new distribution in Stan software
is more straightforward. rstan package needs to run
Stan in R.

In order to obtain MAP estimator, Stan has a func-
tion using numerical methods (optimizing function
in rstan), while in JAGS, some other method such as
kernel curves must be used which cannot give as ac-
curate result as Stan. JAGS and Stan model and some
R codes can be found in the Appendix A.

If θ = (α, β), for any simulation by n volume
and i = 1, 2, ..., N , the estimations are obtained as
θ̂i = (α̂i, β̂i). The standard deviation of estima-
tors is obtained through the standard deviation of pos-
terior distribution, because noninformative priors is
used. The estimation of standard deviation is shown
by s

θ̂i
= (sα̂i

, s
β̂i
). In this case, the θ̂, Bias and MSE

are calculated by the following formulas:

θ̂(n) =
1

N

N∑
i=1

θ̂i

Bias
θ̂
(n) =

1

N

N∑
i=1

(θ̂i − θi)

MSE
θ̂
(n) =

1

N

N∑
i=1

(θ̂i − θi)
2

Figures 6 represent the Biases and MSEs plots for
(α, β) = (0.5, 3.5). As expected, the biases andMSE
of estimated parameters converge to zero while n is
growing. MLE andMAP is calculated in Stan estima-
tion (MLE-Stan and MAP-Stan) are similar and PM-
Stan and PM-JAGS estimation are almost equal. As
we have alreadymentioned, the results ofMAP-JAGS
estimation are roughly different from MLE-Stan and
MAP-Stan estimation. The plots of parameters vec-
tor (α, β) = (1.1, 0.45) have the same position as one
can see in Figures 10 in Appendix B.

4.2 Simulation of other estimation methods
In order to explore the introduced estimators in sec-
tion 3.3, we consider the two models that have been
used in the subsection 4.1, and we investigate Bias
and MSE of those estimators for different samples.
For instance according to what has been mentioned
in the subsection 4.1, for (α, β) = (0.5, 3.5) we have
simulated N = 10000 times with sample size of
the n = 20, 40, 70, 100, 140, 200, 270, 350, 450, 600,
then the Bias andMSE formulas that are mentioned in
the subsection 4.1 are calculated for them. To obtain
the value of the estimators, we have used the optim
function and L-BFGS-B method in R.

The result of the simulations of this subsection is
shown in Figure 7. As it is clear from the Bias and
MSE plots for two parameters with the increase in the
volume of the sample all methods will approach to
zero; and this verifies the validity of the these estima-
tion methods and numerical calculations for the dis-
tribution parameters GOGaU. The results of (α, β) =
(1.1, 0.45) model in Figure 11 in Appendix B have
similar output.

The values of the confidence intervals along with
coverage probabilities (CP) of the parameters based
on different methods of estimation are obtained in Ta-
bles 1 and 2. Given that we used the Hessians matrix
method to obtain the confidence interval, Some lower
limits of confidence intervals that are negative can be
considered zero.

5 Application
In this section, we present two applications by fit-
ting the GOGaU and some famous models to a
real data sets is assessed. The Akaike informa-
tion criterion (AIC), Bayesian information criterion
(BIC), Anderson-Darling (A∗) and Cramér-vonMises
(W ∗), Kolmogorov-Smirnov (K.S) and the P-Value
of K.S test, are utilized for comparison of the mod-
els. The distributions: Beta (B), Kumaraswamy (Kw)
(Kumaraswamy [13]), Kumaraswamy Beta (KwB)
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Table 1: Confidence intervals and coverage probabil-
ity for selected parameters (α, β) = (0.5, 3.5).

Method (α, β) n = 100 CP n = 200 CP n = 300 CP
MLE α (0.222, 0.863) 0.958 (0.299, 0.742) 0.956 (0.331, 0.687) 0.945

β (1.587,5.420) 0.904 (2.165, 4.871) 0.935 (2.428, 4.647) 0.952
PM(Stan) α ( 0.244, 0.864) 0.934 (0.308, 0.741) 0.935 (0.338, 0.687) 0.941

β (2.316, 8.232) 0.935 (2.570, 5.759) 0.930 (2.710, 5.137) 0.946
PM(JAGS) α (0.254, 0.867) 0.938 (0.317, 0.743) 0.920 (0.345, 0.694) 0.937

β (2.312, 7.771) 0.936 (2.558, 5.624) 0.924 (2.692, 5.073) 0.933
MAP(Stan) α (-0.065, 1.149) 0.990 (0.089, 0.951) 0.998 (0.162, 0.867) 0.996

β (2.997, 4.069) 0.412 (3.13, 3.89) 0.431 (3.193, 3.814) 0.421
MAP(JAGS) α (0.412, 0.536) 0.753 (0.458, 0.519) 0.830 (0.464, 0.523) 0.833

β (3.065, 3.850) 0.860 (3.277, 3.650) 0.935 (3.289, 3.643) 0.866
LSE α (-1.440 , 2.478) 1 (-0.860 , 1.871) 1 (-0.606, 1.609) 1

β (-11.660 , 19.614) 1 (-5.885, 13.345) 1 (-3.910, 11.247) 1
WLSE α (0.463, 0.595) 0.273 (0.479, 0.543) 0.197 (0.486, 0.528) 0.155

β (3.286, 4.167) 0.290 (3.408, 3.823) 0.203 (3.448, 3.719) 0.169
CME α (-1.473, 2.583) 1 (-0.866, 1.912) 1 (-0.608, 1.634) 1

β (-10.196 , 17.620) 1 (-5.516, 12.737) 1 (-3.735, 10.917) 1
ADE α (-0.118, 1.170) 0.999 (0.061, 0.958) 0.999 (0.141, 0.870) 0.999

β (-0.700 , 8.128) 0.999 (0.674, 6.568) 0.994 (1.227, 5.950) 0.994
RTADE α (-0.118 ,1.170) 0.998 (0.061, 0.958) 0.999 (0.141, 0.870) 0.999

β (-0.700 , 8.128) 0.999 (0.674, 6.568) 1 (1.227, 5.950) 0.999

Table 2: Confidence intervals and coverage probabil-
ity for selected parameters (α, β) = (1.1, 0.45).
Method (α, β) n = 100 CP n = 200 CP n = 300 CP
MLE α (0.615, 1.712) 0.943 (0.750,1.514) 0.944 (0.807, 1.424) 0.953

β (0.253, 0.649) 0.919 (0.311, 0.589) 0.932 (0.338, 0.564) 0.953
PM(Stan) α (0.645, 1.713) 0.937 (0.759, 1.506) 0.951 (0.816, 1.422) 0.950

β (0.315, 0.794) 0.948 (0.346, 0.650) 0.945 (0.362, 0.601) 0.942
PM(JAGS) α (0.656, 1.712) 0.936 (0.766, 1.504) 0.935 (0.817, 1.416) 0.919

β (0.293, 0.659) 0.939 (0.347, 0.647) (0.933) (0.364, 0.602) 0.930
MAP(Stan) α (0.679, 1.641) 0.908 (0.794, 1.475) 0.914 (0.848, 1.404) 0.922

β (0.017, 0.882) 1 (0.142, 0.754) 1 (0.198, 0.697) 0.999
MAP(JAGS) α (0.982, 1.167) 0.903 (1.023, 1.140) 0.900 (1.041, 1.141) 0.897

β (0.432, 0.445) 0.901 (0.426, 0.467) 0.867 (0.428, 0.465) 0.869
LSE α (-1.917, 4.135) 1 (-1.013, 3.205) 1 (-0.625, 2.817) 1

β (-0.784, 1.751) 1 (-0.378, 1.317) 1 (-0.212, 1.139) 1
WLSE α (1.020, 1.229) 0.255 (1.058, 1.160) 0.423 (1.071, 1.139) 0.168

β (0.429, 0.511) 0.245 (0.441, 0.480) 0.513 (0.444, 0.470) 0.159
CME α (-1.950, 4.281) 1 (-1.016, 3.263) 1 (-0.623,2.851) 1

β (-0.722, 1.644) 1 (-0.360, 1.279) 1 (-0.204,1.117) 1
ADE α (0.097, 2.155) 1 (0.386, 1.827) 0.999 (0.516, 1.691) 0.998

β (0.063, 0.873) 0.990 (0.183, 0.740) 0.994 (0.234, 0.681) 0.996
RTADE α (0.097, 2.155) 1 (0.386, 1.827) 1 (0.516, 1.691) 1

β (0.063, 0.873) 0.999 (0.674, 6.568) 1 (0.234, 0.681) 1

(Cordeiro and Castro [9]), Beta (BB) (Zografos and
Balakrishnan [19]), McDonald Beta (McB) (Alexan-
der et al. [1]), Exponentiated Gompertz Gener-
ated Beta (EGGB) (Cordeiro et al.[8]), beta power
(BP) (Cordeiro et al.[10]), Logistic-normal (LogitN)
(Atchison and Shen [4]), are selected for comparison.
The parameters of models are estimated by the MLE
method using optimizing function in rstan package
in R.

5.1 The total milk production data set
This subsection is related to study of the total milk
production in 107 SINDI race cows on the first birth
after to calve which presented by EGGB that include
107 observations. The data set is:
0.4365, 0.4260, 0.5140, 0.6907, 0.7471, 0.2605,
0.6196, 0.8781, 0.4990, 0.6058, 0.6891, 0.5770,
0.5394, 0.1479, 0.2356, 0.6012, 0.1525, 0.5483,
0.6927, 0.7261, 0.3323, 0.0671, 0.2361, 0.4800,
0.5707, 0.7131, 0.5853, 0.6768, 0.5350, 0.4151,
0.6789, 0.4576, 0.3259, 0.2303, 0.7687, 0.4371,
0.3383, 0.6114, 0.3480, 0.4564, 0.7804, 0.3406,

0.4823, 0.5912, 0.5744, 0.5481, 0.1131, 0.7290,
0.0168, 0.5529, 0.4530, 0.3891, 0.4752, 0.3134,
0.3175, 0.1167, 0.6750, 0.5113, 0.5447, 0.4143,
0.5627, 0.5150, 0.0776, 0.3945, 0.4553, 0.4470,
0.5285, 0.5232, 0.6465, 0.0650, 0.8492, 0.8147,
0.3627, 0.3906, 0.4438, 0.4612, 0.3188, 0.2160,
0.6707, 0.6220, 0.5629, 0.4675, 0.6844, 0.3413,
0.4332, 0.0854, 0.3821, 0.4694, 0.3635, 0.4111,
0.5349, 0.3751, 0.1546, 0.4517, 0.2681, 0.4049,
0.5553, 0.5878, 0.4741, 0.3598, 0.7629, 0.5941,
0.6174, 0.6860, 0.0609, 0.6488, 0.2747
The Tables 3 and 4 display a summary of the fitted
information criteria and MLEs for this data with dif-
ferent models, respectively. Models have been sorted
from the lowest to the highest value of AIC. As it is
visible, the GOGaU is selected as the best model with
all the criteria. Note that P-Value for GOGaU is also
more than all other distributions. The histogram of
data set and the plots of fitted pdf are displayed in
Figure 8.

Table 3: Information criteria for the total milk pro-
duction data set.

Model AIC BIC W ∗ A∗ K.S P-Value
GOGaU -50.38 -45.04 0.094 0.572 0.068 0.70
KwB -48.80 -38.11 0.067 0.423 0.078 0.541
BB -47.97 -37.28 0.081 0.513 0.071 0.657
BP -47.54 -36.85 0.083 0.531 0.073 0.614
EGGB -46.91 -33.55 NaN NaN 1 0.000
Kw -46.79 -41.44 0.156 1.009 0.076 0.563
McB -46.00 -32.64 0.065 0.422 0.372 0.000
Beta -43.55 -38.21 0.208 1.326 0.091 0.338
LN -37.03 -31.68 0.316 1.924 0.108 0.165

Table 4: MLEs for the total milk production data set.

Model Parameters
GOGaU (α̂, β̂) = (1.61, 0.80)

(sα̂, sβ̂) = (0.211, 0.193)

KwB (ĉ, b̂, α̂, β̂) = (0.09, 0.19, 18.35, 24.78)
(sĉ, sb̂, sα̂, sβ̂) = (0.469, NaN, 0.356, NaN)

BB (â1, b̂1, â2, b̂2) = (0.44, 33648.89, 3.79, 0.0002)
(sâ1, sb̂1, sâ2, sb̂2) = (0.449, 26.699, 0.372, 53.454)

BP (â, b̂, α̂, β̂) = (0.26, 59295.17, 6.86, 0.27)
(sâ, sb̂, sα̂, sβ̂) = (0.363, 130.138, 0.284, 24.970)

EGGB (â, b̂, ĉ, α̂, β̂) = (0.09, 0.18, 22.00, 0.0001, 3.16)
(sâ, sb̂, sĉ, sα̂, sβ̂) = (3.510, 2.460, 1.581, 40.381, 2.075)

Kw (α̂, β̂) = (2.41, 2.83)
(sα̂, sβ̂) = (0.101, 0.169)

McB (â, b̂, ĉ, α̂, β̂) = (0.52, 2192324.30, 1.44, 2.15, 0.0001)
(sâ, sb̂, sĉ, sα̂, sβ̂) = (0.536, 4.223, 0.375, 0.761, NaN)

Beta (α̂, β̂) = (2.19, 3.44)
(sα̂, sβ̂) = (0.130, 0.132)

LN (µ̂, σ̂) = (−0.19, 0.99)
(sµ̂, sσ̂) = (0.096, 0.068)
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5.2 The time to failure (103 h) of
turbocharger data set

This subsection is related to study of the time to fail-
ure (103 h) of turbocharger of one type of engine
which presented by Xu et al. [18] that include 40
observations. The data set divided to 10 are: 0.16
,0.35, 0.48, 0.54, 0.60, 0.65, 0.70, 0.73, 0.77, 0.80,
0.84, 0.20, 0.39, 0.50, 0.56, 0.61, 0.65, 0.71, 0.73,
0.78, 0.81, 0.84, 0.26, 0.45, 0.51, 0.58, 0.63, 0.67,
0.73, 0.77, 0.79, 0.83, 0.85 ,0.30, 0.46, 0.53, 0.60,
0.87, 0.88, 0.90. Similar to the previous application
example, we have Tables 5 and 6. As it is clear, the
GOGaU is selected as the best model with more cri-
teria. The histogram of the Time to failure (103 h) of
turbocharger data and the plots of fitted pdf are dis-
played in Figure 9.

Table 5: Information criteria for the time to failure
(103 h) of turbocharger data set.

Model AIC BIC W ∗ A∗ K.S P-Value
GOGaU -24.06 -20.68 0.015 0.104 0.057 0.999
LN -21.80 -18.42 0.030 0.243 0.075 0.977
BB -21.16 -14.40 0.011 0.827 0.048 1
BP -21.14 -14.38 0.012 0.090 0.055 1
Kw -20.69 -17.31 0.036 0.288 0.087 0.920
Beta -20.01 -16.63 NaN NaN 1.466 0.000
KwB -19.29 -12.53 0.017 0.126 0.068 0.993
EGGB -19.15 -10.71 NaN NaN 1 0.000
McB -18.92 -10.47 0.144 0.851 0.735 0.000

Table 6: MLEs for the time to failure (103 h) of tur-
bocharger data set.

Model Parameters
GOGaU (α̂, β̂) = (1.07, 2.05)

(sα̂, sβ̂) = (0.419, 0.723)

LN (µ̂, σ̂) = (0.59, 0.92)
(sµ̂, sσ̂) = (0.145, 0.103)

BB (â1, b̂1, â2, b̂2) = (0.03, 71.71, 98.37, 4.42)
(sâ1, sb̂1, sâ2, sb̂2) = (0.060, 396.959, 241.232, 15.868)

BP (â, b̂, α̂, β̂) = (0.03, 8.04, 74.96, 1.08)
(sâ, sb̂, sα̂, sβ̂) = (0.087, NaN, 202.013, 0.031)

Kw (α̂, β̂) = (3.16, 2.49)
(sα̂, sβ̂) = (0.549, 0.636)

Beta (α̂, β̂) = (3.57, 2.19)
(sα̂, sβ̂) = (0.787, 0.462)

KwB (ĉ, b̂, α̂, β̂) = (21.12, 60.90, 0.09, 0.30)
(sĉ, sb̂, sα̂, sβ̂) = (36.915, 142.856, 0.159, 0.200)

EGGB (â, b̂, ĉ, α̂, β̂) = (1.41, 2.62, 0.16, 15.80, 2.09)
(sâ, sb̂, sĉ, sα̂, sβ̂) = (0.555, 1.267, 0.034, 1.104, 0.422)

McB (â, b̂, ĉ, α̂, β̂) = (0.04, 26.13, 3.57, 17.68, 1.86)
(sâ, sb̂, sĉ, sα̂, sβ̂) = (0.071, 61.136, 16.069, 86.688, 3.932)

6 Conclusions
In this paper, we introduce a new two-parameter of
Generalized Odd Gamma distribution on (0, 1) such
as (GOGaU) family of distributions. Some mathe-
matical and Various properties of the new class are
provided.

Comparing the performances of the estimators
such as: MLE, PM and MAP (Stan and JAGS), LSE,
WLSE, CME, ADE and RTADE are proposed. We
conclude from the Bias and MSE plots for two pa-
rameters of GOGaU with the increase in the sample
size, all methods will approach to zero and this veri-
fies the validity of the these estimation methods. The
GOGaU module is build for using in JAGS models.

The (GOGaU) distribution is applied to fit a real
data sets. These applications show that the model has
the ability to fit left-skewed and heavy-tailed data due
to its flexibility. The results of tables and figures illus-
trate the importance of the new distribution to analyze
of real data with respect to another nested well-known
models.
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7 Appendices
A The R codes of GOGaU
The program is developed in R to obtain the value
of density (dGOGaU), distribution (pGOGaU),
hazard (hGOGaU), quantile (qGOGaU) function
and random generation (rGOGaU) for the GOGaU
distribution.

dGOGaU = function(x, par)
{
G = punif(x, 0, 0)
g = dunif(x, 0, 0)
Gb = G∧par[2]
pdf = par[2]*g*G∧(par[1]*par[2]-

1)*exp(-Gb/(1-Gb))/
(gamma(par[1])*(1-

Gb)∧(par[1]+1))
pdf[!is.finite(pdf)] = NA
pdf
} # end of dGOGaU

pGOGaU = function(x, par)
{
G = punif(x, 0, 0)
g = dunif(x, 0, 0)
Gb = G∧par[2]
cdf = pgamma(Gb/(1-Gb),par[1],1)
cdf[!is.finite(cdf)] = NA
cdf
} # end of pGOGaU

qGOGaU = function(p, par)
{
a = qgamma(p,par[1],1)
b = (a/(1+a))∧(1/par[2])
qunif(b, 0, 1)
} # end of qGOGaU

hGOGaU = function(x, par)
{
pdf = dGOGaU(x=x, par=par)
cdf = pGOGaU(x=x, par=par)
hrf = pdf/(1 - cdf)
hrf[!is.finite(hrf)] = NA
hrf
} # end of hGOGaU
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rGOGaU = function(n, par)
{
GI=rgamma(n,par[1],1)
qunif((GI/(1+GI))∧(1/par[2]) ,0 ,1)
} # end of rGOGaU

The program is developed in R of calculation
for one-dimensional integral based on observations
and the trapezoidal rule integration:

intob = function(x, y) 0.5*sum(diff(x)*
(y[1:length(x)-

1]+y[2:length(x)]))

The program is developed in R of calculation
for the value of Rényi entropy:

REntropy = function(par, gamma)
{
fgamma = function(x) dGOGaU(x,

par = par)∧gamma
x = seq(0, 1, le=10000)
y = fgamma(x)
ent = log(intob(x,y))/(1-gamma)
ent = ent[!is.finite(ent)] = NA
return(ent)
} # end of REntropy

The program is developed in R of calculation
for the value of moment, skewness and kurtosis:

moment = function(par, order)
{
x = seq(par[3], par[4], le=10000)
y = dGOGaU(x = x, par = par)
return(intob(x, x∧order * y))
} # end of moment

skew = function(par)
{
x = seq(0, 1, le=10000)
y = dGOGaU(x = x, par = par)
m1 = intob(x, x*y)
m2 = intob(x, (x-m1)∧2*y)
return(intob(x, ((x-

m1)∧3*y))/sqrt(m2)∧3)
} # end of skew

kurt = function(par)
{
x = seq(0, 1, le=10000)
y = dGOGaU(x = x, par = par)
m1 = intob(x, x*y)
m2 = intob(x, (x-m1)∧2*y)
return(intob(x, (x-

m1)∧4*y)/sqrt(m2)∧4)
} # end of kurt

JAGS model and codes for GOGaU distribution.
model

{
alpha ∼ dgamma(0.01, 0.01);
beta ∼ dgamma(0.01, 0.01);
for(i in 1:n)

{
x[i] ∼ dgogu(alpha, beta)
}

}

Stan model and codes for GOGaU distribution
using optimization for simulations and application.

data
{
int<lower=1> n;
real<lower=0,upper=1> x[n];
}

parameters
{
real<lower=0> alpha;
real<lower=0> beta;
}

model
{
real ret;
ret = 0;
alpha ∼ gamma(0.01, 0.01);
beta ∼ gamma(0.01, 0.01);
for(i in 1:n)

{
ret = ret + (alpha*beta-

1)*uniform_lcdf(x[i]|0,1)
-

pow(uniform_cdf(x[i],0,1),beta)/
(1-

pow(uniform_cdf(x[i],0,1),beta))
-

(alpha+1)*log1m(pow(uniform_cdf(x[i],0,1),beta));

}
target += ret;
}

After saving the above code in ”GOGaUModel.stan”
file, one can use following rstan codes for simula-
tion and optimization of posterior.

mystanGOGaU =
stan_model(”GOGaUModel.stan”)
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optimizing(mystanGOGaU, data =
list(n=length(x), x=x)

hessian=TRUE)
sampling(mystanGOGaU, data =

list(n=length(x), x=x),
iter=10000)

Program developed in R of optimization for LSE
method in subsection 4.2. Other methods are the
same.

t = sort(x)
LSE = function(para)

sum((pGOGaU(t, para) -
1:n/(n+1) )∧2)

optim(par=c(1,1), fn=LSE,
lower=c(0.005,0.005),

upper=c(Inf,Inf), method=”L-
BFGS-B”, hessian=TRUE)
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Figure 4: Surfaces of the GOGaU Entropy function:
up-left β = 0.1, up-right β = 1.5, down-left α = 0.1,
down-right α = 1.5.
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Figure 5: Two density functions for simulation study.

20 70 140 200 270 350 450 600

-0
.2

-0
.1

0.
0

0
.1

T
h
e
B
ia
s
of

α

n

MLE
PM(Stan)
PM(JAGS)
MAP(Stan)
MAP(JAGS)

20 70 140 200 270 350 450 600

0.
00

0.
05

0.
10

0.
1
5

0
.2
0

0
.2
5

0.
3
0

0
.3
5

T
h
e
M
S
E

o
f
α

n

MLE
PM(Stan)
PM(JAGS)
MAP(Stan)
MAP(JAGS)

20 70 140 200 270 350 450 600

-4
-3

-2
-1

0

T
h
e
B
ia
s
of

β

n

MLE
PM(Stan)
PM(JAGS)
MAP(Stan)
MAP(JAGS)

20 70 140 200 270 350 450 600

0
5

1
0

1
5

2
0

25
30

T
h
e
M
S
E

of
β

n

MLE
PM(Stan)
PM(JAGS)
MAP(Stan)
MAP(JAGS)

Figure 6: The Biases and MSEs of α̂ and β̂ versus n
when (α, β) = (0.5, 3.5).
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Figure 7: Biases and MSEs of α̂ and β̂ versus n when
(α, β) = (0.5, 3.5).
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Figure 9: Histogram and estimated pdfs for the time
to failure (103 h) of turbocharger data set.
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Figure 10: The Biases and MSEs of α̂ and β̂ versus n
when (α, β) = (1.1, 0.45).
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Figure 11: Biases andMSEs of α̂ and β̂ versus n when
(α, β) = (1.1, 0.45).
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