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Abstract:  This paper provides protocols for finitetime average consensus and finitetime stability of systems
with controlled nonlinear dynamics innetwork under undirected fixed topology. Each node’s state is a high
dimensional vector as a solution of the highly nonlinear first order dynamics with and without drift terms. This
paper provides protocols for finitetime average consensus and finitetime stability of systems with controlled
nonlinear dynamics innetwork under undirected fixed topology. Each node’s state is high Under the proposed
interaction rules, agreements as a common average value or an average trajectory are reached, solving finitetime
average consensus and the multisystem equilibrium is controlled leading to the finitetime stability of each system
origin. Sufficient conditions are achieved using the Lyapunov techniques and the graph theory. In networked
dynamic systems, the theoretical results of the paper cover a large class of underactuated autonomous systems
as formation flight, multivehicle coordination, and heterogeneous multisystem behaviors. Some examples are
introduced in simulation which approves the proposed protocols.
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1 Introduction
For cooperative tasks using multiagent groups, the
presence of a large number of autonomous dynami
cal systems in industry requires interrelationships be
tween distributed control parameters which are de
signed at a first step to manage each agent separately.
Thus, in coordination of a team of autonomous agents,
the communication of sensors is fundamental in many
distributed control systems. For many applications
the main challenges in cooperative design for a group
of agents is to meet some objectives such that the ren
dezvous problem of multivehicle, control of train
ing, flocking, attitude synchronization and the fu
sion of sensors. A coherent movement in masses is
called consensus. Thus, the problem of consensus
plays a central role in study of multiagent systems.
In recent years this paradigm has introduced in multi
agent systems witnessed dramatic advances of var
ious distributed strategies that achieve agreements.
In [5] , the authors proposed a simple but interest
ing discretetime model of finite agents all moving
in the plane. Each agent’s motion is updated using
a local rule based on its own state and the states of
its neighbors. [6] provided a theoretical explanation
of the consensus property of the Vicsek model by us
ing graph theory and nonnegative matrix theory. For
this model each agent’s set of neighbors changes with
time as system evolves. Consequently, many seem
ingly different problems that involve interconnection

of dynamic systems in various areas of science and
engineering happen to be closely related to consensus
problems for multiagent systems. The existing con
nections are presented by [25] with application to lin
ear dynamics in network in studying of multisystem
behaviors.
The theoretical framework for posing and solving
consensus problems for networked dynamic systems
was introduced by [7] and [8]. Under dynamically
changing interaction topologies, [9] extended the re
sults of [6].
Various finitetime stabilizing control laws have been
proposed using continuous state feedback and output
feedback controllers [3]. Furthermore, the finitetime
control design has been extended to nth order systems
with both parametric and dynamic uncertainties [2].
Although the finitetime design is generally more dif
ficult than the asymptotically stabilizing control due
to the lack of effective analysis tools. Also, the non
smooth finitetime control synthesis can improve the
system behaviors in some aspects like highspeed,
control accuracy, and disturbance rejection. There
fore, it is not surprising that finitetime control ideas
have been applied to multiagent systems with first
order agent dynamics using gradient flow and Lya
punov function [10].
Finitetime consensus firstly was studied by [10],
where a nonsmooth consensus algorithm is proposed.
In the same filed [11], and in [17] authors proposed a
continuous nonlinear consensus algorithm to guaran
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tee the finitetime stability under an undirected fixed
interaction graph. [16] suggest an improvement to
the proposed algorithm proposed in [11]. The new
algorithm proposed in [16] is able to guarantee finite
time consensus under an undirected switching inter
action and a directed fixed interaction graph when
each strongly connected component of the topology is
detailbalanced. In [19], the authors study finitetime
consensus for second order dynamics with inherent
nonlinear dynamics under an undirected fixed inter
action graph. In networked dynamic systems, finite
time consensus problems that have been solved so far
are mostly only for simple agents like particle behav
iors as first or second order dynamics. In [13]  [14],
the authors treated finitetime consensus for highly
nonlinear dynamic systems in network affine in con
trol inputs. Such a system is described by a nonlinear
firstorder ordinary differential relations.
While an interesting topic in consensus problem is the
average consensus problem such that the states of all
the agents converge asymptotically or in finite time
to the average of their initial states under a networked
interaction protocol, one cites the results in [20] [21]
[22] [23], our work consists to extend these results
and propose protocols for nonlinear dynamic systems
in network expected to reach an agreement that can be
a predefined average value or an average trajectory.
Moreover, we will make difference between consen
sus and stability protocols in treating the equilibrium
stability of the designed multisystem dynamics.
The paper is organized as follows. Some preliminar
ies results, the problem statement, and the finitetime
average consensus protocol are formulated in section
2. In section 3 one solves a finite time average
consensus of multisystem without drift terms. The
finitetime average consensus of multisystem with
drift is detailed in section 4. Finally, illustrative ex
amples are presented in section 5.

2 Preliminaries and problem
formulation

Throughout this paper, we use R to denote the set
of real number. Rn is the ndimensional real vec
tor space and ||.|| denotes the Euclidian norm. Rn×n

is the set of n × n matrices. diag{m1,m2, . . . ,mn}
denotes a n × n diagonal matrix. In ∈ Rn×n is
the identity matrix. The symbol ⊗ is the Kronecker
product of matrices. We use sgn(.) to denote the
signum function. For a scalar x, note that φα(x) =
sgn(x)∥x∥α. We use xi = (xi1, x

i
2, . . . , x

i
n)

T ∈ Rn,
x = (x1, x2, . . . , xN )T to denote the vector inRn×N .
Let ϕα(xi) = (φα(x

i
1), φα(x

i
2), . . . , φα(x

i
n))

T with
ϕα(x) = (ϕα(x

i), . . . , ϕα(x
N ))T .

Let 1n = (1, . . . , 1)T . The exponent T is the trans
pose.

2.1 Graph theory
In this subsection, we introduce some basic concepts
in algebraic graph theory for multiagent networks.
Let G = {V, E} be a directed graph, where
V = {1, 2, . . . , n} is the set of nodes, node i repre
sents the ith agent, E is the set of edges, and an edge
in G is denoted by an ordered pair (i, j).(i, j) ∈ E if
and only if the ith agent can send information to the
jth agent directly. A = [aij ] ∈ Rn×n is called the
weighted adjacency matrix of G with nonnegative el
ements, where aij > 0 if there is an edge between
the ith agent and jth agent and aij = 0 otherwise.
Moreover, if AT = A, then G is also called an undi
rected graph. In this paper, we will refer to graphs
whose weights take values in the set {0, 1} as binary
and those graphs whose adjacency matrices are sym
metric as symmetric.
LetD = diag{d1, . . . , dn} ∈ Rn×n be a diagonalma

trix, where di =
n∑

j=1

aij for i = 0, 1, . . . , n. Hence,

we define the Laplacian of the weighted graph

L = D −A ∈ Rn×n

The undirected graph is called connected if there is a
path between any two vertices of the graph.

2.2 Some useful lemmas
Our main results are guided by the following Lem
mas. The reader may find more details in the associ
ated references.

Lemma 1 : Bhat and Bernstein(200). Consider the
system ẋ = f(x), f(0) = 0, x ∈ Rn, there exist a
positive definite continuous function
V (x) : U ⊂ Rn → R, real numbers c > 0 and
α ∈]0, 1[, and an open neighborhood U0 ⊂ U of the
origin such that
V̇ + c(V (x))α ≤ 0, x ∈ U0\{0}. Then V (x) con
verges to zero in finite time. In addition, the finite

settling time T⋆ satisfies T⋆ ≤
V ((x(0))1−α

c(1− α)
.

Lemma 2 : Hong & al (2002). Consider the follow
ing system, x = [x1, . . . , xn]

T ∈ Rn

ẋ = g(x) + g̃(x) (1)

where g(0) = 0 and g(x) is a continuous homoge
neous vector field of degree d < 0 with respect to di
lation [σ1, . . . σn], and g̃(x) = [g̃1(x), . . . , g̃n(x)]

T ∈
Rn satisfies g̃(0) = 0. Assume that x = 0 is an
asymptotically stable equilibrium of the system ẋ =
g(x). Then x = 0 is a globally finite time stable equi
librium of system (1) if
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lim
ε→0

g̃(σ1x1, . . . , σnxn)

εd+σi
= 0, i = 0, . . . , n,∀x ̸= 0,

and the stable equilibrium x = 0 of system (1) is glob
ally asymptotically stable.

Lemma 3 : OlfatiSaber & al (2004). For a con
nected undirected graph G, the Laplacian matrix L of
G has he following properties,

xTLx = 1
2

n∑
i,j=1

aij(xi−xj)2, which implies that L is

positive semidefinite. 0 is a simple eigenvalue of L
and 1 is the associated eigenvector. Assume that the
eigenvalues of L are denoted by 0, λ2, . . . , λn satis
fying 0 ≤ λ2 ≤ · · · ≤ λn. Then the smallest eigen
value satisfies λ2 > 0. Furthermore, if 1Tx = 0, then
xTLx ≥ λ2x

Tx.

Lemma 4 : Hardy & al (1952).
Let x1, x2, . . . , xn ≥ 0 and o < p ≤ 1. Then( n∑

i=1

xi

)p
≤

n∑
i=1

xpi ≤ n1−p
( n∑

i=1

xi

)p
.

2.3 Problem statements
We solve the finitetime average consensus and stabil
ity of two type of models in networked dynamic sys
tems affine in control inputs. The first type is given
by equation (2)which describes a controlled dynamic
system without drift term. The second type is rep
resented by relation (3) which is clearly a controlled
dynamic system with drift term f i(xi). Let consider
a group of N highdimensional agents where each
agent’s behavior is described by a controlled nonlin
ear model without drift Σ1 represented by the con
trolled dynamic (2) and systemΣ2 with drift as shown
by the controlled dynamic (3), ∀i ∈ I = {1, . . . , N}

Σ1 : ẋi = B(xi)ui. (2)
and

Σ2 : ẋi = f i(xi) +B(xi)ui. (3)

where xi ∈ Rn, xi = [xi1, x
i
2, . . . , x

i
n]

T , B(xi) ∈
Rn×m, the continuous maps f i : Rn → Rn, ui ∈ Rm

is the control input and for 1 ≤ k ≤ n and
1 ≤ m,B(xi) = [bkl].

Definition 1 (stabilization) Given an interconnec
tion control ui(xi, xj), the origin the zero solution
xi(t) = 0 to (2)(3) is finitetime stable if the fol
lowing statements hold:

1. The zero solution of closed loop system to (2)(3)
is stable.

2. There exist a settlingtime T⋆ such that
lim
t→T⋆

||xi(t)|| = 0

Definition 2 Given a controlinput ui as protocol, we
say that systems in networkmeet a finite time average
consensus if for any system’s state initial conditions,
there exists some finite time T⋆ such that:

lim
t→T⋆

||xi(t)− χ(t)|| = 0 (4)

for any i ∈ I, and where χ(t) =
1

N

N∑
j=1

xj(t) is the

average trajectory.
χ(t) can be interpreted as the instantaneous consent
providing that serves the group objectives. χ is time
varying, it can be also considered as the average tra
jectory of the group, and it is not necessary the aver
age from the multisystem initial conditions. We show
that the dynamic ofχ depends strongly on the adopted
topology of the group.
Subsequently, for the multiΣ1 and multiΣ2 systems
one might analyze the following protocols are given
by (5)and (6). For i ∈ I, the consensus protocol
candidate is given by,

ui = −C(xi)
N∑
j=1

aijϕα(x
i − xj) (5)

while the stabilizing input candidate is as

ui = −C(xi)
N∑
j=1

aij(ϕα(x
i)− ϕα(x

j)) (6)

where the aij elements are of the G adjacency ma
trix, α ∈]0, 1[, and ϕα(.) is defined in section 2. The
control matrixC(xi) ∈ Rm×n depends on the agent’s
model, and it will be defined in the following.

As we can see in protocols (5) and (6), the finite
time average consensus is closely related to finite
time stability. The main difference between the two
problems is that finitetime average consensus is to
make the multisystem converge to an agreement
value or trajectory as given by χ(t) in (4), while the
stability of each agent consists to reach an equilib
rium. The following assumption gives a conceptual
form of C(xi) with respect to the studied dynamics.
Assumption1: C(xi) is such that the matrix prod
uct B(xi)C(xi) is positive semidefinite matrix.
Throughout the paper, one denotes by
B̃(xi) = B(xi)C(xi).
Assumption2: For a given control matrix C(xi), for
all x, y ∈ Rn, we assume that
(ϕα(x) − ϕα(y))

T B̃(xi)ϕα(x − y) ≥ (ϕα(x) −
ϕα(y))

T B̃(xi)(ϕα(x)− ϕα(y))
Assumption3: Consider that

g(xi) = −
N∑
j=1

aijB̃(xi)ϕα(ξ
i − ξj) (7)
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is a locally homogeneous vector field of degree d with
respect to dilation [σ1, . . . , σn].

3 Finitetime average consensus
The objective of this section is to solve finitetime av
erage consensus problems of multisystem based on
Σ1 and Σ2 descriptions. The average value is consid
ered as an agreement function of time but is not nec
essary function of multiagent initial conditions. Fur
ther, what motivates the analysis is that models given
by (3) and (2) cover many autonomous system be
haviors affine in the control vector. One may cite, au
tomated highway systems, multidrone, multisystem
of satellites or robots, etc. When we refer to the proto
col (5), the interaction topology uses undirected flow
information between nodes where each node’s vector
of states is as a solution of (3) or (2). The follow
ing two subsections treat the multiΣ1 and multiΣ2

finitetime average consensus.

3.1 The multiΣ1 finitetime average
consensus

For finitetime average consensus of multiΣ1 one
considers, as interaction topology an undirected fixed
graph, an average vector obtained from each Σ1 vec
tor of states, and the protocol candidate (5). As the
matrix B structure is taken identical for each Σ1 then
one might think to networked homogeneous systems.
Recall that for a group where each agent is of the form
ẋi = ui, if the interconnection topology is based on an
undirected flow, then the average consensus is solved
with respect to the average of the agents initial states.

Proposition 1 Let G be an undirected and connected
graph, under the protocol (5) and Assumptions 1−2−
3 the multiΣ1 achieves a finitetime average consen
sus in the sense of (4).

Proof We introduce ξi(t) = xi(t) − χ(t) and
ξ(t) = [ξ1, ..., ξN ]T . Due to the fact that aij = aji
for all 1 ≤ i, j ≤ N (undirected graph) and φα is an
odd function, we have,

χ̇(t) =
1

N

N∑
i=1

ẋi(t)

= − 1

N

N∑
i,j=1

aijB̃(xi)ϕα(x
i − xj)

= − 1

2N

N∑
i,j=1

aij

(
B̃(xi)− B̃(xj)

)
ϕα(x

i − xj)

Introducing the protocol (5), we obtain

ξ̇i(t) = ẋi(t)− χ̇(t)

= −
N∑

j=1

aijB̃(xi)ϕα(x
i − xj)+

1

2N

N∑
i,j=1

aij(B̃(xi)− B̃(xj))ϕα(x
i − xj)

= −
N∑

j=1

aijB̃(xi)ϕα(ξ
i − ξj)+

1

2N

N∑
i,j=1

aij(B̃(xi)− B̃(xj))ϕα(ξ
i − ξj)

Let ξ(t) = (ξ1, ..., ξN ), we can write the last equation in the
form:

ξ̇i(t) = g(ξi) + g̃(ξ) (8)

where

g(ξi) = −
N∑

j=1

aijB̃(xi)ϕα(ξ
i − ξj)

and

g̃(ξ) =
1

2N

N∑
i,j=1

aij

(
B̃(xi)− B̃(xj)

)
ϕα(ξ

i − ξj)

By now, it remains to prove that the equilibrium of (8) is finite
time stable, and this is achieved in the subsequent two steps.
Step 1. First, the goal is to prove the finite time stability of system

ξ̇i(t) = g(ξi) (9)

Taking the Lyapunov function:

V (ξ(t)) =
1

α+ 1

N∑
i=1

(ξi)Tϕα(ξ
i) (10)

The derivative of V along the solutions of system (9), yields

V̇ (ξ(t)) =

N∑
i=1

(
ϕα(ξ

i)
)T

ξ̇i

= −
N∑

i,j=1

aij

(
ϕα(ξ

i)
)T

B̃(xi)ϕα(ξ
i − ξj)

= −1

2

N∑
i,j=1

aij

(
ϕα(ξ

i)− ϕα(ξ
j)
)T

B̃(xi)ϕα(ξ
i − ξj)

From Assumption 2, the following inequality holds,

V̇ ≤ −1

2

N∑
i,j=1

aij(ϕα(ξ
i)− ϕα(ξ

j))T B̃(xi)
(
ϕα(ξ

i)− ϕα(ξ
j)
)

= −1

2
ϕT
α(ξ)

(
L⊗ B̃(xi)

)
ϕα(ξ)

= −1

4
ϕT
α(ξ)Θϕα(ξ)

where Θ = 1
2

(
L⊗ B̃(xi) + L⊗ B̃T (xi)

)
.

Let
D(xi) = diag{0n, γ2(xi), ..., γN (xi)}

such that 0n = diag{0, ..., 0} ∈ Rn×n and ∀j = 2, ..., N
γj(x

i) = λj(L)ϱn(x
i) where

ϱn(x
i) = diag{0, µ2(x

i), ..., µn(x
i)} ∈ Rn×n and where

µ2(x
i), ..., µn(x

i) are the eigenvalues of the matrix B̃(xi), given

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2022.21.5 Rhouma Mlayeh

E-ISSN: 2224-2872 34 Volume 21, 2022



in increasing order. λj(L) is the jème eigenvalue of L. Let
λ2(L), ..., λN (L) in increasing order. Since G is connected (by
Lemma 3 ) λ2(L) > 0. Therefore ∀xi, we have λ2µ2(x

i) > 0.
Further, sinceΘ ∈ RNn×Nn is symmetric matrix, then there exist
an orthogonal matrix P ∈ RNn×Nn such thatΘ = PTD(xi)P .
Let zα = Pϕα(ξ), thus

V̇ ≤ − 1
4
zTαDzα

≤ − 1
4
λ2µ1(x

i)∥zα∥2
= − 1

4
λ2µ1(ξ

i)∥ϕα(ξ)∥2

where λ2µ1(x
i) = min

zα⊥1Nn

zTαDzα
zTα zα

.

Let k = min
xi∈RN

λ2µ1(x
i) > 0 and ξ = 1N ⊗ ξi =

(ξ̃1, ..., ξ̃Nn)
T , consequently,

V̇ ≤ − k
4

Nn∑
i=1

|φα(ξ̃i)|2

≤ − k
4

Nn∑
i=1

|ξ̃i|2α

≤ − k
4

(
Nn∑
i=1

|ξ̃i|α+1

) 2α
α+1

(11)

which permits to write

V̇ ≤ −k

4
(α+ 1)

2α
α+1 V

2α
α+1 (12)

where 0 < 2α
α+1

< 1 and k
4
(α + 1)

2α
α+1 > 0, by Lemma 1, the

above differential equation (9) shows that V reaches zero in finite
time..
Step 2. From Assumption 3, the vector field g(ξi) is homogeneous
of degree d which is negative due to the fact that ξ = 0 is a finite
time stable equilibrium. Moreover, it is straightforward to prove
that g̃(ξ), pour k = 1, ..., n, il est simple de vérifier que

lim
ε→0

g̃k(ε
σ1ξi1, ..., ε

σnξin)

εd+σi
= 0

Then by Lemma ??, the system (8) is finite time stable.
Thus, as a result the multiΣ1 dynamic system with the protocol
(5) solve a finitetime average consensus. This ends the proof.

3.2 The multiΣ2 finitetime average
consensus

The multiΣ2 behavior is based on (3) while the con
sensus protocol candidate is given by ((5). Recall that
theΣ2 dynamic as given by (3) is currently present in
controlled autonomous systems. However, the drift
term can be linear with respect to the system’s state
vector or taken in its nonlinear form. These two is
sues will be analyzed in the following with the ad
equate sufficient conditions for multiΣ2 finitetime
average consensus. To do, let us first note that fi in (3)
can be different for each dynamic leading to heteroge
neous multisystem. At first, the subsequent analysis
is build on this form of f i(xi) ∆

= Ãxi with Ã is a con
stant matrix. A controlled dynamic systemwith linear

drift term is given by,

ẋi = Ãxi +B(xi)ui (13)

where Ã ∈ Rn×n with Ã = [ãp,q]1≤p,q≤n.

Proposition 2 Let G be an undirected and connected
graph, under the protocol (5) the multiΣ2, built from
(13), converges toward an average trajectory and
leads to a finitetime average consensus in the sense
of (4).

Proof One introduces ξi(t) = xi(t)−χ(t). The goal
is to rewrite equation (13) in closed loop depending
on ξi and to prove that ξ converges to zero in finite
time. Since aij = aji and ϕα(.) is an odd function,
then we have

χ̇(t) =
1

N

N∑
i=1

(Ãxi +B(xi)ui)

=
1

N

N∑
i=1

Ãxi +
1

N

N∑
i=1

B(xi)ui

=
1

N

N∑
i=1

Ãxi − 1

2N

N∑
i,j=1

aij(B̃(xi)−

B̃(xj))ϕα(x
i − xj)

Consequently,

ξ̇i = Ãξi −
N∑
j=1

aijB̃(xi)ϕα(ξ
i − ξj)+

1

2N

N∑
i,j=1

aij(B̃(xi)− B̃(xj))ϕα(ξ
i − ξj)

keeping the same steps of the previous proof, we
introduce

ξ̇i = h(ξi) + h̃(ξ)

where

h(ξi) = Ãξi −
N∑
j=1

aijB̃(xi)ϕα(ξ
i − ξj)

h̃(ξ) =
1

2N

N∑
i,j=1

aij(B̃(xi)− B̃(xj))ϕα(ξ
i − ξj)

where h̃(ξ)g̃(ξ) then it remains to prove the finitetime
stability of the system.

ξ̇i = h(ξi) (14)

Using the Lyapunov function (10), the time derivative
of V (ξ) along the networked system trajectories (14)
is given by
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V̇ (ξ(t)) =

N∑
i=1

ϕTα(ξ
i)ξ̇i

=

N∑
i=1

ϕTα(ξ
i)Ãξi −

N∑
i,j=1

aijϕ
T
α(ξ

i)B̃(xi)ϕα(ξ
i − ξj)

≤ ∥Ã∥∞
N∑
i=1

ϕTα(ξ
i)ξi − k

4
(α+ 1)

2α

α+1V
2α

α+1

≤ ∥Ã∥∞V (ξ(t))− k

4
(α+ 1)

2α

α+1V
2α

α+1

≤ −V (ξ(t))
2α

α+1 [
k

4
(α+1)

2α

α+1 −∥Ã∥∞(V (ξ(t)))
1−α

α+1 ]

where ∥Ã∥∞ = max
1≤p≤n

n∑
q=1

|ãpq| > 0. Since

1−α
α+1 > 0 and V is continuous function which takes
(V (ξ) = 0)there exists an open neighborhood Ω of
the origin such that the last inequality

V̇ (ξ(t)) ≤ −k
8
(α+ 1)

2α

α+1V (ξ(t))
2α

α+1 (15)

By Lemma 1, V reaches zero in finite time.Therfore
ξi = 0 is a finitetime stable equilibrium of system
(14) We may follow step 2 of the previous analysis to
end the proof.

In the following, we consider that the drift term in
(3) is nonlinear which also commonly present in con
trolled dynamic systems. Moreover, if the networked
dynamic systems is homogenous then

the f i structure is identical, otherwise the multi
system is considered as heterogenous. Our main re
sult in multiΣ2 is built on the assumption that f i(xi)
is a convex function.

Proposition 3 Let G be a fixed undirected graph and
f i(xi) is convex. Under the protocol (5) a homoge
nous/heterogenous multiΣ2 based on (3) converges
toward an average trajectory and leads to a finite
time average consensus in the sense of (4).

Proof Let ξi(t) = xi(t)− χ(t). As f i is assumed to
be convex, we have

f i(xi)− 1

N

N∑
i=1

f i(xi) ≤ f i(xi)− f i
( 1
N

N∑
i=1

xi
)

Moreover f i is locally Lipschitz function in an open
set Ω ⊂ Rn containing ξ. Therefore

f i(xi)− 1

N

N∑
i=1

f i(xi) ≤ ∥f i(xi)− f i(χ)∥

≤ c∥ξi∥

such that c > 0 is the Lipschitz’s constant. Now, for
convenience the Lyapunov function is given by (10),
we prove:

V̇ (ξ(t)) =
N∑
i=1

(ϕα(ξ
i))T ξ̇i

≤ c

N∑
i=1

ϕTα(ξ
i)ξi − k

4
(α+ 1)

2α

α+1V
2α

α+1

≤ −V (ξ(t))
2α

α+1

[
k

4
(α+ 1)

2α

α+1 − c(V (ξ(t)))
1−α

α+1

]
Or 1−α

α+1 > 0 and V is a continuous function which
takes 0 of the origin V (0) = 0 there exists an open
neighborhood Ω such that ξ(t) ∈ Ω

V̇ (ξ(t)) ≤ −k
8
(α+ 1)

2α

α+1V (ξ(t))
2α

α+1 (16)

At this stage, one concludes that the multiΣ2 estab
lished from with the protocol (3) with the protocol (5)
lead to a finitetime average consensus. Note that if
the convexity property of f i is not satisfied, the alter
native is to linearize eachΣ2 system and use the same
procedure obtained for a multisystem built from (13).

4 The multisystem finitetime
stabilization

The finitetime stabilization problem in networked
dynamic systems consists to stabilize individually
each system’s equilibrium state under some connec
tion rules. Then we consider dynamic systems in net
work with continuous nonlinear decentralized feed
back that integrates the graph theory. The following
theoretical framework tackles first to themultiΣ1 sta
bilization problem, the results will be extended after
that to the analysis of the multiΣ2 stabilization prob
lem.

4.1 The multiΣ1 finitetime stabilization
The multiΣ1 describes the behavior of drift less sys
tems like kinematic of unicycles and attitude of satel
lites. Further, one considers here that each system is
nonlinear and not necessary fully actuated (dimension
of the input vector is fewer than the system degree of
freedom).

Proposition 4 For a given fixed underacted graph G,
the protocol (6) applied to multiΣ1 solves the stabi
lizing problem in finite time.

Proof Let x = (x1, ..., xN )T ∈ RNn and
u = (u1, ..., uN )T ∈ RNm where xi ∈ Rn and
ui ∈ Rm. The networked systems (2) under the stabi
lizing protocol (17)

u = −(L⊗ In)(IN ⊗ C(xi))ϕα(x) (17)
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Using the Kronecker product properties

ẋ = (IN ⊗B(xi))u
= −(IN ⊗B(xi))(L⊗ In)(IN ⊗ C(xi))ϕα(x)
= −(L⊗ B̃(xi))ϕα(x)

(18)
It is obvious from (18) that the equilibrium is zero.

The goal is to prove that x reaches this equilibrium in
finite time. Taking the Lyapunov function V : RNn →
R+ where ∀ x ∈ RNn

V (x) =
1

1 + α
xTϕα(x) (19)

which is positive definite with respect to x, Now, the
time derivative along the trajectories of (18) lead to

V̇ (x) = ϕTα(x)
dx
dt

= −ϕTα(x)(L⊗ B̃)ϕα(x)

Let

D(xi) =


0n

γ2(x
i)

. . .
γN (xi)


where 0n = diag{0, ..., 0} ∈ Rn×n and
∀j = 2, ..., N , γj(xi) = λj(L)ϱn(x

i) where
ϱn(x

i) = diag{0, µ2(xi), ..., µn(xi)} ∈ Rn×n. De
notes that µ2(xi), ..., µn(xi) are the eigenvalues of
the matrix B̃(xi), given in increasing order. λj(L)
is the jème eigenvalues of L. Let λ2(L), ..., λN (L) in
increasing order.. By Lemma 3, λ2(L) > 0. We have
∀xi, λ2µ2(xi) > 0.
Further, sinceL⊗B̃ ∈ RNn×Nn is symmetric matrix,
then there exist an orthogonal matrix P ∈ RNn×Nn

such that L ⊗ B̃ = P TD(xi)P . Let zα = Pϕα(x).
Then

V̇ = −zTαDzα
≤ −λ2µ1(xi)∥zα∥2

≤ −λ2µ1(xi)∥ϕα(x)∥2 (20)

where

λ2µ1(x
i) = min

zα⊥1Nn

zTαDzα
zTαzα

.
Let k = min

xi∈RN
λ2µ1(x

i) > 0 and

x = 1N ⊗ xi = (x̃1, ..., x̃Nn)
T , we obtain

V̇ ≤ −k
Nn∑
i=1

|φα(x̃i)|2

≤ −k
Nn∑
i=1

|x̃i|2α

≤ −k

(
Nn∑
i=1

|x̃i|α+1

) 2α

α+1

by Lemma 4, (21)

which leads to

V̇ ≤ −k(α+ 1)
2α

α+1V
2α

α+1 (22)

Or 0 < 2α
α+1 < 1 et k(α + 1)

2α

α+1 > 0, by Lemma 1
the above differential equation shows that V reaches
zero in finite time

T∗(x(0)) =
(α+ 1)V (x(0))

1−α

α+1

(1− α)k(α+ 1)
2α

α+1

Therefore, based on (2), the multiΣ1 under the pro
tocol (6) reaches zero in finitetime.

4.2 The multiΣ2 finitetime stabilization
Recall that the multiΣ2 system is based on the fol
lowing dynamic with nonlinear drift terms

Σ2 : ẋi = f i(xi) +B(xi)ui. (23)
where the f i structure can be taken different for each
system. In this case, we are in presence of heteroge
neous multisystem. We assume at first that

ϕTα(x
i)f i(xi) ≤ 0. (24)

and we propose the following,

Proposition 5 Suppose that the inequality (24) is sat
isfied. For a given fixed underacted and connected
graph G, the protocol (6) associated to multiΣ2

solves the stabilizing problem in finite time.

Proof Let x ∈ RNn and
f(x) = (f1(x1), ..., fN (xN ))T . Consider the stabi
lizing protocol (17), the multiΣ2 dynamic becomes:

ẋ = f(x)− (L⊗ B̃)ϕα(x) (25)
Using the Lyapunov function (19), its time derivative
is as

V̇ (x) = ϕTα(x)f(x)− ϕTα(x)(L⊗ B̃)ϕα(x) (26)

From hypothesis (24), the first term in (26) is nega
tive. The remaining terms in (26) must verify the in
equality given by (22). So, we conclude that the origin
(25) is finitetime stable.
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Remark 1 In practice condition (24) on the drift
term isn’t often verified. For this propose this con
dition can be relaxed by the following proposition.

Proposition 6 If f i is locally Lipshitz function and
f i(0n) = 0n, given an underacted and connected
graph G, the multiΣ2 origin from (23) and (6) is lo
cally finitetime stable.

Proof Recall that the time derivative of the Lyapunov
candidate function (19)

V̇ (x) = ϕTα(x)f(x)− ϕTα(x)(L⊗ B̃)ϕα(x)
≤ c∥ϕTα(x)x∥ − ϕTα(x)(L⊗ B̃)ϕα(x)

(27)
where c > 0 is the Lipshitz’s constant.

Let x = 1N ⊗ xi = (x̃1, . . . , ˜xNn)
T , consequently

from (21), the inequality (27) permits to write

V̇ (x) ≤ c

(
Nn∑
i=1

|x̃i|α+1

)
− k

(
Nn∑
i=1

|x̃i|α+1

) 2α

α+1

≤ −V
2α

α+1 [k(1 + α)
2α

α+1 − cV
1−α

α+1 ]
(28)

where k = min
xi∈RN

λ2µ1(x
i) defined in the proof of

Proposition 4. Since 1−α
α+1 > 0 and V is continuous

function which takes 0 at the origin, there exists an
open neighborhood Ω ⊂ RNn of the origin that
permits to write

V̇ (x) ≤ −k (α+ 1)
2α

α+1

2
[V (x)]

2α

α+1 (29)

by Lemma 1, V reaches zero at an estimated finite
time

T∗(x(0)) =
(α+ 1)V (x(0))

1−α

α+1

2(1− α)k(α+ 1)
2α

α+1

Therefore, based on (23) and (6), the multiΣ2 origin
is finitetime stable.

From the proposed stabilizing protocol, we may
conclude that the stability of each agent was asserted
from the networked behavior of the group. Further,
the drift term is not present in the protocol, however
along the proofs, this term is tackled by the control
and sufficient conditions on this term were introduced
to guarantee the multisystem stability. Note that in
individual dynamic system stability problem, the drift
termmust be compensated by the controlinput. Here,
the stability of each agent is obtained from the stable
behavior of the group. This analysis is supported by
the following examples.

5 Illustrative examples
In order to validate the above theoretical framework,
some examples are presented in simulation and ana
lyzed. The multiunicycle kinematics is taken in view
of the multiΣ1 system. Further as multiΣ2 exam
ples, we propose to take a multisecondorder dynam
ics as system with linear drift term and multiple pen
dulums integrating nonidentical nonlinear drift terms.
The cited examples are expected to achieve finite
time average consensus. At the second stage of the
given numerical simulations, the networked dynam
ical systems stability is handled by tests on multi
unicycle. For consensus and stability objectives, the
undirected fixed networked topology (binary graph)
is shown by Fig.1

Figure 1: G for a system with 4 agents.

5.1 The multisystem finitetime consensus
results

Three illustrative examples are considered here where
the multiunicycle that represents the networked sys
tems modeled by (2), a multisystem based on second
order dynamic which imply a networked multimodel
as in (13), and a multipendulum example as in (3).
Each associated protocol is deduced from (5).

a) Average consensus in multiunicycle
Consider N wheeled mobile robots (unicycles)
where the ith nonholonomic kinematic model is
as:ẋiẏi
θ̇i

 =

(cos(θi) 0
sin(θi) 0

0 1

)(
u̇i
ẇi

)
i = 1 . . . N

(30)
where (xi, yi, θi) denotes the position and the ori
entation in a an inertial frame. The inputs ui and
wi are the linear and angular velocities, respec
tively.

Let B =

(cos(θi) 0
sin(θi) 0

0 1

)
and

C =

(
cos(θi) sin(θi 0
− sin(θi) cos(θi 0

)
Based on Proposi

tion 1, the finitetime average consensus problem
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can be achieved through the following protocol

ui = −
N∑
j=1

aijϕα(xi−xj) cos(θi)−
N∑
j=1

aijϕα(yi−yj) sin(θi)

(31)

wi =

N∑
j=1

aijϕα(xi−xj) sin(θi)−
N∑
j=1

aijϕα(yi−yj) cos(θi)

(32)
whereφα is defined in section 2 and aij are associ
ated to the graph in Fig. 1. The simulation results
are limited to N = 4 that integrate the following
initial conditions

(x1, y1, θ1)(t = 0) = (14, 2, π)

(x2, y2, θ2)(t = 0) = (−4, 2,−π
2
)

(x3, y3, θ3)(t = 0) = (10, 8,
π

2
)

(x4, y4, θ4)(t = 0) = (−10,−8, 0)

0 5 10 15
−10

−5

0

5

10

15

 x
i

 time[sec]

 

 

x1

x2

x3

x4

average(xi)

Figure 2: Average consensus of position xi for 4 uni
cycles as multiΣ1

The numerical simulations are performed using
(30) and protocols (31)(32). The results of figures
Fig. 23 evolve according to the developed theo
retical results of multiΣ1. The common value is
also the average of the unicycles initial conditions.
The
||(xi, yi)−(ave(xi(0)), ave(yi(0)))|| converges in
finitetime to zero as show in figure Fig.4.

b) Average consensus in multisecondorder dy
namicss
A commonly used example in the literature is an
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i

 time[sec]
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y3

y4

average(yi)

Figure 3: Average consensus of position yi for 4 uni
cycles as multiΣ1
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Figure 4: Convergence of ∥(xi, yi) − (ave(xi) −
ave(yi))∥

agent with a secondorder dynamic (we can see
[18])

ẋi = −viv̇i = −ui i = 1, . . . , N (33)
where xi, vi ∈ R are the states and ui ∈ R
is the control input. The dynamic (33) takes the

form given by (13) with xi =

(
xi
vi

)
, f i(xi) =(

0 1
0 0

)
xi and B =

(
0
1

)
For the protocol (5) we take C = (1 1). From
Proposition 2 results, protocols that achieve finite
time average consensus are such that

ui = −
N∑
j=1

aij(φα(xi−xj)+φα(vi−vj)) (34)

Let us takeN = 4. The control parameter is taken
α = 0.5, and each agent initial vector of states is
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as

(x1, x1, x3, x4)(t = 0) = (5, 10, 1,−5) (meter)

and

(v1, v1, v3, v4)(t = 0) = (2,−1, 8,−4) (meter/second)

For i = 1, . . . , 4, xi (Fig.5) and vi (Fig.6) consent
an average trajectory.
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Figure 5: A reached average trajectory in positions by
4 secondorder dynamics.
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Figure 6: A reached average trajectory in velocities
by 4 secondorder dynamics.

Remark 2 Other processes can be studied, and
where the average is an agreement value of states
like a common temperature of sensors where fluc
tuations of data is important. The energy con
sumption is also an important factor for stability of
electric generators in networks. As example, for a
multisecondorder dynamics, the kinetic energies
consent an average, and this is shown by figure
Fig.7.

c) Average consensus in multipendulum dynam
ics

0 5 10 15 20 25 30
0

5

10

15

20

25

30

 E
c

 temps[sec]

 

 

moy(Ec)

Figure 7: The average of kinetic energies like consen
sus for 4 secondorder dynamics.

Consider a set of N pendulum with the following
model

θ̈i = − g
li
sin(θi)−− ψi

mili
θ̇i + ui (35)

wheremi, gi, li and ψi are positive constants. For
this system the drift term issues from the first order
differential form (see (3)) is

f i(θi, θ̇i) =

 θ̇i

− g
li
sin(θi)−− ψi

mili
θ̇i


we can easily check the convexity condition for
the drift term f i. Following to the subsequent the
oretical analysis (see Proposition 3), taking C =
(1 1), a protocol that solves the finitetime aver
age consensus for multipendulum is as

ui = −
N∑
j=1

aij(φα(θi− θj)+φα(θ̇i− θ̇j)) (36)

This set ofN = 4 pendulums is analyzed. As het
erogenous multisystem, the 4 pendulum parame
ters aren’t similar. Thus, m1 = 1,m2 = 2,m3 =
3 and m4 = 4 (Kg). The standard gravity vector
is g = 9.8(m.s−2), the lengths li = 1 (m) and the
coefficient ψi = 0.1(Kg.m2.s−1). Initial condi
tions are such that θi = (−0.8, 0.4, 1, 2, 1.6) (rad)
and θ̇i = (0, 0, 0, 0)(rad.s−1). Clearly from fig
ures in Fig. 89, the synchronization toward the
average trajectory of 4 pendulums in angular po
sitions and velocities are obtained. It is important
to note that the average is time varying and the
multisystem of pendulums is heterogeneous with
respect to the proposed physical parameters. This
confirm the theoretical results of Proposition 3.
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Figure 8: The average of kinetic energies like consen
sus for 4 secondorder dynamics.
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Figure 9: The timevarying average of angular veloc
ities consent by 4 pendulums.

5.2 The multisystem finite time stability
results

We consider a multiunicycle which represents the
networked system modeled by (2) (driftless). The
associated protocol is deduced from (6) and the
graph is in Fig.1. From Proposition 4, the finitetime
stability problem is achieved for the control matrix

C =

(
cos(θi) sin(θi 0
− sin(θi) cos(θi 0

)
that leads to the

stabilizing controlinputs

ui = −
N∑
j=1

aijϕα(xi−xj) cos(θi)−
N∑
j=1

aijϕα(yi−yj) sin(θi)

(37)

wi =
N∑
j=1

aijϕα(xi−xj) sin(θi)−
N∑
j=1

aijϕα(yi−yj) cos(θi)

(38)

where φα is defined in section 2 and aij are asso
ciated to the graph in Fig. 1. TakingN = 4, the initial
conditions are as T

(x1, y1, θ1)(t = 0) = (4, 2,
π

4
)

(x2, y2, θ2)(t = 0) = (12,−10,−π
2
)

(x3, y3, θ3)(t = 0) = (10,−8,
2π

3
)

(x4, y4, θ4)(t = 0) = (−10,−14, π)

The results of stabilization are sketched in figures
Fig.1011 and the stabilizing protocols are given by
figures Fig.1213 which confirm the stability of each
unicycle at the origin with continuous control feed
back.
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Figure 10: Finitetime stability of xi as positions of 4
unicycles
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Figure 11: Finitetime stability of yi as positions of 4
unicycles

6 Conclusion
For networked dynamic systems affine in the con
trol vector, two protocols are proposed and theoret
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Figure 12: Stabilizing inputs ui of 4 unicycles
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Figure 13: Stabilizing inputs wi of 4 unicycles

ically analyzed with respect to two types of nonlin
ear dynamic models. For a nonlinear driftless multi
system, necessary conditions on the control matrix are
derived that assert finitetime average consensus to
ward a predefined agreement value, obtained from the
multisystem initial conditions. However, for multi
system integrating drift terms, sufficient conditions
on the drift term are discussed, and when they as
sociated to the protocol solve a finitetime average
consensus where as a result an average trajectory is
followed by the group. Further, our stability results
in networked dynamic systems overcome the individ
ual stability analysis of each system where some ob
structions for the agent’s stability at the origin occur.
It is well known that an unicycle doesn’t verify the
Brockett’s necessary condition and the stabilization
at the origin isn’t possible with feedbacks that de
pend only on states. Here, due to the interconnection,
the multiunicycle stability result implies the stability
of each unicycle with smooth and bounded control
inputs. The results of the paper can be extended using
a directed graph while one may address the problem
of consensus and stability for heterogenous systems
based on the two fundamental dynamic models.
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