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Abstract - The study in the paper is placed in the broad context of research for increasing the efficiency of motion control. The 

purpose of the paper is to make a comparative analysis of the neural model reference control with the linear control for angular 

positioning of mechanical parts. The structure of the neural model reference control system and its design are presented. Transient 

characteristics obtained are compared from the point of view of their control efficiency criteria. The differences in performance 

criteria between the control methods studied are small. 
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1.  Introduction 

 The paper presents the results of a research study in the 

field of motion control applied to positioning of an object with 

known moment of inertia, in the rotational motion around an 

axis. The purpose of the work is the analysis of methods for 

positioning based on neural network model reference control, 

compared with the conventional linear control method. The 

significance of the study is that it shows the efficiency of these 

methods, compared to each other.  An example of position 

control of a vehicle subjected to unknown conditions using 

sliding mode and optimal control is presented in [1]. In [2] a 

study on the optimization of motion control in automatic 

machines, robots and multi-body systems is presented. In [3] 

some examples of the application of intelligent control 

techniques in motion control are presented. Conventional 

position control is done using as actuators electric machines, 

driven by cascade control systems, with internal current 

control loop, over which overlap a speed control loop and an 

external position control loop. This is the natural way for 

control. The current and speed control loops must respond as 

quickly as possible. And the control of the position must be 

done asymptotically, aperiodically with zero overshoot. In this 

paper, a heavy object is taken into consideration. The actuator 

inertia is not taken in consideration, because it has a very 

small time constant, compared to the moment of inertia of the 

object. Neural networks bring learning and training in control. 

The paper presents, in section 2, preliminary information 

related to the mathematical model of positioning process, the 

conventional linear position control, its transient 

characteristics and performance criteria. The third section 

presents the position control method based on neural network 

model reference control. A neural model of the process is 

developed based on neural identification of the motion model, 

testing and validation. The neural controller is also trained. 

The methods were modelled and simulated in 

Matlab/Simulink. The results that can be obtained with these 

method are presented in section 4. The characteristics obtained 

by simulations are compared, analyzed, and discussed. The 

main contribution of the paper can be summarized as a 

comparative analysis of two position control methods: 

conventional linear control and neural model reference 

control, with application in the particular case of a heavy 

object in rotational motion at variable angular positions. The 

behavior of the system with neural predictive control is 

analyzed. The results are compared with those obtained in the 

case of linear control. The analyzed methods ensure good 

performance criteria: zero control error, reduced response 

time, zero overshoot. The performance criteria differences 

between the control methods are small. 

2.  Preliminaries 

2.1. Motion process 
 It is considered to adjust the position θ of the object with 

the moment of inertia J in the rotational motion with angular 

velocity ω.  The rotational movement takes place in the 

presence of friction. The equations of motion are: 
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where M is mechanical torque and kf is coefficient of friction. 

A speed sensor is used, considered as a first-order delay 

element with a time constant TTω. The values of the parameters 

considered are: J = 450 kg.m2, kf = 120 kg.m2/s and TTω = 0.12 

s, and maximum values: Mm = 1000 Nm, ωm = 0.3 rad/s and 

θm = 180o. 

 

2.2. Linear Control System 
 A closed-loop, cascading position control system is 

selected, as the reference control system. In this system, the 

speed in the inner loop and the position in the outer loop are 
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adjusted. This mode of adjustment is a natural one. The 

internal speed control loop responds faster. The position 

control loop has an asymptotic aperiodic behavior. The 

process has a high mechanical time constant J/kf and a low 

time constant TTω that of the sensor. Taking into account this 

model, the speed controller is dimensioned with the symmetric 

criterion in Kessler's variant [4], which recommends a PI 

speed controller, with the parameters: 

48.0.4,875.12// 
 TRTR TTTJK . 

 Since the controlled process has a purely integrative 

character, a position regulator of proportional type is chosen, 

with gain coefficient KRθ = 0.8. 

 The block diagram of the position linear control system is 

shown in Fig. 1, where θ is denoted with p. 

 The step response of the position control system is shown 

in Fig. 2 and the speed characteristic is presented in Fig. 3. 

 
Fig. 1 Linear position control system. 

  
Fig. 2 The step response of the position control system. 

 
Fig. 3 Speed characteristic. 

 It is observed that the position response time is short, of 

the order of 6 seconds, compared to the high moment of 

inertia of object in motion. So, the object rotates at an angle of 

57.2o in 6 seconds. 

3.  Neural model reference control system 

3.1 Structure of the control system 
 According to the theory in [5, 6, 7, 8] the neural model 

reference control system can be used in control of mechanical 

parts. Physical variables of the process M and θ become 

variables of control system. The torque M is the control input 

of process and θ is the output variable of process. The 

reference variable is position reference θ*.  The neural model 

reference control system is designed based on previous 

experiments [9, 10, 11]. 

 The neural model reference control system architecture, 

presented in Fig. 4,  uses two neural networks: a controller 

network and a motion process model network. The neural 

controller calculates the control input - the torque M. The 

motion process model is identified first, and then the 

controller is trained so that the position θ, denoted in figure 

with p, as process output, follows the reference model output. 

 
Fig. 4 Neural model reference control structure 

 There are three sets of controller inputs: delayed reference 

inputs (position reference θ*, denoted with p*), delayed 

controller outputs (torque reference M) and delayed motion 

process outputs (position θ). For each of these inputs, the 

number of delayed values to use may be selected. Typically, 

the number of delays increases with the order of the process. 

In this case we may considered that the motion process is of 

the second order. And, if the sensor dynamic is taken in 

consideration, the process is of the third order. The first step in 

model predictive control is the object motion model 

identification, the determination of the neural network object 

motion model. In the second step the object motion model is 

used by the control system for developing the neural 

controller. Each network has two layers, and the number of 

neurons to use in the hidden layers may be selected. 

3.2 Neural Identification 
 The neural identification of object motion model, or the 

system from toque M to measured position θm denoted with 

pm, is made by training a neural network to represent the 

forward dynamics of the object motion model. The modelling 

error em between the object motion model output and the 

neural network model output is used as the neural network 

training variable. The structure of neural identification of the 

object motion model is presented in Fig. 5. 

 
Fig. 5 The block diagram of neural identification 

 At identification, an uniformly distributed random signal, 

repeatable for a chosen period, with amplitude in the value 

range of the control input variable value M is used.  The neural 

network object motion model uses previous inputs M(t) and 

previous position outputs θ(t) to predict future values of the 

object motion model output θ(t+1). The structure of the neural 

model of the object motion model is given in Fig. 6. 
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Fig. 6 The bloc diagram of the structure of the neural model 

 The neural network has two layers. The input variables 

are time delayed, with the blocks TD, to obtain values at 

previous times. It uses the position θ(t) and torque M(t) values 

at moment t and gives the estimated value of the position 

θ(t+1) at moment t+1. The neural network has a hidden layer 

with weight matrices W1m
1 and W2m

1 and a bias vector b1m
1 and 

an output layer with a weight matrix W1m
2 and a bias vector 

b1m
2. The activation function from the first layer is the 

hyperbolic tangent (sigmoid) function fa1 and for the second 

layer is the linear function fa2. The relationship that describe 

the neural network is: 
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 The neural network may be trained offline using data 

collected from the operation of the rotating process. The 

optimum structure of the neural network is chosen after some 

iterative trainings. 

3.3 Neural Controller 
 A neural network is also used to implement the controller. 

The block diagram of the neural controller structure is 

presented in Fig. 7. 

 
Fig. 7 The block diagram of the structure of the neural controller 

 The neural controller network has two layers. The input 

variables are time delayed, with the blocks TD, to obtain 

values at previous times. It uses the position θ(t), denoted p(t), 

the prescribed position θ*(t), denoted pp(t),  and torque M(t) 

values at moment t and gives the value of the torque reference 

M(t+1) at moment t+1. The neural network of the controller 

has a hidden layer with weight matrices W1c
1 and W2c

1 and a 

bias vector b1c
1 and an output layer with a weight matrix W1c

2 

and a bias vector b1c
2. The activation function from the first 

layer is the hyperbolic tangent (sigmoid) function fa1 and for 

the second layer is the linear function fa2. The relationship that 

describe the neural network is: 
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(9) 

 The control structure contains the reference model which 

has the reference input θ*(t) to obtain the position error ep. 

The controller block determines the values of M that 

minimizes ep, as the torque command. The desired response is 

given by the reference position characteristic. 

 The neural network model reference control structure was 

implemented in Simulink, using deep learning toolbox 

software. 

 

4. Results 

4.1 Neural Model Identification 
 The characteristics obtained for neural model training are 

presented bellow. The size of hidden layer is 10, the sampling 

interval is 0.05 s, number delayed process inputs 2, number 

delayed process output 2, training samples 10000, maximum 

process input of the random signal 120 Nm, minimum process 

input of the random signal -120 Nm, maximum interval value 

of the random signal 2 s,  minimum interval value of the 

random signal 0.1 s, training epochs 300,  training method 

Levenberg-Marquardt. The training is using input-output 

training data and it has a validation phase with validation data 

and a test phase with testing data. The neural network model 

training parameters are presented in Fig. 7. 

 
Fig. 7 Neural network parameters. 

 The generated data before training the neural model of the 

motion process, the training data of neural network model, the 

testing data of neural network model, the neural model 

validation, the performance of neural model identification, the 

training state of neural model identification data and the 

regression in neural model identication are presented 

respectively in Fig. 8, 9, 10, 11, 12, 13 and 14. 

 
Fig. 8 The training data set of the motion process input and output 
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Fig. 9 The training data of neural network model 

 
Fig. 10 The testing data 

  
Fig. 11 The validation data 

 
Fig. 12 The performance of neural model identification 

  
Fig. 13 The training state of neural model identification 

       
Fig. 14 Regression in neural model identification 

4.2 Neural Controller Design 
 The characteristics obtained for neural controller training 

are presented bellow. The size of hidden layer is 13, the 

sampling interval is 0.05 s, number delayed reference inputs 2, 

number delayed controller outputs 1, number delayed process 

output 2, maximum reference value 3.14 rad, minimum 

reference value -3.14 rad, maximum interval value of random 

signal 2 s, minimum interval value 0.1 s, number of controller 

samples 6000, controller training epochs 10,  controller 

training segments 30, training method Levenberg-Marquardt. 

The neural network controller training parameters are 

presented in Fig. 13. 

 
Fig. 13 Neural network controller training parameters. 

 The input-output data for neural network model reference 

controller, the neural network controller training performance,  

the neural network controller training state, the neural network 

controller training errors, and the neural network controller 

training are presented respectively in Fig. 14, 15, 16, 17 and 

18.  
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Fig. 14 Input-output data for neural network model reference controller 

 
Fig. 15 Neural network controller training performance 

 
Fig. 16 Neural network controller training state 

 
Fig. 17 Neural network controller errors 

 
Fig. 18 Neural network controller training regression 

 The command torque, speed and position characteristics 

are presented in Fig. 19, 20, and 21, respectivelly.  

 
Fig. 19 Neural network controller training regression 

 
Fig. 20 Neural network controller training regression 

 
Fig. 21 Neural network controller training regression 

 Analyzing the obtained characteristics it can be said that 

with the help of a neural modfel reference control system a 

behavior similar to the linear state control system can be 

obtained: a zero error in steady state and an asymptotic 

aperiodic variation of position with zero overshoot. 

 

5. Conclusions 
 The paper makes a presentation of results obtained with 

some angular position control structures: linear cascade 

control with error feedback and neural model reference control 

system. The design method of the neural model reference 

control system is presented. Their parameters and the 

performances of the neural trainings are presented. The 

transient responses at step input signal are presented, analyzed 

and compared. The control systems analyzed have good 

control performance criteria: zero error in steady-state, small 

response time compared to the high moment of inertia, zero 

overshoot, and an aperiodic, asimptotic position behavior. The 

differences between the efficiency criteria of two control 

structures are small. 

 

 

 

 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2021.20.25 Constantin Voloşencu

E-ISSN: 2224-2872 238 Volume 20, 2021



References 

[1] M.T. Vu, T.H. Le, H.J.N.N. Thanh, T.T. Huynh, M. Van, Q.D. Hoang, 

T.D. Do, "Robust Position Control of an Over-actuated Underwater 

Vehicle under Model Uncertainties and Ocean Current Effects Using 
Dynamic Sliding Mode Surface and Optimal Allocation 

Control", Sensors, vol. 21, no. 3, 747, Jan. 2021. 

[2] P. Boscariol, D. Richiedei, "Optimization of Motion Planning and Control 
for Automatic Machines, Robots and Multibody Systems" Applied 

Sciences 10, no. 14: 4982, 2020. 

[3] M. Čech,  A.J. Beltman, K. Ozols. 2021. "Pushing Mechatronic 
Applications to the Limits via Smart Motion Control" Applied Sciences, 

vol. 11, no. 18, 8337, September 2021. 
[4] Uddin, W.; Zeb, N.; Zeb, K.; Ishfaq, M.; Khan, I.; Ul Islam, S.; Tanoli, 

A.; Haider, A.; Kim, H.-J.; Park, G.-S. A Neural Network-Based Model 
Reference Control Architecture for Oscillation Damping in 
Interconnected Power System. Energies 2019, 12, 3653. 

[5] C. Kessler, "Das symmetrische optimum", Regelungstechnik, no. 6, pp. 
395–400 and 432–436, 1958. 

[6] F.W. Lewis, S. Jagannathan, A. Yesildirak, Neural Network Control of 
Robot and Non-lInear Systems, CRC Press, Nov. 30, 1998. 

[7] C. Volosencu, Identification of Non-Linear Systems, Based on Neural 
Networks, with Applications at Fuzzy Systems, Proc. of the 10th Int. 
Conf. on Automation & Information (ICAI'09), Prague, Czech Rep., 
March 23-25, 2009. 

[8] C. Volosencu, "Some Considerations About Using Feedforward Neural 
Networks in Identification of Fuzzy Controllers", Proc. of the Int. Conf. 
On Artificial Intelligence, IC-AI'02, Las Vegas, Nevada, CSREA Press, 
USA, 2002, p. 580-583. 

[9] C. Volosencu, "A Comparative Analysis of Some Methods for Wind 
Turbine Maximum Power Point Tracking", Mathematics. 2021; vol. 9, 

no. 19, 2399, Sept. 2021. 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2021.20.25 Constantin Voloşencu

E-ISSN: 2224-2872 239 Volume 20, 2021

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 




