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Abstract: - The minimization of the processor time of designing can be formulated as a problem of time 

minimization for transitional process of dynamic system. A special control vector that changes the internal 

structure of the equations of optimization procedure serves as a principal tool for searching the best strategies 

with the minimal CPU time. In this case a well-known maximum principle of Pontryagin is the best theoretical 

approach for finding of the optimum structure of control vector. Practical approach for realization of the 

maximum principle is based on the analysis of behavior of a Hamiltonian for various strategies of optimization. 

The possibility of applying the maximum principle to the problem of optimization of electronic circuits is 

analyzed. It is shown that in spite of the fact that the problem of optimization is formulated as a nonlinear task, 

and the maximum principle in this case isn't a sufficient condition for obtaining a minimum of the functional, it 

is possible to obtain the decision in the form of local minima. The relative acceleration of the CPU time for the 

best strategy found by means of maximum principle compared with the traditional approach is equal two to 

three orders of magnitude. 
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1 Introduction 
To improve the overall quality of electronic circuit 

designs, it is very important to reduce their design 

time. Some works devoted to this problem focus on 

how to reduce the number of operations when 

solving two main problems: circuit analysis and 

numerical optimization. By solving these problems 

successfully, one can reduce the total time required 

for analog circuit optimization and this fact serves 

as a basis for improving design quality.     

The methods used to analyze complex systems 

are being improved continuously. Some methods 

reduce the time need for circuit analysis. This 

includes the well-known idea of using sparse matrix 

methods [1-2] and decomposition methods [3]. 

Some alternative methods such as homotopy 

methods [4] were successfully applied to circuit 

analysis. 

The techniques for analog circuit optimization 

can be classified in two main groups: deterministic 

optimization algorithms and stochastic search 

algorithms. Practical methods of optimization were 

developed for circuit designing, timing, and area 

optimization [5-6]. However, classical deterministic 

optimization algorithms may have a number of 

drawbacks: they may require that a good initial 

point be selected in the parameter space, they may 

reach an unsatisfactory local minimum, and they 

require that the cost function be continuous and 

differentiable. To overcome these issues, special 

methods were applied to determine the initial point 

of the process by centering [7] or applying 

geometric programming methods [8].  

 Stochastic search algorithms, especially 

evolutionary computation algorithms like genetic 

algorithms, differential evaluation, genetic 

programming, particle swarm optimization, etc. 

have been developed in recent years [9-15]. Genetic 

algorithms have been employed as optimization 

routines for analog circuits due to the ability to find 

a satisfactory solution. A special algorithm defined 

as a particle swarm optimization technique is one of 

the evolutionary algorithms and competes with 

genetic algorithms. This method is successfully used 

for electromagnetic problems and for optimization 

of microwave systems [16-17].  
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A more general formulation of the circuit 

optimization problem was developed on a heuristic 

level some decades ago [18]. This approach ignored 

Kirchhoff’s laws for all or part of a circuit during 

the optimization process. The practical aspects of 

this idea were developed for the optimization of 

microwave circuits [19] and for the synthesis of 

high-performance analog circuits [20] in an extreme 

case where all the equations of the circuit were not 

solved during the optimization process.   

In work [21] the problem of circuit optimization 

is formulated in terms of the theory of optimal 

control. Thus, the process of circuit optimization 

was generalized and defined as the dynamic 

controllable system. In this case, the basic element 

is the control vector that changes the structure of the 

equations of the system of optimization process. 

Thus, there is a set of strategies of optimization that 

have different number of operations and different 

computing times. At the same time, the problem of 

searching for the optimal strategy and the 

corresponding optimal trajectory can be solved most 

appropriately within the Pontryagin maximum 

principle [22]. 

The main complexity of application of the 

maximum principle consists of the search of initial 

values for auxiliary variables at the solution of the 

conjugate system of equations. Application of the 

maximum principle in case of linear dynamic 

systems is based on the iterative process [23-24]. 

In case of nonlinear systems, the convergence of 

this process is not guaranteed. However, application 

of the additional approximating procedures [25-26] 

allows constructing sequence of the solutions 

converging to a limit under certain conditions.  

The first step in the problem of possibility of 

application of maximum principle for circuit 

optimization was presented in [27] for two-

dimensional case. In the present work, the solution 

of the problem is presented for N-dimensional case. 

 

2 Problem Formulation 
In accordance with the conventional approach, the 

process of electronic circuit optimization is defined 

as the problem of minimizing an objective function 

( )XC , 
NR∈X , with constraints given by a system 

of the circuit´s equations based on Kirchhoff’s laws. 

We assume that, by minimizing ( )XC , we achieve 

all our design goals. The circuit optimization 

problem can be generalized by introducing a special 

control vector ( )Muuu ,...,, 21=U  and a special 

generalized objective function ( )UX,F . The 

electronic circuit optimization process can be 

defined as the problem of minimizing the 

generalized objective function ( )UX,F  based on 

the vector equation (1) with the constraints (2). The 

system of constraints is the mathematical model of 

the electronic circuit. 

 
s

s

ss
t HXX +=+1 ,    (1) 

  

( ) ( ) 01 =− Xjj gu ,   j=1, 2,..., M,   (2) 

 

where N
R∈X , ( )XXX ′′′= , , K

R∈′X  is a vector of 

independent variables, 
M

R∈′′X   is a vector of 

dependent variables, М is the number of the circuit’s 

dependent variables, K is the number of independent 

variables, N is the total number of variables 

(N=K+M) and t s  is an iteration parameter. The 

equation (1) describes a two-step minimization 

procedure, and the function H ≡ H(X,U) determines 

the direction in which the generalized objective 

function ( )UX,F  decreases. The functions ( )Xjg  

for all j define the equations of the circuit model. 

The components of control vector U are a set of 

control functions: ( )Muuu ,...,, 21=U , where 

u j ∈ Ω , { }Ω = 0 1; . The vector U leads to 

redistribution of expenses of computing time 

between the block of procedure of optimization (1) 

and the block of the analysis of the scheme (2). The 
complete set of different optimization strategies 

(structural basis) includes 2M strategies. The 

generalized objective function ( )UX,F  can be 

defined, for example, as follows: 

 

    ( ) ( ) ( )UXXUX ,, ϕ+= CF ,   (3) 

  

where ( )XC  is a non-negative ordinary objective 

function of the optimization process and ( )UX,ϕ  is 

a penalty function. The structure of the penalty 

function must potentially include all the equations 

from the system (2) and can be defined, for 

example, as follows: 

 

      ( ) ( )XUX ∑
=

=
M

j

jj gu
1

21
,

δ
ϕ ,    (4) 

 

where δ  is an additional coefficient used to adapt 

the penalty function. In our context, δ
 
equals 1.  

This definition of the circuit optimization 

problem allows us to redistribute the computing 
time between the problems (1) and (2). A control 

function  has the following meaning: if 0=ju , u j
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the jth equation is present in the system (2) and the 

term ( )X2

jg  is removed from the equation (4); 

and, the other way around, if 1=ju , the jth 

equation is removed from the system (2) and the 

term ( )X2

jg  is present in the equation (4). We can 

define two special strategies: U=(0,0,…,0) and 

U=(1,1,…,1). The first strategy can be named as 

Traditional Strategy of Optimization (TSO) and 

corresponds to the solution of system (2) at each 

point of optimization process. The second strategy 

can be named as Modified Traditional Strategy of 

Optimization (MTSO) and corresponds to the 

elimination of the system (2), but in this case all the 

information on the circuit is included in the penalty 

function (4). The vector U is the main tool of this 

methodology: it controls the dynamic process of 

minimizing the objective functions ( )UX,F  and 

( )XC  in the possible minimum time. This 

definition allows us to express the problem of 

searching for the optimal strategy as the typical 

problem of minimizing a functional, where the 

functional is the CPU time. When defining the 

optimization process as a dynamical system, a more 

standard approach is to use differential equations, in 

continuous form. We can rewrite the main system 

of the optimization procedure (1) in continuous 

form as the following system of differential 

equations: 

 

( )UX ,i
i f

dt

dx
= ,   i=1, 2,..., N,    (5) 

  

Together with the equations (2), (3) and (4), this 

system specifies the continuous form of the 

optimization process. The structure of the functions 

( )UX ,if  is defined by a concrete optimization 

method. For example, for the gradient method, it 

takes the following form: 

 

( ) ( )UXUX ,, F
x

f
i

i
δ

δ
−= , i=1, 2,...,K

   (6)

( ) ( ) ( ) iKi

i

Kii uF
x

uf α
δ

δ
−− −+−= 1,, UXUX ,  i=K+1,..., N, 

 

where 
iα  is the additional parameter defining an 

increment of the value of the dependent variables 

ix  in the course of optimization and computed by 

the formula ( )[ ]s

i

s

ii x−= +11
Xη

τ
α , and ( )Xiη  

is the implicit function defining the component 

number i of a vector X at the solution of system (2), 

τ is the step of integration and s is the step number 

of the procedure of numerical integration of system 

(5). The operator  is defined by the formula 

( ) ( ) ( )

i

p
MK

Kp pii x

x

xxx ∂

∂

∂

∂ρ

∂

∂ρ
ρ

δ

δ
∑

+

+=

+=
1

XX
X  and 

determines the application of the gradient method 

for a complex function that has both independent 

and dependent variables. 

In the present work, the gradient method was 

used as the main method of optimization. However, 

the application of a gradient method is not a 

restriction of the proposed approach. It is possible to 

embed any concrete method of optimization in the 

proposed methodology. All main properties of the 

proposed approach remain fair for any concrete 

optimization method. 

The similar formulation of a problem of 

optimization can be used not only for electronic 

systems, but also for any physical object if the 

mathematical model of an object can be presented 

by system of the nonlinear algebraic equations. 

By using formulas (2)–(6), we formulate the 

circuit optimization process as a controllable 

process or as a controllable dynamical system. The 

vector U defines the right hand parts of the system 

(5) and gives the possibility of changing the 

optimization strategies and operation’s number. 

Such approach contains optimization strategies 

much more optimum than TSO. So, the vector U is 

the principal tool for searching and constructing the 

optimization process with a minimal computing 

time. Control functions uj
, so and functions 

( )UX ,if  are piecewise continuous. The optimal 

control problem for the system (5) with the non-

continuous right hand parts can be solved most 

correctly using Pontryagin maximum principle. The 

direct application of this principle is rather difficult 

because of nonlinear formulation of the problem of 

circuit optimization. The first step in the problem of 

possibility of application of maximum principle for 

circuit optimization was presented in [29] for the 

simplest circuit. The analytical solution was 

obtained in this case. The interesting question is 

whether it is possible to extend the obtained 

analytical result to the numerical solution of the 

optimization problem for nonlinear circuit of any 

dimension. The next section is devoted to this 

problem. 

 

3 Maximum Principle Application 
We need to extend earlier obtained result on the 

solution of N-dimensional problem of circuit 

optimization.  Let's consider the problem of 

ixδδ /

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2021.20.38 Alexander Zemliak

E-ISSN: 2224-2872 364 Volume 20, 2021



optimization of a nonlinear circuit with two nodes 

shown on Fig1. 

 

 
 

Fig. 1 Nonlinear two-node voltage divider 

 

The given circuit is a nonlinear divider of 

voltage. There are three independent parameters 

(K=3)  and   two dependent ones (M=2). The 

nonlinear element has the following dependency: 

( )2

2101 VVayyn −+= . Here and further, all 

physical variables are presented in the normalized, 

unitless form. We define the voltage V0 as 1, and the 

variables 
4321 ,,, xxxx  and 

5x  as: ,1

2

1 yx =

,2

2

2 yx = ,3

2

3 yx =  
14 Vx = , and 

25 Vx = . By 

defining the components 321 ,, xxx  using the 

above formulas, we automatically obtain positive 

values of the conductance, which eliminates the 

issue of positive definiteness for each resistance and 

conductance and allows us to carry out optimization 

in the full space of the values of these variables 

without any restrictions. The vector of the phase 

variables of the circuit is 
5

RX ∈ . In this case the 

nonlinear element is defined by the following 

expression: ( )2

5401 xxayyn −+= . 

Let's determine function of the purpose of 

process of optimization by the formula: 

 

( ) ( )2

5 wxC −=X ,    (7) 

 

where w – the required value of output voltage. The 

model of a circuit is defined by the following 

system: 

 

( ) ( ) ( )[ ]( ) 01 2

2454

2

540

2

141 =−−−+−−≡ xxxxxxayxxg X

        (8) 

( ) ( )[ ]( ) 02

3554

2

5402 =−−−+≡ xxxxxxayg X  

 

     

The system of equations of the optimization 

procedure is presented by the system (5) with right 

hand parts (6).   

We formulate the problem of circuit optimization 

as a task of search of the optimization strategy with 

a minimum possible CPU time. For this purpose, we 

define the functional, which is subject to 

minimization, by the following expression: 

 

( )∫=
T

dtfJ
0

0 X     (9) 

 

where ( )X0f  is the function that is conditionally 

determining the density of a number of arithmetic 

operations in a unit of time t. In that case, the 

integral (9) defines total number of operations 

necessary for circuit optimisation and is 

proportional to the total CPU time. 

The structure of function ( )X0f  cannot be 

defined. However, we can compute CPU time using 

the possibilities of the compiler. We will further 

identify the integral (9) with CPU time, and 

therefore, the problem of minimization of CPU time 

corresponds to a problem of minimization of the 

integral (9). 

Let's obtain the main expressions corresponding 

to the maximum principle. The conjugate system of 

the equations for the additional variables 
iψ  has a 

form: 

 

     
( )

∑
=

⋅
∂

∂
−=

N

k

k

i

ki

x

f

dt

d

1

,
ψ

ψ UX
,  (10) 

 

The Hamiltonian is determined by the following 

formula: 

 

( ) ( )

( ) ( )∑∑

∑

+==

=

⋅+⋅

=⋅=

N

Ki

ii

K

i

ii

N

i

ii

ff

fH

11

1

,,

,,,

UXUX

UXUΨX

ψψ

ψ
 (11) 

 

where the first and second sums are defined by the 

following expressions: 

 

( )

( )( )
∑ ∑

∑∑

= =

==

⋅−

−=⋅

K

i

M

k i

k

ki

K

i i

i

K

i

ii

x

g
u

x

C
f

1 1

2

11

,

δ

δ
ψ

δ

δ
ψψ

X

UX

 

      (12) 

( ) ( )

( )( )
∑ ∑

∑∑

+= =
−

+=

−

+=









+−

−=⋅

N

Ki

M

k i

k
k

i

iKi

N

Ki

iiKi

N

Ki

ii

x

g
u

x

C
u

uf

1 1

2

11

1,

δ

δ

δ

δ
ψ

αψψ

X

UX
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As a result the Hamiltonian can be expressed as 
follows: 

 

( ) 210,, hhhhH c +++=UΨX ,
 

(13) 

 

where  hc  is the part of a Hamiltonian that does not 

depend on the control vector, 
  

       ( ) ∑∑
+==

+⋅−=
N

Ki

ii

K

i i

ic
x

C
h

11

, αψ
δ

δ
ψΨX . (14) 

 

Other components of a Hamiltonian depend on 

the control vector U: 

 

   ( ) ∑
+=

−−=
N

Ki

iiKiuh
1

0 ,, αψUΨX ,  (15) 

 

      ( ) ( )( )
∑ ∑

= =

⋅−=
K

i

M

k i

k
ki

x

g
uh

1 1

2

1 ,,
δ

δ
ψ

X
UΨX , (16) 

 

( ) ( )( )
∑ ∑

+= =
− 








+−=

N

Ki

M

k i

k
k

i

iKi
x

g
u

x

C
uh

1 1

2

2 ,,
δ

δ

δ

δ
ψ

X
UΨX . (17) 

 

Let's designate the sum of these three 

components as ( )UΨX ,,vh  (hv=h0+h1+h2). 

Formulas (5)-(17) define the process of system 

optimization and the process of computing a 

Hamiltonian in case of a K independent variable and 

M dependent variables. In the case of the circuit 
presented in Figure 1, formulas are used for K=3 

and M=2. In this case the control vector of U 

contains two components (u1, u2). The supremum of 

the function ( )UΨX ,,H  in the parameter U will be 

designated Hmax: 

 

( ) ( ) ( )UΨXΨXΨX
U

,,sup,,max vc
u

hhH +=
∈  

(18) 

 

For the circuit on Figure 1 this function is 

defined by the following expression: 
 

( ) ( )
( )( ) ( )( )
( )( ) ( )( ) 








+

+=

1,1,,,0,1,,

,1,0,,,0,0,,
max

,,max

ΨXΨX

ΨXΨX

ΨXΨX

vv

vv

c

hh

hh

hH

 (19) 

 

The structure of the control vector providing this 

maximum in each point of optimization process 

represents the result of the use of the maximum 
principle. This optimal structure ensures the 

minimal value of the functional (9) and the minimal 

computing time.  

4 Numerical Results and Discussion 

The analysis of the process of optimization for a 
circuit with two nodes allows for the finding of the 

optimum structure of the control vector. The 

possibility of applying the maximum principle of 

Pontryagin to the problem of optimization of 

electronic circuits is analyzed. It is shown that in 

spite of the fact that the problem of optimization is 

formulated as a nonlinear task, and the maximum 

principle in this case isn't a sufficient condition for 

obtaining a maximum of the functional, it is 
possible to obtain the decision in the form of local 

minima. Local minima of the functional, which is 

defined as the processor time necessary for the 
procedure of optimization, provide a rather low 

value of the functional. The relative acceleration of 

the CPU time for the best strategy found by means 

of maximum principle compared with the traditional 

approach is equal two to three orders of magnitude.  

The behaviour of Hamiltonian for four possible 

options of the control vector U: (00), (01), (10), and 

(11), with the correct initial value of an auxiliary 

vector Ψ , ( ( )5.2,32.0,9.1,35.0,85.1,3.00 −−−=
с

Ψ ) is 

presented in Fig2.  

 

 
 

Fig. 2 Time dependency of functions H(00), H(01), 

H(10), H(11) for correct value of parameter 
с0Ψ  

 

The value of 
с0Ψ  has been obtained by the 

additional optimizing procedure on the basis of a 

gradient method for the following initial point in 

process of designing X0: ( 10x =1.0, 20x = 1.0, 30x

=1.0, 40x = -1.5, 50x = -1.6). Four possible 

combinations of the components of the control 
vector U define four various dependencies for 

Hamiltonian:
 

( ))11()10()01()00( ,,, HHHH . The 

Hamiltonian corresponding to the control vector 

U=(11) has the greatest value of all possible. 
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Therefore, the optimum trajectory corresponds to 

this vector and defines the first part of a trajectory in 

the space of parameters. Some two-dimensional 

projections of a trajectory of optimization process in 

the space of variables X are presented in Fig3. 

 

 
 

Fig. 3 Projections of trajectory of optimization 

process with initial point X
0
: 

)6.1,5.1,1,1,1( 5040302010 −=−==== xxxxx
 

 

A part of the trajectory from point S to point Sw 

corresponds to the control vector (11). Then, at a 

time point of 5.753 msec, which corresponds to 121 

steps of integration of the system (5), the 

Hamiltonian corresponding to the strategy with the 

control vector (00) becomes the greatest of all, and 

at this moment the vector (00) becomes the 

optimum control vector. The trajectory includes the 

jump and the current point of the optimization 

process instantly moves to the final point of the 

solution of a problem of F. This effect was named 

as a special effect of acceleration of the circuit 

optimization process. 

The data of optimization process for the 

presented circuit for four strategies of structural 

basis and the same initial point X
0 are provided in 

Table 1 for comparison.   

 

Table 1. Data of all strategies of structural basis. 

 

All the strategies provide the same solution for 

the independent variables 321 ,, xxx , minimizing 

the objective function C(X), but they have the 

different iteration numbers and different total CPU 

time. 

The most rapid strategy is MTSO, which 

corresponds to the control vector (11) has a 

processor time of 7.934 sec. Acceleration for the 

obtained optimum strategy in comparison with 

MTSO with control vector (11) of Table 1 is equal 

to 1,379 times and 2,795 times in comparison with 

TSO with control vector (00). 

The behaviour of the Hamiltonian that 

corresponds to another choice for the initial point of 

optimization process of circuit X0: ( 10x =1.0, 20x = 

1.0, 30x =1.0, 40x = -2.5, 50x = -2.5) for four 

possible values of the control vector U: (00), (01), 

(10), and (11) is shown in Fig4. 

 

 
 

Fig. 4 Time dependency of functions H(00), H(01), 

H(10), H(11) for other correct value of parameter 

( )25.0,99.1,625.0,8.0,42.00 −−−=cΨ  

 

In this case the following correct value of an 

auxiliary vector  ( )25.0,99.1,625.0,8.0,42.00 −−−=cΨ  

providing the minimum value of processor time has 

been obtained. In this example, the optimization 

procedure is defined by the control vector (11) from 

T=0 to T=1.761msec because the Hamiltonian of 

H(11) has the maximum value for this control vector 

of the four possible. Then, at a time of T=1.761 

msec, which corresponds to the 35th step of process 

of integration of system (5) the Hamiltonian 

corresponding to the control vector (00) has the 

maximum value (H(00)>=H(11)) and the switching to 

the TSO is observed. The movement corresponding 

to the strategy (00) is carried out on one step of 

integration and the current point of the optimization 

process moves to the final point of F with the given 

accuracy. It is clear from the behaviour of the 

projections of the optimization trajectory shown in 

Fig5. 

It is important to emphasize that the numerical 

algorithm automatically switches from one strategy 

to another on the basis of ratio (19), corresponding 

to the maximum principle.  

N Control Iterations Total CPU

vector number time (sec)

1      (0 0) 116973 16.081

2      (0 1) 139143 8.897

3      (1 0) 133154 11.241

4      (1 1) 170953 7.934
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Fig. 5 Projections of trajectory of optimization 

process with initial point X0: 

)5.2,5.2,1,1,1( 5040302010 −=−==== xxxxx  

 

It would be desirable to note that the obtained 
decision is not the only local minimum of the target 

function of (9). Other local minimum has been 

reached with the other vector Ψ . 

The behaviour of the function of Hamilton for 

the same initial point of the optimization process of 

the circuit X0: )5.2,5.2,1,1,1( 5040302010 −=−==== xxxxx  

but containing other initial value for auxiliary vector 

Ψ is presented in Fig6. The correct value of 
с0Ψ  

obtained by the additional optimizing procedure is 

next ( )6.0,2.0,5.0,02.0,1.00 −−−=cΨ . In this case the 

other strategy is optimal one. 

 

 
 

Fig. 6 Time dependency of functions H(00), H(01), 

H(10), H(11) for other correct value of parameter 

( )6.0,2.0,5.0,02.0,1.00 −−−=cΨ  

 

An additional optimization by means of 

parameter 0Ψ  leads to other local minimum that is 

visible from the obtained dependencies. The 

Hamiltonian corresponding to the strategy with 

control vector (10) accepts the maximum value and 
this strategy is the first part of the optimum strategy. 

The Hamiltonian corresponding to TSO with the 

control vector (00) is greater than for all other 
strategy from the point corresponding to the 38th 

step of integration, and a switching to TSO takes 

place. That is also clear from the behaviour of 
projections of the optimization trajectory in Fig7. 

 The total time of optimization is equal 3.345 

msec. This decision represents other local minimum 

of the functional (9). 

 

 
 

Fig. 7 Projections of trajectory of optimization 

process for other correct value of 

( )6.0,2.0,5.0,02.0,1.00 −−−=cΨ  

 

It is important to note that the strategy found 

from the conditions of the maximum principle and 

corresponding to the control vector with two parts 

(10) and (00) and switching between them on a 73rd 

step of integration has not been predicted in 

previous research. In earlier executed analysis it was 

supposed that the optimum strategy must be 
constructed on the basis of the combination of 

MTSO and TSO. This assumption is not always 

fulfiled as shown in the present analysis.  
This example shows that earlier predicted 

optimum structure consisting of only of MTSO and 

TSO is not always optimum.  
 Let's consider use of the maximum principle for 

the problem of optimization of an active circuit – 

the three-cascade transistor amplifier that is 

displayed in Fig8. 

 

 
 

Fig. 8 Three-cascade amplifier 
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The sources of voltage of E0, E1 are defined. The 
model of the transistor is the known model of Ebers-

Moll on a direct current used in the SPICE system, 

is chosen [28]. The three-cascade amplifier is 
characterized by seven independent variables 

7654321 ,,,,,, yyyyyyy  (K=7) and seven dependent 

variables 
7654321 ,,,,,, VVVVVVV  (М=7). The vector 

X includes 14 components and can be defined by the 

following formulas: , , , 

, , 
6

2

6 yx = , 
7

2

7 yx = , 
18 Vx = , 

29 Vx = , 310 Vx = , 411 Vx = , 512 Vx = , 613 Vx = , 

714 Vx = .  

The objective function was determined as a sum 

of squares of differences between the specified and 
current values of voltages across the transistor 

transitions for all transistors by means of following 

formula: 
 

   ( ) ( ) ( )[ ]∑
=

−+−=
3

1

2

0

2

0

i

iCBCBiiEBEBi VVVVC X , (20) 

 

where VEBi and VCBi are the current voltages on the 

emitter and collector junctions for all the transistors, 

respectively, and VEB0i and VCB0i are the given 
voltages on the emitter and collector junctions, 

respectively. These parameters are set as follows: 

VEB01= -0.3 V, VCB01=5.4 V, VEB02= -0.3 V, VCB02=6.5 

V, VEB03= -0.35 V and VCB03=6.6 V. This gives us an 

amplification of 45,000 or higher. 

The control vector U consists of seven control 

functions: ( )7654321 ,,,,,, uuuuuuu=U . The 

mathematical model of a circuit  is defined by the 

system of seven equations (M=7) and the 

optimization procedure (5) includes 14 equations. 

The total structural basis contains 2
M

=128 different 

optimization strategies. 

The final values of the independent variables that 

minimise the cost function (20) are next: 

01251.01 =x , 0812.02 =x , 0615.03 =x , 094.04 =x , 

086.05 =x , 234.06 =x , 206.07 =x . These values were 

obtained for all analysed strategies. 

The results for TSO and some other strategies 

having the CPU time less than for TSO are 

presented below in Table 2. 

The fastest strategy is MTSO with the control 
vector of (1111111) which has a processor time of 

3.91 seconds and corresponds to the acceleration of 

the optimization process in 707 times in comparison 
with TSO. However, applying the maximum 

principle we obtained bigger acceleration. 

 

Table 2. Data of some strategies of structural basis. 
 

N Control Iterations Total CPU

 vector number time (sec)

1 ( 0 0 0 0 0 0 0 ) 1907780 2766.28

2 ( 0 0 1 1 1 0 0 ) 131671 145.72

3 ( 0 0 1 1 1 0 1 ) 90328 75.26

4 ( 0 1 1 0 1 1 1 ) 28213 17.21

5 ( 1 0 1 1 1 1 1 ) 37949 11.88

6 ( 1 1 1 0 1 1 1 ) 62534 19.55

7 ( 1 1 1 1 1 1 0 ) 103802 47.95

8 ( 1 1 1 1 1 1 1 ) 47079 3.91  
 

Applying the methodology of the maximum 

principle based on formulas (10)–(18), we analyzed 
the behaviour of the function of Hamilton for the 

strategies in Table 2.  

The condition (19) is transformed for this 

example to the following expression:  

 

( ) ( )
( )( ) ( )( )

( )( ) ( )( ) 







+

+=

1,1,1,1,1,1,1,,,0,1,1,1,1,1,1,,...,

,1,0,0,0,0,0,0,,,0,0,0,0,0,0,0,,
max

,,max

ΨXΨX

ΨXΨX

ΨXΨX

vv

vv

c

hh

hh

hH

 (21) 

 

The vectors of X and Ψ consist of 14 

components for this example. The behaviour of the 

function of Hamilton on an interval from 0 to 5.5 

seconds for six different values of the control vector 

from Table 2 is presented in Fig9.  

 

 
 

Fig. 9 Time dependency of functions H(0000000), 

H(0011100), H(0110111), H(1011111), H(1110111), H(1111111) for 

other correct value of parameter 
c0Ψ
 

 

The correct initial value of an auxiliary vector 

Ψ , is defined as: 

( )2,1,1,1,1,2,2,14,2,7.2,1,25,6.0,5.00 −−−−−−−=
с

Ψ . 

This value has been obtained by the additional 

optimizing procedure for the following initial point 

1

2

1 yx = 2

2

2 yx = 3

2

3 yx =

4

2

4 yx = 5

2

5 yx =
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of the designing process of X0: ( 0,1x =0.1, 0,2x = 1, 

0,3x =0.316, 0,4x = 0.316, 0,5x = 1, 0,6x = 0.105, 

0,7x =0.5, 0,8x = -2, 0,9x = 1, 0,10x = -20, 0,11x =2, 

0,12x = -20, 0,13x = 2, 0,14x = -20 ).  

The Hamilton function H(1111111) for strategy 

(1111111) has the greatest value of all analyzed 

strategies on the initial part of optimization process 
from 0 to a point of Sw1, which corresponds to the 

29th step of integration of the system (5). 

In this point, the Hamiltonian H(0000000), which 

corresponds to TSO, is equal to H(1111111) and then is 

greater than for all other strategies. The Hamiltonian 

H(0000000) remains maximum on the interval since a 

point Sw1 to a point Sw2., which corresponds to the 

200th step. Then, since the point Sw2 the 

Hamiltonian H(1111111) is greater than for all other 
strategies once again and remains so until the end of 

the optimization process. The full time of the 

optimization process is equal to 0.55 seconds. 
Acceleration for the obtained optimum strategy is 

equal to 5,029 times in comparison with TSO. 

The points of switching Sw1 and Sw2 appear 
automatically in the numerical algorithm by means 

of comparing the functions of Hamilton for all 

strategies. So, we can state that the maximum 

principle can be base for searching of the 

optimization process with the minimal CPU time. 

Summarising the obtained results, it is possible 
to indicate two important facts. First, the theoretical 

result is obtained – theoretical justification is given 

for the earlier discovered effect of acceleration of 
the process of circuit optimization in the conditions 

of a new methodology of design. This justification 

is based on the maximum principle.     
 Second, the analysis of the optimization process 

of the presented circuits showed that application of 

the maximum principle really allows for the finding 

of the optimum structure of the control vector U(t) 

by means of an iterative procedure. Thus, 

considerable reduction of CPU time in comparison 

with traditional approach is observed when using 

the maximum principle. This result is obtained for 

the case of N-dimensional space of parameters. 

 

5 Conclusion  
Analysis of the application of maximum principle to 

a problem of circuit optimization proves that the 

formerly studied effect of acceleration on the 

process of optimization appears owing to this 

principle. This means that the maximum principle of 

Pontryagin provides a theoretical justification for 
the acceleration effect that appears when we use the 

generalized formulation of process of circuit 

optimization. It is confirmed that the maximum 
principle allows for finding one or several local 

minima of the functional that is defined as the 

processor time. Aside from that, the use of the 
maximum principle provides the chance to 

significantly reduce the computing time for circuit 

optimization.  

The analysis of optimization process of the 

presented circuits showed that application of the 

maximum principle really allows finding the 
optimum structure of the control vector U(t) by 

means of iterative procedure. These results were 

obtained for N-dimensional space of parameters.  
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