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Abstract: ­ This paper provides protocols for finite­time average consensus and finite­time stability of systems
with controlled nonlinear dynamics in­network under undirected fixed topology. Each node’s state is a high
dimensional vector as a solution of the highly nonlinear first order dynamics with and without drift terms. This
paper provides protocols for finite­time average consensus and finite­time stability of systems with controlled
nonlinear dynamics in­network under undirected fixed topology. Each node’s state is high Under the proposed
interaction rules, agreements as a common average value or an average trajectory are reached, solving finite­time
average consensus and the multisystem equilibrium is controlled leading to the finite­time stability of each system
origin. Sufficient conditions are achieved using the Lyapunov techniques and the graph theory. In networked
dynamic systems, the theoretical results of the paper cover a large class of underactuated autonomous systems
as formation flight, multi­vehicle coordination, and heterogeneous multisystem behaviors. Some examples are
introduced in simulation which approves the proposed protocols.
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1 Introduction
For cooperative tasks using multi­agent groups, the
presence of a large number of autonomous dynami­
cal systems in industry requires interrelationships be­
tween distributed control parameters which are de­
signed at a first step to manage each agent separately.
Thus, in coordination of a team of autonomous agents,
the communication of sensors is fundamental in many
distributed control systems. For many applications
the main challenges in cooperative design for a group
of agents is to meet some objectives such that the ren­
dezvous problem of multi­vehicle, control of train­
ing, flock­ing, attitude synchronization and the fu­
sion of sensors. A coherent movement in masses is
called consensus. Thus, the problem of consensus
plays a central role in study of multi­agent systems.
In recent years this paradigm has introduced in multi­
agent systems witnessed dramatic advances of var­
ious distributed strategies that achieve agreements.
In [5] , the authors proposed a simple but interest­
ing discrete­time model of finite agents all moving
in the plane. Each agent’s motion is updated using
a local rule based on its own state and the states of
its neighbors. [6] provided a theoretical explanation
of the consensus property of the Vicsek model by us­
ing graph theory and nonnegative matrix theory. For
this model each agent’s set of neighbors changes with
time as system evolves. Consequently, many seem­
ingly different problems that involve inter­connection

of dynamic systems in various areas of science and
engineering happen to be closely related to consensus
problems for multi­agent systems. The existing con­
nections are presented by [25] with application to lin­
ear dynamics in network in studying of multi­system
behaviors.
The theoretical framework for posing and solving
consensus problems for networked dynamic systems
was introduced by [7] and [8]. Under dynamically
changing interaction topologies, [9] extended the re­
sults of [6].
Various finite­time stabilizing control laws have been
proposed using continuous state feedback and output
feedback controllers [3]. Furthermore, the finite­time
control design has been extended to nth order systems
with both parametric and dynamic uncertainties [2].
Although the finite­time design is generally more dif­
ficult than the asymptotically stabilizing control due
to the lack of effective analysis tools. Also, the non­
smooth finite­time control synthesis can improve the
system behaviors in some aspects like high­speed,
control accuracy, and disturbance­ rejection. There­
fore, it is not surprising that finite­time control ideas
have been applied to multi­agent systems with first­
order agent dynamics using gradient flow and Lya­
punov function [10].
Finite­time consensus firstly was studied by [10],
where a non­smooth consensus algorithm is proposed.
In the same filed [11], and in [17] authors proposed a
continuous nonlinear consensus algorithm to guaran­
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tee the finite­time stability under an undirected fixed
interaction graph. [16] suggest an improvement to
the proposed algorithm proposed in [11]. The new
algorithm proposed in [16] is able to guarantee finite­
time consensus under an undirected switching inter­
action and a directed fixed interaction graph when
each strongly connected component of the topology is
detail­balanced. In [19], the authors study finite­time
consensus for second order dynamics with inherent
nonlinear dynamics under an undirected fixed inter­
action graph. In networked dynamic systems, finite­
time consensus problems that have been solved so far
are mostly only for simple agents like particle behav­
iors as first or second order dynamics. In [13] ­ [14],
the authors treated finite­time consensus for highly
nonlinear dynamic systems in network affine in con­
trol inputs. Such a system is described by a nonlinear
first­order ordinary differential relations.
While an interesting topic in consensus problem is the
average consensus problem such that the states of all
the agents converge asymptotically or in finite time
to the average of their initial states under a networked
interaction protocol, one cites the results in [20] [21]
[22] [23], our work consists to extend these results
and propose protocols for nonlinear dynamic systems
in network expected to reach an agreement that can be
a predefined average value or an average trajectory.
Moreover, we will make difference between consen­
sus and stability protocols in treating the equilibrium
stability of the designed multi­system dynamics.
The paper is organized as follows. Some preliminar­
ies results, the problem statement, and the finite­time
average consensus protocol are formulated in section
2. In section 3 one solves a finite­ time average
consensus of multi­system without drift terms. The
finite­time average consensus of multi­system with
drift is detailed in section 4. Finally, illustrative ex­
amples are presented in section 5.

2 Preliminaries and problem
formulation

Throughout this paper, we use R to denote the set
of real number. Rn is the n­dimensional real vec­
tor space and ||.|| denotes the Euclidian norm. Rn×n

is the set of n × n matrices. diag{m1,m2, . . . ,mn}
denotes a n × n diagonal matrix. In ∈ Rn×n is
the identity matrix. The symbol ⊗ is the Kronecker
product of matrices. We use sgn(.) to denote the
signum function. For a scalar x, note that φα(x) =
sgn(x)∥x∥α. We use xi = (xi1, x

i
2, . . . , x

i
n)

T ∈ Rn,
x = (x1, x2, . . . , xN )T to denote the vector inRn×N .
Let ϕα(xi) = (φα(x

i
1), φα(x

i
2), . . . , φα(x

i
n))

T with
ϕα(x) = (ϕα(x

i), . . . , ϕα(x
N ))T .

Let 1n = (1, . . . , 1)T . The exponent T is the trans­
pose.

2.1 Graph theory
In this subsection, we introduce some basic concepts
in algebraic graph theory for multi­agent networks.
Let G = {V, E} be a directed graph, where
V = {1, 2, . . . , n} is the set of nodes, node i repre­
sents the ith agent, E is the set of edges, and an edge
in G is denoted by an ordered pair (i, j).(i, j) ∈ E if
and only if the ith agent can send information to the
jth agent directly. A = [aij ] ∈ Rn×n is called the
weighted adjacency matrix of G with nonnegative el­
ements, where aij > 0 if there is an edge between
the ith agent and jth agent and aij = 0 otherwise.
Moreover, if AT = A, then G is also called an undi­
rected graph. In this paper, we will refer to graphs
whose weights take values in the set {0, 1} as binary
and those graphs whose adjacency matrices are sym­
metric as symmetric.
LetD = diag{d1, . . . , dn} ∈ Rn×n be a diagonalma­

trix, where di =
n∑

j=1

aij for i = 0, 1, . . . , n. Hence,

we define the Laplacian of the weighted graph

L = D −A ∈ Rn×n

The undirected graph is called connected if there is a
path between any two vertices of the graph.

2.2 Some useful lemmas
Our main results are guided by the following Lem­
mas. The reader may find more details in the associ­
ated references.

Lemma 1 : Bhat and Bernstein(200). Consider the
system ẋ = f(x), f(0) = 0, x ∈ Rn, there exist a
positive definite continuous function
V (x) : U ⊂ Rn → R, real numbers c > 0 and
α ∈]0, 1[, and an open neighborhood U0 ⊂ U of the
origin such that
V̇ + c(V (x))α ≤ 0, x ∈ U0\{0}. Then V (x) con­
verges to zero in finite time. In addition, the finite

settling time T⋆ satisfies T⋆ ≤
V ((x(0))1−α

c(1− α)
.

Lemma 2 : Hong & al (2002). Consider the follow­
ing system, x = [x1, . . . , xn]

T ∈ Rn

ẋ = g(x) + g̃(x) (1)

where g(0) = 0 and g(x) is a continuous homoge­
neous vector field of degree d < 0 with respect to di­
lation [σ1, . . . σn], and g̃(x) = [g̃1(x), . . . , g̃n(x)]

T ∈
Rn satisfies g̃(0) = 0. Assume that x = 0 is an
asymptotically stable equilibrium of the system ẋ =
g(x). Then x = 0 is a globally finite time stable equi­
librium of system (1) if
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lim
ε→0

g̃(σ1x1, . . . , σnxn)

εd+σi
= 0, i = 0, . . . , n,∀x ̸= 0,

and the stable equilibrium x = 0 of system (1) is glob­
ally asymptotically stable.

Lemma 3 : Olfati­Saber & al (2004). For a con­
nected undirected graph G, the Laplacian matrix L of
G has he following properties,

xTLx = 1
2

n∑
i,j=1

aij(xi−xj)2, which implies that L is

positive semi­definite. 0 is a simple eigenvalue of L
and 1 is the associated eigenvector. Assume that the
eigenvalues of L are denoted by 0, λ2, . . . , λn satis­
fying 0 ≤ λ2 ≤ · · · ≤ λn. Then the smallest eigen­
value satisfies λ2 > 0. Furthermore, if 1Tx = 0, then
xTLx ≥ λ2x

Tx.

Lemma 4 : Hardy & al (1952).
Let x1, x2, . . . , xn ≥ 0 and o < p ≤ 1. Then( n∑

i=1

xi

)p
≤

n∑
i=1

xpi ≤ n1−p
( n∑

i=1

xi

)p
.

2.3 Problem statements
We solve the finite­time average consensus and stabil­
ity of two type of models in networked dynamic sys­
tems affine in control inputs. The first type is given
by equation (2)which describes a controlled dynamic
system without drift term. The second type is rep­
resented by relation (3) which is clearly a controlled
dynamic system with drift term f i(xi). Let consider
a group of N high­dimensional agents where each
agent’s behavior is described by a controlled nonlin­
ear model without drift Σ1 represented by the con­
trolled dynamic (2) and systemΣ2 with drift as shown
by the controlled dynamic (3), ∀i ∈ I = {1, . . . , N}

Σ1 : ẋi = B(xi)ui. (2)
and

Σ2 : ẋi = f i(xi) +B(xi)ui. (3)

where xi ∈ Rn, xi = [xi1, x
i
2, . . . , x

i
n]

T , B(xi) ∈
Rn×m, the continuous maps f i : Rn → Rn, ui ∈ Rm

is the control input and for 1 ≤ k ≤ n and
1 ≤ m,B(xi) = [bkl].

Definition 1 (stabilization) Given an interconnec­
tion control ui(xi, xj), the origin the zero solution
xi(t) = 0 to (2)­(3) is finite­time stable if the fol­
lowing statements hold:

1. The zero solution of closed loop system to (2)­(3)
is stable.

2. There exist a settling­time T⋆ such that
lim
t→T⋆

||xi(t)|| = 0

Definition 2 Given a control­input ui as protocol, we
say that systems in networkmeet a finite­ time average
consensus if for any system’s state initial conditions,
there exists some finite time T⋆ such that:

lim
t→T⋆

||xi(t)− χ(t)|| = 0 (4)

for any i ∈ I, and where χ(t) =
1

N

N∑
j=1

xj(t) is the

average trajectory.
χ(t) can be interpreted as the instantaneous consent
providing that serves the group objectives. χ is time­
varying, it can be also considered as the average tra­
jectory of the group, and it is not necessary the aver­
age from the multi­system initial conditions. We show
that the dynamic ofχ depends strongly on the adopted
topology of the group.
Subsequently, for the multi­Σ1 and multi­Σ2 systems
one might analyze the following protocols are given
by (5)and (6). For i ∈ I, the consensus protocol
candidate is given by,

ui = −C(xi)
N∑
j=1

aijϕα(x
i − xj) (5)

while the stabilizing input candidate is as

ui = −C(xi)
N∑
j=1

aij(ϕα(x
i)− ϕα(x

j)) (6)

where the aij elements are of the G adjacency ma­
trix, α ∈]0, 1[, and ϕα(.) is defined in section 2. The
control matrixC(xi) ∈ Rm×n depends on the agent’s
model, and it will be defined in the following.

As we can see in protocols (5) and (6), the finite­
time average consensus is closely related to finite­
time stability. The main difference between the two
problems is that finite­time average consensus is to
make the multi­system converge to an agreement
value or trajectory as given by χ(t) in (4), while the
stability of each agent consists to reach an equilib­
rium. The following assumption gives a conceptual
form of C(xi) with respect to the studied dynamics.
Assumption1: C(xi) is such that the matrix prod­
uct B(xi)C(xi) is positive semi­definite matrix.
Throughout the paper, one denotes by
B̃(xi) = B(xi)C(xi).
Assumption2: For a given control matrix C(xi), for
all x, y ∈ Rn, we assume that
(ϕα(x) − ϕα(y))

T B̃(xi)ϕα(x − y) ≥ (ϕα(x) −
ϕα(y))

T B̃(xi)(ϕα(x)− ϕα(y))
Assumption3: Consider that

g(xi) = −
N∑
j=1

aijB̃(xi)ϕα(ξ
i − ξj) (7)
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is a locally homogeneous vector field of degree d with
respect to dilation [σ1, . . . , σn].

3 Finite­time average consensus
The objective of this section is to solve finite­time av­
erage consensus problems of multi­system based on
Σ1 and Σ2 descriptions. The average value is consid­
ered as an agreement function of time but is not nec­
essary function of multi­agent initial conditions. Fur­
ther, what motivates the analysis is that models given
by (3) and (2) cover many autonomous system be­
haviors affine in the control vector. One may cite, au­
tomated highway systems, multi­drone, multi­system
of satellites or robots, etc. When we refer to the proto­
col (5), the interaction topology uses undirected flow
information between nodes where each node’s vector
of states is as a solution of (3) or (2). The follow­
ing two subsections treat the multi­Σ1 and multi­Σ2

finite­time average consensus.

3.1 The multi­Σ1 finite­time average
consensus

For finite­time average consensus of multi­Σ1 one
considers, as interaction topology an undirected fixed
graph, an average vector obtained from each Σ1 vec­
tor of states, and the protocol candidate (5). As the
matrix B structure is taken identical for each Σ1 then
one might think to networked homogeneous systems.
Recall that for a group where each agent is of the form
ẋi = ui, if the interconnection topology is based on an
undirected flow, then the average consensus is solved
with respect to the average of the agents initial states.

Proposition 1 Let G be an undirected and connected
graph, under the protocol (5) and Assumptions 1−2−
3 the multi­Σ1 achieves a finite­time average consen­
sus in the sense of (4).

Proof We introduce ξi(t) = xi(t) − χ(t) and
ξ(t) = [ξ1, ..., ξN ]T . Due to the fact that aij = aji
for all 1 ≤ i, j ≤ N (undirected graph) and φα is an
odd function, we have,

χ̇(t) =
1

N

N∑
i=1

ẋi(t)

= − 1

N

N∑
i,j=1

aijB̃(xi)ϕα(x
i − xj)

= − 1

2N

N∑
i,j=1

aij

(
B̃(xi)− B̃(xj)

)
ϕα(x

i − xj)

Introducing the protocol (5), we obtain

ξ̇i(t) = ẋi(t)− χ̇(t)

= −
N∑

j=1

aijB̃(xi)ϕα(x
i − xj)+

1

2N

N∑
i,j=1

aij(B̃(xi)− B̃(xj))ϕα(x
i − xj)

= −
N∑

j=1

aijB̃(xi)ϕα(ξ
i − ξj)+

1

2N

N∑
i,j=1

aij(B̃(xi)− B̃(xj))ϕα(ξ
i − ξj)

Let ξ(t) = (ξ1, ..., ξN ), we can write the last equation in the
form:

ξ̇i(t) = g(ξi) + g̃(ξ) (8)

where

g(ξi) = −
N∑

j=1

aijB̃(xi)ϕα(ξ
i − ξj)

and

g̃(ξ) =
1

2N

N∑
i,j=1

aij

(
B̃(xi)− B̃(xj)

)
ϕα(ξ

i − ξj)

By now, it remains to prove that the equilibrium of (8) is finite­
time stable, and this is achieved in the subsequent two steps.
Step 1. First, the goal is to prove the finite time stability of system

ξ̇i(t) = g(ξi) (9)

Taking the Lyapunov function:

V (ξ(t)) =
1

α+ 1

N∑
i=1

(ξi)Tϕα(ξ
i) (10)

The derivative of V along the solutions of system (9), yields

V̇ (ξ(t)) =

N∑
i=1

(
ϕα(ξ

i)
)T

ξ̇i

= −
N∑

i,j=1

aij

(
ϕα(ξ

i)
)T

B̃(xi)ϕα(ξ
i − ξj)

= −1

2

N∑
i,j=1

aij

(
ϕα(ξ

i)− ϕα(ξ
j)
)T

B̃(xi)ϕα(ξ
i − ξj)

From Assumption 2, the following inequality holds,

V̇ ≤ −1

2

N∑
i,j=1

aij(ϕα(ξ
i)− ϕα(ξ

j))T B̃(xi)
(
ϕα(ξ

i)− ϕα(ξ
j)
)

= −1

2
ϕT
α(ξ)

(
L⊗ B̃(xi)

)
ϕα(ξ)

= −1

4
ϕT
α(ξ)Θϕα(ξ)

where Θ = 1
2

(
L⊗ B̃(xi) + L⊗ B̃T (xi)

)
.

Let
D(xi) = diag{0n, γ2(xi), ..., γN (xi)}

such that 0n = diag{0, ..., 0} ∈ Rn×n and ∀j = 2, ..., N
γj(x

i) = λj(L)ϱn(x
i) where

ϱn(x
i) = diag{0, µ2(x

i), ..., µn(x
i)} ∈ Rn×n and where

µ2(x
i), ..., µn(x

i) are the eigenvalues of the matrix B̃(xi), given
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in increasing order. λj(L) is the jème eigenvalue of L. Let
λ2(L), ..., λN (L) in increasing order. Since G is connected (by
Lemma 3 ) λ2(L) > 0. Therefore ∀xi, we have λ2µ2(x

i) > 0.
Further, sinceΘ ∈ RNn×Nn is symmetric matrix, then there exist
an orthogonal matrix P ∈ RNn×Nn such thatΘ = PTD(xi)P .
Let zα = Pϕα(ξ), thus

V̇ ≤ − 1
4
zTαDzα

≤ − 1
4
λ2µ1(x

i)∥zα∥2
= − 1

4
λ2µ1(ξ

i)∥ϕα(ξ)∥2

where λ2µ1(x
i) = min

zα⊥1Nn

zTαDzα
zTα zα

.

Let k = min
xi∈RN

λ2µ1(x
i) > 0 and ξ = 1N ⊗ ξi =

(ξ̃1, ..., ξ̃Nn)
T , consequently,

V̇ ≤ − k
4

Nn∑
i=1

|φα(ξ̃i)|2

≤ − k
4

Nn∑
i=1

|ξ̃i|2α

≤ − k
4

(
Nn∑
i=1

|ξ̃i|α+1

) 2α
α+1

(11)

which permits to write

V̇ ≤ −k

4
(α+ 1)

2α
α+1 V

2α
α+1 (12)

where 0 < 2α
α+1

< 1 and k
4
(α + 1)

2α
α+1 > 0, by Lemma 1, the

above differential equation (9) shows that V reaches zero in finite
time..
Step 2. From Assumption 3, the vector field g(ξi) is homogeneous
of degree d which is negative due to the fact that ξ = 0 is a finite
time stable equilibrium. Moreover, it is straightforward to prove
that g̃(ξ), pour k = 1, ..., n, il est simple de vérifier que

lim
ε→0

g̃k(ε
σ1ξi1, ..., ε

σnξin)

εd+σi
= 0

Then by Lemma ??, the system (8) is finite time stable.
Thus, as a result the multi­Σ1 dynamic system with the protocol
(5) solve a finite­time average consensus. This ends the proof.

3.2 The multi­Σ2 finite­time average
consensus

The multi­Σ2 behavior is based on (3) while the con­
sensus protocol candidate is given by ((5). Recall that
theΣ2 dynamic as given by (3) is currently present in
controlled autonomous systems. However, the drift
term can be linear with respect to the system’s state
vector or taken in its nonlinear form. These two is­
sues will be analyzed in the following with the ad­
equate sufficient conditions for multi­Σ2 finite­time
average consensus. To do, let us first note that fi in (3)
can be different for each dynamic leading to heteroge­
neous multi­system. At first, the subsequent analysis
is build on this form of f i(xi) ∆

= Ãxi with Ã is a con­
stant matrix. A controlled dynamic systemwith linear

drift term is given by,

ẋi = Ãxi +B(xi)ui (13)

where Ã ∈ Rn×n with Ã = [ãp,q]1≤p,q≤n.

Proposition 2 Let G be an undirected and connected
graph, under the protocol (5) the multi­Σ2, built from
(13), converges toward an average trajectory and
leads to a finite­time average consensus in the sense
of (4).

Proof One introduces ξi(t) = xi(t)−χ(t). The goal
is to rewrite equation (13) in closed loop depending
on ξi and to prove that ξ converges to zero in finite
time. Since aij = aji and ϕα(.) is an odd function,
then we have

χ̇(t) =
1

N

N∑
i=1

(Ãxi +B(xi)ui)

=
1

N

N∑
i=1

Ãxi +
1

N

N∑
i=1

B(xi)ui

=
1

N

N∑
i=1

Ãxi − 1

2N

N∑
i,j=1

aij(B̃(xi)−

B̃(xj))ϕα(x
i − xj)

Consequently,

ξ̇i = Ãξi −
N∑
j=1

aijB̃(xi)ϕα(ξ
i − ξj)+

1

2N

N∑
i,j=1

aij(B̃(xi)− B̃(xj))ϕα(ξ
i − ξj)

keeping the same steps of the previous proof, we
introduce

ξ̇i = h(ξi) + h̃(ξ)

where

h(ξi) = Ãξi −
N∑
j=1

aijB̃(xi)ϕα(ξ
i − ξj)

h̃(ξ) =
1

2N

N∑
i,j=1

aij(B̃(xi)− B̃(xj))ϕα(ξ
i − ξj)

where h̃(ξ)g̃(ξ) then it remains to prove the finite­time
stability of the system.

ξ̇i = h(ξi) (14)

Using the Lyapunov function (10), the time derivative
of V (ξ) along the networked system trajectories (14)
is given by
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V̇ (ξ(t)) =

N∑
i=1

ϕTα(ξ
i)ξ̇i

=

N∑
i=1

ϕTα(ξ
i)Ãξi −

N∑
i,j=1

aijϕ
T
α(ξ

i)B̃(xi)ϕα(ξ
i − ξj)

≤ ∥Ã∥∞
N∑
i=1

ϕTα(ξ
i)ξi − k

4
(α+ 1)

2α

α+1V
2α

α+1

≤ ∥Ã∥∞V (ξ(t))− k

4
(α+ 1)

2α

α+1V
2α

α+1

≤ −V (ξ(t))
2α

α+1 [
k

4
(α+1)

2α

α+1 −∥Ã∥∞(V (ξ(t)))
1−α

α+1 ]

where ∥Ã∥∞ = max
1≤p≤n

n∑
q=1

|ãpq| > 0. Since

1−α
α+1 > 0 and V is continuous function which takes
(V (ξ) = 0)there exists an open neighborhood Ω of
the origin such that the last inequality

V̇ (ξ(t)) ≤ −k
8
(α+ 1)

2α

α+1V (ξ(t))
2α

α+1 (15)

By Lemma 1, V reaches zero in finite time.Therfore
ξi = 0 is a finite­time stable equilibrium of system
(14) We may follow step 2 of the previous analysis to
end the proof.

In the following, we consider that the drift term in
(3) is nonlinear which also commonly present in con­
trolled dynamic systems. Moreover, if the networked
dynamic systems is homogenous then

the f i structure is identical, otherwise the multi­
system is considered as heterogenous. Our main re­
sult in multi­Σ2 is built on the assumption that f i(xi)
is a convex function.

Proposition 3 Let G be a fixed undirected graph and
f i(xi) is convex. Under the protocol (5) a homoge­
nous/heterogenous multi­Σ2 based on (3) converges
toward an average trajectory and leads to a finite­
time average consensus in the sense of (4).

Proof Let ξi(t) = xi(t)− χ(t). As f i is assumed to
be convex, we have

f i(xi)− 1

N

N∑
i=1

f i(xi) ≤ f i(xi)− f i
( 1
N

N∑
i=1

xi
)

Moreover f i is locally Lipschitz function in an open
set Ω ⊂ Rn containing ξ. Therefore

f i(xi)− 1

N

N∑
i=1

f i(xi) ≤ ∥f i(xi)− f i(χ)∥

≤ c∥ξi∥

such that c > 0 is the Lipschitz’s constant. Now, for
convenience the Lyapunov function is given by (10),
we prove:

V̇ (ξ(t)) =
N∑
i=1

(ϕα(ξ
i))T ξ̇i

≤ c

N∑
i=1

ϕTα(ξ
i)ξi − k

4
(α+ 1)

2α

α+1V
2α

α+1

≤ −V (ξ(t))
2α

α+1

[
k

4
(α+ 1)

2α

α+1 − c(V (ξ(t)))
1−α

α+1

]
Or 1−α

α+1 > 0 and V is a continuous function which
takes 0 of the origin V (0) = 0 there exists an open
neighborhood Ω such that ξ(t) ∈ Ω

V̇ (ξ(t)) ≤ −k
8
(α+ 1)

2α

α+1V (ξ(t))
2α

α+1 (16)

At this stage, one concludes that the multi­Σ2 estab­
lished from with the protocol (3) with the protocol (5)
lead to a finite­time average consensus. Note that if
the convexity property of f i is not satisfied, the alter­
native is to linearize eachΣ2 system and use the same
procedure obtained for a multi­system built from (13).

4 The multi­system finite­time
stabilization

The finite­time stabilization problem in networked
dynamic systems consists to stabilize individually
each system’s equilibrium state under some connec­
tion rules. Then we consider dynamic systems in net­
work with continuous nonlinear decentralized feed­
back that integrates the graph theory. The following
theoretical framework tackles first to themulti­Σ1 sta­
bilization problem, the results will be extended after
that to the analysis of the multi­Σ2 stabilization prob­
lem.

4.1 The multi­Σ1 finite­time stabilization
The multi­Σ1 describes the behavior of drift less sys­
tems like kinematic of unicycles and attitude of satel­
lites. Further, one considers here that each system is
nonlinear and not necessary fully actuated (dimension
of the input vector is fewer than the system degree of
freedom).

Proposition 4 For a given fixed underacted graph G,
the protocol (6) applied to multi­Σ1 solves the stabi­
lizing problem in finite time.

Proof Let x = (x1, ..., xN )T ∈ RNn and
u = (u1, ..., uN )T ∈ RNm where xi ∈ Rn and
ui ∈ Rm. The networked systems (2) under the stabi­
lizing protocol (17)

u = −(L⊗ In)(IN ⊗ C(xi))ϕα(x) (17)
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Using the Kronecker product properties

ẋ = (IN ⊗B(xi))u
= −(IN ⊗B(xi))(L⊗ In)(IN ⊗ C(xi))ϕα(x)
= −(L⊗ B̃(xi))ϕα(x)

(18)
It is obvious from (18) that the equilibrium is zero.

The goal is to prove that x reaches this equilibrium in
finite time. Taking the Lyapunov function V : RNn →
R+ where ∀ x ∈ RNn

V (x) =
1

1 + α
xTϕα(x) (19)

which is positive definite with respect to x, Now, the
time derivative along the trajectories of (18) lead to

V̇ (x) = ϕTα(x)
dx
dt

= −ϕTα(x)(L⊗ B̃)ϕα(x)

Let

D(xi) =


0n

γ2(x
i)

. . .
γN (xi)


where 0n = diag{0, ..., 0} ∈ Rn×n and
∀j = 2, ..., N , γj(xi) = λj(L)ϱn(x

i) where
ϱn(x

i) = diag{0, µ2(xi), ..., µn(xi)} ∈ Rn×n. De­
notes that µ2(xi), ..., µn(xi) are the eigenvalues of
the matrix B̃(xi), given in increasing order. λj(L)
is the jème eigenvalues of L. Let λ2(L), ..., λN (L) in
increasing order.. By Lemma 3, λ2(L) > 0. We have
∀xi, λ2µ2(xi) > 0.
Further, sinceL⊗B̃ ∈ RNn×Nn is symmetric matrix,
then there exist an orthogonal matrix P ∈ RNn×Nn

such that L ⊗ B̃ = P TD(xi)P . Let zα = Pϕα(x).
Then

V̇ = −zTαDzα
≤ −λ2µ1(xi)∥zα∥2

≤ −λ2µ1(xi)∥ϕα(x)∥2 (20)

where

λ2µ1(x
i) = min

zα⊥1Nn

zTαDzα
zTαzα

.
Let k = min

xi∈RN
λ2µ1(x

i) > 0 and

x = 1N ⊗ xi = (x̃1, ..., x̃Nn)
T , we obtain

V̇ ≤ −k
Nn∑
i=1

|φα(x̃i)|2

≤ −k
Nn∑
i=1

|x̃i|2α

≤ −k

(
Nn∑
i=1

|x̃i|α+1

) 2α

α+1

by Lemma 4, (21)

which leads to

V̇ ≤ −k(α+ 1)
2α

α+1V
2α

α+1 (22)

Or 0 < 2α
α+1 < 1 et k(α + 1)

2α

α+1 > 0, by Lemma 1
the above differential equation shows that V reaches
zero in finite time

T∗(x(0)) =
(α+ 1)V (x(0))

1−α

α+1

(1− α)k(α+ 1)
2α

α+1

Therefore, based on (2), the multi­Σ1 under the pro­
tocol (6) reaches zero in finite­time.

4.2 The multi­Σ2 finite­time stabilization
Recall that the multi­Σ2 system is based on the fol­
lowing dynamic with nonlinear drift terms

Σ2 : ẋi = f i(xi) +B(xi)ui. (23)
where the f i structure can be taken different for each
system. In this case, we are in presence of heteroge­
neous multi­system. We assume at first that

ϕTα(x
i)f i(xi) ≤ 0. (24)

and we propose the following,

Proposition 5 Suppose that the inequality (24) is sat­
isfied. For a given fixed underacted and connected
graph G, the protocol (6) associated to multi­Σ2

solves the stabilizing problem in finite time.

Proof Let x ∈ RNn and
f(x) = (f1(x1), ..., fN (xN ))T . Consider the stabi­
lizing protocol (17), the multi­Σ2 dynamic becomes:

ẋ = f(x)− (L⊗ B̃)ϕα(x) (25)
Using the Lyapunov function (19), its time derivative
is as

V̇ (x) = ϕTα(x)f(x)− ϕTα(x)(L⊗ B̃)ϕα(x) (26)

From hypothesis (24), the first term in (26) is nega­
tive. The remaining terms in (26) must verify the in­
equality given by (22). So, we conclude that the origin
(25) is finite­time stable.
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Remark 1 In practice condition (24) on the drift
term isn’t often verified. For this propose this con­
dition can be relaxed by the following proposition.

Proposition 6 If f i is locally Lipshitz function and
f i(0n) = 0n, given an underacted and connected
graph G, the multi­Σ2 origin from (23) and (6) is lo­
cally finite­time stable.

Proof Recall that the time derivative of the Lyapunov
candidate function (19)

V̇ (x) = ϕTα(x)f(x)− ϕTα(x)(L⊗ B̃)ϕα(x)
≤ c∥ϕTα(x)x∥ − ϕTα(x)(L⊗ B̃)ϕα(x)

(27)
where c > 0 is the Lipshitz’s constant.

Let x = 1N ⊗ xi = (x̃1, . . . , ˜xNn)
T , consequently

from (21), the inequality (27) permits to write

V̇ (x) ≤ c

(
Nn∑
i=1

|x̃i|α+1

)
− k

(
Nn∑
i=1

|x̃i|α+1

) 2α

α+1

≤ −V
2α

α+1 [k(1 + α)
2α

α+1 − cV
1−α

α+1 ]
(28)

where k = min
xi∈RN

λ2µ1(x
i) defined in the proof of

Proposition 4. Since 1−α
α+1 > 0 and V is continuous

function which takes 0 at the origin, there exists an
open neighborhood Ω ⊂ RNn of the origin that
permits to write

V̇ (x) ≤ −k (α+ 1)
2α

α+1

2
[V (x)]

2α

α+1 (29)

by Lemma 1, V reaches zero at an estimated finite
time

T∗(x(0)) =
(α+ 1)V (x(0))

1−α

α+1

2(1− α)k(α+ 1)
2α

α+1

Therefore, based on (23) and (6), the multi­Σ2 origin
is finite­time stable.

From the proposed stabilizing protocol, we may
conclude that the stability of each agent was asserted
from the networked behavior of the group. Further,
the drift term is not present in the protocol, however
along the proofs, this term is tackled by the control
and sufficient conditions on this term were introduced
to guarantee the multi­system stability. Note that in
individual dynamic system stability problem, the drift
termmust be compensated by the control­input. Here,
the stability of each agent is obtained from the stable
behavior of the group. This analysis is supported by
the following examples.

5 Illustrative examples
In order to validate the above theoretical framework,
some examples are presented in simulation and ana­
lyzed. The multi­unicycle kinematics is taken in view
of the multi­Σ1 system. Further as multi­Σ2 exam­
ples, we propose to take a multi­second­order dynam­
ics as system with linear drift term and multiple pen­
dulums integrating nonidentical nonlinear drift terms.
The cited examples are expected to achieve finite­
time average consensus. At the second stage of the
given numerical simulations, the networked dynam­
ical systems stability is handled by tests on multi­
unicycle. For consensus and stability objectives, the
undirected fixed networked topology (binary graph)
is shown by Fig.1

Figure 1: G for a system with 4 agents.

5.1 The multi­system finite­time consensus
results

Three illustrative examples are considered here where
the multi­unicycle that represents the networked sys­
tems modeled by (2), a multi­system based on second
order dynamic which imply a networked multi­model
as in (13), and a multi­pendulum example as in (3).
Each associated protocol is deduced from (5).

a) Average consensus in multi­unicycle
Consider N wheeled mobile robots (unicycles)
where the ith nonholonomic kinematic model is
as:ẋiẏi
θ̇i

 =

(cos(θi) 0
sin(θi) 0

0 1

)(
u̇i
ẇi

)
i = 1 . . . N

(30)
where (xi, yi, θi) denotes the position and the ori­
entation in a an inertial frame. The inputs ui and
wi are the linear and angular velocities, respec­
tively.

Let B =

(cos(θi) 0
sin(θi) 0

0 1

)
and

C =

(
cos(θi) sin(θi 0
− sin(θi) cos(θi 0

)
Based on Proposi­

tion 1, the finite­time average consensus problem
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can be achieved through the following protocol

ui = −
N∑
j=1

aijϕα(xi−xj) cos(θi)−
N∑
j=1

aijϕα(yi−yj) sin(θi)

(31)

wi =

N∑
j=1

aijϕα(xi−xj) sin(θi)−
N∑
j=1

aijϕα(yi−yj) cos(θi)

(32)
whereφα is defined in section 2 and aij are associ­
ated to the graph in Fig. 1. The simulation results
are limited to N = 4 that integrate the following
initial conditions

(x1, y1, θ1)(t = 0) = (14, 2, π)

(x2, y2, θ2)(t = 0) = (−4, 2,−π
2
)

(x3, y3, θ3)(t = 0) = (10, 8,
π

2
)

(x4, y4, θ4)(t = 0) = (−10,−8, 0)

0 5 10 15
−10

−5

0

5

10

15

 x
i

 time[sec]

 

 

x1

x2

x3

x4

average(xi)

Figure 2: Average consensus of position xi for 4 uni­
cycles as multi­Σ1

The numerical simulations are performed using
(30) and protocols (31)­(32). The results of figures
Fig. 2­3 evolve according to the developed theo­
retical results of multi­Σ1. The common value is
also the average of the unicycles initial conditions.
The
||(xi, yi)−(ave(xi(0)), ave(yi(0)))|| converges in
finite­time to zero as show in figure Fig.4.

b) Average consensus in multi­second­order dy­
namicss
A commonly used example in the literature is an
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i
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y4

average(yi)

Figure 3: Average consensus of position yi for 4 uni­
cycles as multi­Σ1

0 5 10 15
0

2

4

6

8

10

12

14

16

‖
(x

i
,
y
i
)
−

(a
v
e
(x

i
),

a
v
e
(y

i
))
‖

 time[sec]

Figure 4: Convergence of ∥(xi, yi) − (ave(xi) −
ave(yi))∥

agent with a second­order dynamic (we can see
[18])

ẋi = −viv̇i = −ui i = 1, . . . , N (33)
where xi, vi ∈ R are the states and ui ∈ R
is the control input. The dynamic (33) takes the

form given by (13) with xi =

(
xi
vi

)
, f i(xi) =(

0 1
0 0

)
xi and B =

(
0
1

)
For the protocol (5) we take C = (1 1). From
Proposition 2 results, protocols that achieve finite
time average consensus are such that

ui = −
N∑
j=1

aij(φα(xi−xj)+φα(vi−vj)) (34)

Let us takeN = 4. The control parameter is taken
α = 0.5, and each agent initial vector of states is
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as

(x1, x1, x3, x4)(t = 0) = (5, 10, 1,−5) (meter)

and

(v1, v1, v3, v4)(t = 0) = (2,−1, 8,−4) (meter/second)

For i = 1, . . . , 4, xi (Fig.5) and vi (Fig.6) consent
an average trajectory.
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Figure 5: A reached average trajectory in positions by
4 second­order dynamics.
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Figure 6: A reached average trajectory in velocities
by 4 second­order dynamics.

Remark 2 Other processes can be studied, and
where the average is an agreement value of states
like a common temperature of sensors where fluc­
tuations of data is important. The energy con­
sumption is also an important factor for stability of
electric generators in networks. As example, for a
multi­second­order dynamics, the kinetic energies
consent an average, and this is shown by figure
Fig.7.

c) Average consensus in multi­pendulum dynam­
ics

0 5 10 15 20 25 30
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20

25

30
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c
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Figure 7: The average of kinetic energies like consen­
sus for 4 second­order dynamics.

Consider a set of N pendulum with the following
model

θ̈i = − g
li
sin(θi)−− ψi

mili
θ̇i + ui (35)

wheremi, gi, li and ψi are positive constants. For
this system the drift term issues from the first order
differential form (see (3)) is

f i(θi, θ̇i) =

 θ̇i

− g
li
sin(θi)−− ψi

mili
θ̇i


we can easily check the convexity condition for
the drift term f i. Following to the subsequent the­
oretical analysis (see Proposition 3), taking C =
(1 1), a protocol that solves the finite­time aver­
age consensus for multi­pendulum is as

ui = −
N∑
j=1

aij(φα(θi− θj)+φα(θ̇i− θ̇j)) (36)

This set ofN = 4 pendulums is analyzed. As het­
erogenous multi­system, the 4 pendulum parame­
ters aren’t similar. Thus, m1 = 1,m2 = 2,m3 =
3 and m4 = 4 (Kg). The standard gravity vector
is g = 9.8(m.s−2), the lengths li = 1 (m) and the
coefficient ψi = 0.1(Kg.m2.s−1). Initial condi­
tions are such that θi = (−0.8, 0.4, 1, 2, 1.6) (rad)
and θ̇i = (0, 0, 0, 0)(rad.s−1). Clearly from fig­
ures in Fig. 8­9, the synchronization toward the
average trajectory of 4 pendulums in angular po­
sitions and velocities are obtained. It is important
to note that the average is time­ varying and the
multi­system of pendulums is heterogeneous with
respect to the proposed physical parameters. This
confirm the theoretical results of Proposition 3.
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Figure 8: The average of kinetic energies like consen­
sus for 4 second­order dynamics.
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Figure 9: The time­varying average of angular veloc­
ities consent by 4 pendulums.

5.2 The multi­system finite ­time stability
results

We consider a multi­unicycle which represents the
networked system modeled by (2) (driftless). The
associated protocol is deduced from (6) and the
graph is in Fig.1. From Proposition 4, the finite­time
stability problem is achieved for the control matrix

C =

(
cos(θi) sin(θi 0
− sin(θi) cos(θi 0

)
that leads to the

stabilizing control­inputs

ui = −
N∑
j=1

aijϕα(xi−xj) cos(θi)−
N∑
j=1

aijϕα(yi−yj) sin(θi)

(37)

wi =
N∑
j=1

aijϕα(xi−xj) sin(θi)−
N∑
j=1

aijϕα(yi−yj) cos(θi)

(38)

where φα is defined in section 2 and aij are asso­
ciated to the graph in Fig. 1. TakingN = 4, the initial
conditions are as T

(x1, y1, θ1)(t = 0) = (4, 2,
π

4
)

(x2, y2, θ2)(t = 0) = (12,−10,−π
2
)

(x3, y3, θ3)(t = 0) = (10,−8,
2π

3
)

(x4, y4, θ4)(t = 0) = (−10,−14, π)

The results of stabilization are sketched in figures
Fig.10­11 and the stabilizing protocols are given by
figures Fig.12­13 which confirm the stability of each
unicycle at the origin with continuous control feed­
back.
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Figure 10: Finite­time stability of xi as positions of 4
unicycles
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Figure 11: Finite­time stability of yi as positions of 4
unicycles

6 Conclusion
For networked dynamic systems affine in the con­
trol vector, two protocols are proposed and theoret­
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Figure 12: Stabilizing inputs ui of 4 unicycles
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Figure 13: Stabilizing inputs wi of 4 unicycles

ically analyzed with respect to two types of nonlin­
ear dynamic models. For a nonlinear driftless multi­
system, necessary conditions on the control matrix are
derived that assert finite­time average consensus to­
ward a predefined agreement value, obtained from the
multi­system initial conditions. However, for multi­
system integrating drift terms, sufficient conditions
on the drift term are discussed, and when they as­
sociated to the protocol solve a finite­time average
consensus where as a result an average trajectory is
followed by the group. Further, our stability results
in networked dynamic systems overcome the individ­
ual stability analysis of each system where some ob­
structions for the agent’s stability at the origin occur.
It is well known that an unicycle doesn’t verify the
Brockett’s necessary condition and the stabilization
at the origin isn’t possible with feedbacks that de­
pend only on states. Here, due to the interconnection,
the multi­unicycle stability result implies the stability
of each unicycle with smooth and bounded control­
inputs. The results of the paper can be extended using
a directed graph while one may address the problem
of consensus and stability for heterogenous systems
based on the two fundamental dynamic models.
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