
Application Checkpoint and Power Study on Large Scale Systems

YUPING FAN

Department of Computer Science

Illinois Institute of Technology

10 West 35th Street, Chicago, IL, 60616

USA

Abstract: - Power efficiency is critical in high performance computing (HPC) systems. To achieve high power

efficiency on application level, it is vital importance to efficiently distribute power used by application checkpoints.

In this study, we analyze the relation of application checkpoints and their power consumption. The observations

could guide the design of power management.

Key-Words: - High Performance Computing (HPC), power management, performance analysis

Received: August 25, 2021. Revised: April 18, 2022. Accepted: May 19, 2022. Published: June 8, 2022.

1 Introduction
As the size of HPC systems rapidly increasing, the

amount of electrical power consumed by HPC

systems are keeping increasing. As a result, power

becomes the leading constraint for the design of the

next generation HPC systems. There are several

existing solutions, such as power capping and

dynamic voltage and frequency scaling (DVFS), to

address the power constraints. To efficient distribute

power, it is crucial to analyze application behaviors

and provide customized power policies for various

applications.

Checkpointing is the widely used fault tolerate

mechanism. Checkpoints can be categorized into

system-level and application-level checkpoints.

Application-level checkpoints aim to recover failed

applications. Applications can choose their own

checkpoint frequency and other parameters related to

checkpoints.

Power and time consumed by checkpointing is not

negligible. Therefore, this work studies how the

checkpoint and faults affect the power and energy

consumption. We utilize the MonEQ1 to gather the

power information on Mira. MonEQ is a user-level

profiling library, which collects power information at

node card level. Beside the node card power

information as a whole, the power information breaks

down into six domains, which are dram voltage, link

chip voltage, SRAM voltage, optics voltage, optics

voltage, PCIExpress voltage and link chip core

voltage. Three benchmarks, NPB,2 Flash3 and

Stream,4 are investigated in this study. For NPB and

Stream benchmarks, we add the checkpoints and

faults by FTI.5 FTI is a fault tolerance interface,

which provides application level checkpointing for

large-scale supercomputers. Four configurable

checkpoint levels are offered in FTI, which provides

different levels of protection for applications. The

checkpoint frequencies can be configured and be

optimized6 to achieve the balance between execution

time and program correctness. Flash benchmark has

its own checkpointing strategy, but there is no option

to inject faults.

The observations in this study can guide HPC job

scheduler to intelligently schedule jobs7–17 and

wisely set checkpoint strategies in order to achieve

high power efficiency.

The remainder of this paper is organized as follows.

We start by introducing background and related work

in §2. §3 presents the analysis and observation. We

conclude the paper in §4.

2 Background
This section introduces HPC power management in

§2.1 and Application Checkpointing §2.2. Then, we

introduce the benchmarks analyzed in this study

(§2.3).

2.1 HPC Power Management
As the size of HPC systems size rapidly grow, the

limited power budget becomes one of the most

crucial challenges. Several hardward power

management mechanisms, such as dynamic voltage

and frequency scaling (DVFS) and power capping,

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.27 Yuping Fan

E-ISSN: 2224-2872 221 Volume 21, 2022

have been developed. Power can be management

either at the system level or at the application level.

Studies show that managing power at application

level is more efficient. This is because the effects of

power capping on different applications vary. Even

the effects of power capping on different stages of an

applications vary. Therefore, to efficient manage

power, it is crucial to comprehensively analyze the

effects of power management on individual

applications.

2.2 Application Checkpointing
Fault tolerance is a serious problem in HPC systems.

HPC systems consist of millions of components. A

single point of failure could lead to application

failure, or even system failure. As the HPC system

sizes rapidly increasing, the failures are happened

more frequently. Checkpointing is one of the most

widely used fault tolerance techniques. HPC

checkpointing can be implemented in two levels:

system level and application level. System level

checkpointing can prevent catastrophic system

failures, but it is very time- and memory- intensive.

On the other hand, application checkpointing is more

lightweight and can prevent application failures.

Typically, application checkpointing is scheduled

more often than system checkpointing.

2.3 Benchmarks
In order to comprehensively evaluate various types of

applications performance, three benchmarks are

studied in this work.

2.3.1 NPB benchmarks

The NAS Parallel Benchmarks (NPB) are a small set

of programs designed to help evaluate the

performance of highly parallel supercomputers. The

benchmarks are derived from computational fluid

dynamics (CFD) applications and consist of five

kernels and three pseudo-applications. We study

three representative programs from NPB

benchmarks:

1. CG: Conjugate Gradient, irregular memory access

and communication

2. FT: discrete 3D fast Fourier Transform, all-to-all

communication

3. LU: Lower-Upper Gauss-Seidel solver

2.3.2 Flash

Flash benchmark is multiphysics multiscale

simulation code. We select Sedov explosion problem

in this study. The Sedov explosion problem is a

hydrodynamical test to check the code’s ability to

deal with strong shocks and non-planar symmetry.

2.3.3 STREAM

STREAM is a simple, synthetic benchmark designed

to measure sustainable memory bandwidth (in MB/s)

and a corresponding computation rate for four simple

vector kernels. STREAM is the representative of

memory intensive jobs.

3 Analysis

3.1 NPB Benchmarks

Figure 1: The execution time of NPB benchmarks. The

green bars represent the execution time without

checkpoints; the red bars represent the execution time

with checkpoints but without fault injections; the blue

bars represent the execution time with checkpoints and

fault injections.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.27 Yuping Fan

E-ISSN: 2224-2872 222 Volume 21, 2022

For NPB benchmarks, we choose the largest problem

size E to do all the experiments.

In order to show the fault tolerance influence on

power consumption, each application ran three

times with the same settings, except the checkpoints

and faults. The first run records the power

information without checkpoints and faults. The

second run adds checkpoints but no injected faults.

The third run adds both checkpoints and injected

faults.

Figure 2: The energy consumption of NPB benchmarks.

Figure 1 and figure 2 presents the effects of

checkpoints on execution time and energy

consumption respectively.

The following subsection gives more detailed

analysis on these three benchmarks.

Figure 3: NPB: CG power consumption on 1024, 2048,

4096 and 8192 nodes respectively. \w/o FTI" denotes

experiment without checkpoints and faults. \w/

FTI(1,2,3,4)" denotes experiment with FTI and the

checkpointing frequencies from level 1 to level 4 are 1, 2,

3 and 4 respectively. \w/ FTI(1,2,3,4) I" denotes the

experiment with FTI and inject faults.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.27 Yuping Fan

E-ISSN: 2224-2872 223 Volume 21, 2022

3.1.1 CG
Figure 3 and figure 4 show the CG program power
consumption on 1024, 2048, 4096 and 8192 nodes
respectively. CG programs ran at four scales. They are
1k, 2k, 4k and 8k nodes, which means 1k, 2k, 4k and
8k MPI ranks separately. Since chip core, dram,
networks consume most energy and checkpoints and
faults do not significant influences on other domains,
we ignore other domains.

3.1.2 FT
Figure 5 and 6 show FT’s power consumption on
different problem sizes. The FT experiment ran on 1k,
2k, and 4k nodes. We skip the experiment on 8k nodes,
because FT experiment on 8k nodes is too short to
gather enough power consumption information.

Figure 4: Box plot comparison of average power

consumption at the node card level for NPB: CG.

Table 1: Incremental percentage of average power, execution time and energy. Negative percentage denotes the

decrease, for example, the power consumption with FTI of the NPB: CG on 2048 nodes decrease 1.71%

compare to that without FTI.

to that without FTI.percentage denotes the

Figure 5: NPB: FT power consumption on 1024, 2048 and 4096 nodes respectively.

Figure 6: Box plot comparison of average power consumption at the node card level for NPB: FT.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.27 Yuping Fan

E-ISSN: 2224-2872 224 Volume 21, 2022

Figure 7: NPB: LU power consumption on 1024, 2048, 4096 and 8192 nodes respectively.

Figure 8: Box plot comparison of average power consumption at the node card level for NPB: LU.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.27 Yuping Fan

E-ISSN: 2224-2872 225 Volume 21, 2022

Figure 9: The execution time and energy of Flash: Sedov application.

Figure 10: Flash: Sedov power consumption at 512 scale.

Figure 11: The execution time and energy of STREAM benchmark.

Figure 12: STREAM power consumption on 32 nodes.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.27 Yuping Fan

E-ISSN: 2224-2872 226 Volume 21, 2022

3.1.3 LU
Figure 7 and 8 show LU’s power consumption on
different problem sizes.

3.2 Flash
In-build checkpoint option in flash code enables us
doing checkpoint at regular time or instruction
intervals. In this experiment, we compare the power
consumption of Sedov ran on 512 nodes with
checkpoints and that with checkpoints.

Figure 9 presents the execution time and energy
consumption of Flash: Sedov application. Figure 10
represents Flash’s power consumption at 512 scale.

3.3 STREAM
Note that for STREAM, FTI is used to do regular
checkpoints and random fault injection. Figure 11
presents the execution time and energy consumption
of STREAM.

Figure 12 represents STREAM’s power consumption
on 32 nodes.

3.4 Key Observations
Based on the comprehensive analysis on NPB, Flash,
and Stream benchmarks, we summarize the key
observations with the following five categories.

3.4.1 With checkpoint or without checkpoint

 The power consumption remains the same or
reduces a little (-3.58% -0.24%) in most cases by
adding checkpoint without injecting faults. The
possible reason is that checkpointing is not
computation intensive task, hence the chip core
power is reduced in most cases, which causes the
total power reduced too. There are only four
exceptions, which are luE1024, luE2048, ftE2048
and cgE1024, but the differences are trivial and
have not exceeded 1% in all three cases.

 The execution time and energy increase after
adding checkpoints. Adding the checkpoints with
the same frequencies have the different effect on
different application and even the same
application running on different scales. For NPB
benchmarks, the increases in the time range from
6.41% to 38.85% and the increases in the energy
range from 4.17% to 27.95%. We can see from
figure 7, that the energy cost is close related to
execution time and they follow the same trend.
For Stream benchmark, the execution time
increase 33.15% and the energy increases
31.99% by adding checkpoints. Stream
benchmark is more sensitive to the checkpoints.
This is because Stream is a memory-intensive
application. There is no local disk on nodes, FTI

saves the level 1, 2 and 3 checkpoints in memory,
which cause the competition between the
checkpoint and progress of stream and we can
observe the higher DRAM power than other
benchmarks in this study. Hence, we observe
more significant influence on Stream benchmark
comparing with NPB benchmarks.

3.4.2 Inject fault or not

 Injecting faults cause the power increases or
remain the same (-0.68% 3.76%) in most cases
comparing to only adding checkpoints without
faults. The main increases came from the chip
core power increases because the recovery
process is computationally intensive. From Table
1, we observe that CG and LU average power on
all 4 different scales increase the power
consumption. Adding faults seems to reduce the
power consumption for FT, this is because FT
benchmark runs too short, that these two
experiments do a different number of the four-
level checkpoint and the difference of the number
of checkpoints have a great influence on the short
jobs. Stream benchmark and Flash benchmark
also show the same trend.

 Another finding is that injecting faults make the
power consumption fluctuate. We can see it from
the boxplots. It is clear that there are more
outliers for power consumption with fault
injections. There are more spikes after injecting
faults. The recovery process first retrieves
information from disk then re- computes from the
latest checkpoint. The retrieving process is the
not computationally intensive, but the re-
computation is. The interruption of faults explains
why there are more ups and downs when
injecting faults.

 Randomly injected faults have different effects on
execution time and energy. Figure 7 shows that
injected faults make the execution time of
cgE1024, ftE4096 and luE8192 increase
significantly. The logs of these runs show that all
these runs experienced the fault error and
recovered from level 4 checkpoint, which is the
most time-consuming recovery process. Another
observation is that as the number of nodes
increases, the recovery process takes more time.
For example, a fault error of luE8192 takes
90.69% more than that without error.

 If we ignore the cases that experienced a fatal
error, FTI is very efficient in recovery. The
incremental percentage of execution time is
ranging from 0.30% to 6.27% and that of energy
is ranging from 0.31% to 4.79%. In reality, the
failure rate is lower than the rate in our
experiment, because we injected faults. Hence, we
can say that if there are no errors that requiring
all the nodes back to last checkpoints, faults have

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.27 Yuping Fan

E-ISSN: 2224-2872 227 Volume 21, 2022

a trivial effect on execution time and energy.
Stream also shows the same feature that injects
faults without a fatal error does not affect the
execution time and energy too much.

3.4.3 Number of nodes

 For CG and FT, increasing the number of nodes
seems further lowered the power with
checkpointing comparing to that without
checkpointing. The difference may be the result of
the communication delay by introducing
checkpoint. Level 2 and level 3 require storing
checkpoints at other nodes, which involves the
network. More nodes mean there are more
communication and information needed to
transfer in the system, which may delay the
computation. As the result, the chip core power
goes down as the number of node increases.

3.4.4 Energy

 From the energy figures and Table 1, we can see
that running application without checkpoints
consumes less energy than running the same
application with checkpoints. It is also true that
application with fault injection consumes more
energy than application without fault injection.

3.4.5 Time

 The column plots present that running
application without checkpoint takes less time
and running application with fault takes more
time than that without faults.

 The time has a dominate role in energy. Although
larger scale results in shorter execution time, the
total energy consumed by application increase as
the scale becomes larger. From energy usage
view, smaller scale help saves energy.

4 Conclusion
In this paper, we have analyzed the effect of application
checkpoints on power consumption. The observations
provide insight to design power- and checkpoint-
aware scheduling policies.

References:

[1] Wallace, S., Z. Zhou, V. V., Coghlan, S.,

Tramm, J., Lan, Z., and Papka, M. E.,

“Application power profiling on ibm blue

gene/q,” in [IEEE International Conference on

Cluster Computing (CLUSTER)], (2013).

[2] “NAS Parallel Benchmarks.”

https://www.nas.nasa.gov/software/npb.html.

(Accessed: 27 August 2021).
[3] “Flash.” http://flash.uchicago.edu/site/.

(Accessed: 27 August 2021).

[4] “Stream.” https://www.cs.virginia.edu/stream/.

(Accessed: 27 August 2021).

[5] “Fault Tolerance Interface (FTI).”

http://leobago.com/projects/. (Accessed: 27

August 2021).

[6] Di, S., Bautista-Gomez, L., and Cappello, F.,

“Optimization of multi-level checkpoint model

with uncertain execution scales,” in

[Proceedings of the International Conference for

High Performance Computing, Networking,

Storage and Analysis (SC)], (2014).

[7] Fan, Y., Rich, P., Allcock, W., Papka, M., and

Lan, Z., “Trade-Off Between Prediction

Accuracy and Underestimation Rate in Job

Runtime Estimates,” in [CLUSTER], (2017).

[8] Qiao, P., Wang, X., Yang, X., Fan, Y., and Lan,

Z., “Preliminary Interference Study About Job

Placement and Routing Algorithms in the Fat-

Tree Topology for HPC Applications,” in

[CLUSTER], (2017).

[9] [9] Allcock, W., Rich, P., Fan, Y., and Lan, Z.,

“Experience and Practice of Batch Scheduling

on Leadership Supercomputers at Argonne,” in

[JSSPP], (2017).

[10] Li, B., Chunduri, S., Harms, K., Fan, Y., and

Lan, Z., “The Effect of System Utilization on

Application Performance Variability,” in

[ROSS], (2019).

[11] Fan, Y., Lan, Z., Rich, P., Allcock, W., Papka,

M., Austin, B., and Paul, D., “Scheduling

Beyond CPUs for HPC,” in [HPDC], (2019).

[12] Yu, L., Zhou, Z., Fan, Y., Papka, M., and Lan,

Z., “System-wide Trade-off Modeling of

Performance, Power, and Resilience on

Petascale Systems,” in [The Journal of

Supercomputing], (2018).

[13] Fan, Y. and Lan, Z., “Exploiting Multi-Resource

Scheduling for HPC,” in [SC Poster], (2019).

[14] Qiao, P., Wang, X., Yang, X., Fan, Y., and Lan,

Z., “Joint Effects of Application

Communication Pattern, Job Placement and

Network Routing on Fat-Tree Systems,” in

[ICPP Workshops], (2018).

[15] Fan, Y., Lan, Z., Childers, T., Rich, P., Allcock,

W., and Papka, M., “Deep Reinforcement Agent

for Scheduling in HPC,” in [IPDPS], (2021).

[16] Fan, Y. and Lan, Z., “DRAS-CQSim: A

Reinforcement Learning based Framework for

HPC Cluster Scheduling,” in [Software

Impacts], (2021).

[17] Fan, Y., Rich, P., Allcock, W., Papka, M., and

Lan, Z., “ROME: A Multi-Resource Job
Scheduling Framework for Exascale HPC

System,” in [IPDPS poster], (2018).

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2022.21.27 Yuping Fan

E-ISSN: 2224-2872 228 Volume 21, 2022

