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Abstract: - Power efficiency is critical in high performance computing (HPC) systems. To achieve high power 

efficiency on application level, it is vital importance to efficiently distribute power used by application checkpoints. 

In this study, we analyze the relation of application checkpoints and their power consumption. The observations 

could guide the design of power management.  
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1 Introduction 
As the size of HPC systems rapidly increasing, the 

amount of electrical power consumed by HPC 

systems are keeping increasing. As a result, power 

becomes the leading constraint for the design of the 

next generation HPC systems. There are several 

existing solutions, such as power capping and 

dynamic voltage and frequency scaling (DVFS), to 

address the power constraints. To efficient distribute 

power, it is crucial to analyze application behaviors 

and provide customized power policies for various 

applications.  

 

Checkpointing is the widely used fault tolerate 

mechanism. Checkpoints can be categorized into 

system-level and application-level checkpoints. 

Application-level checkpoints aim to recover failed 

applications. Applications can choose their own 

checkpoint frequency and other parameters related to 

checkpoints.  

 

Power and time consumed by checkpointing is not 

negligible. Therefore, this work studies how the 

checkpoint and faults affect the power and energy 

consumption. We utilize the MonEQ1 to gather the 

power information on Mira. MonEQ is a user-level 

profiling library, which collects power information at 

node card level. Beside the node card power 

information as a whole, the power information breaks 

down into six domains, which are dram voltage, link 

chip voltage, SRAM voltage, optics voltage, optics 

voltage, PCIExpress voltage and link chip core 

voltage. Three benchmarks, NPB,2 Flash3 and 

Stream,4 are investigated in this study. For NPB and 

Stream benchmarks, we add the checkpoints and 

faults by FTI.5 FTI is a fault tolerance interface, 

which provides application level checkpointing for 

large-scale supercomputers. Four configurable 

checkpoint levels are offered in FTI, which provides 

different levels of protection for applications. The 

checkpoint frequencies can be configured and be 

optimized6 to achieve the balance between execution 

time and program correctness. Flash benchmark has 

its own checkpointing strategy, but there is no option 

to inject faults.  

 

The observations in this study can guide HPC job 

scheduler to intelligently schedule jobs7–17 and 

wisely set checkpoint strategies in order to achieve 

high power efficiency.  

 

The remainder of this paper is organized as follows. 

We start by introducing background and related work 

in §2. §3 presents the analysis and observation. We 

conclude the paper in §4.  

 

2 Background 
This section introduces HPC power management in 

§2.1 and Application Checkpointing §2.2. Then, we 

introduce the benchmarks analyzed in this study 

(§2.3).  

 

2.1 HPC Power Management 
As the size of HPC systems size rapidly grow, the 

limited power budget becomes one of the most 

crucial challenges. Several hardward power 

management mechanisms, such as dynamic voltage 

and frequency scaling (DVFS) and power capping, 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2022.21.27 Yuping Fan

E-ISSN: 2224-2872 221 Volume 21, 2022



have been developed. Power can be management 

either at the system level or at the application level. 

Studies show that managing power at application 

level is more efficient. This is because the effects of 

power capping on different applications vary. Even 

the effects of power capping on different stages of an 

applications vary. Therefore, to efficient manage 

power, it is crucial to comprehensively analyze the 

effects of power management on individual 

applications.  

 

2.2 Application Checkpointing 
Fault tolerance is a serious problem in HPC systems. 

HPC systems consist of millions of components. A 

single point of failure could lead to application 

failure, or even system failure. As the HPC system 

sizes rapidly increasing, the failures are happened 

more frequently. Checkpointing is one of the most 

widely used fault tolerance techniques. HPC 

checkpointing can be implemented in two levels: 

system level and application level. System level 

checkpointing can prevent catastrophic system 

failures, but it is very time- and memory- intensive. 

On the other hand, application checkpointing is more 

lightweight and can prevent application failures. 

Typically, application checkpointing is scheduled 

more often than system checkpointing. 

 

2.3 Benchmarks 
In order to comprehensively evaluate various types of 

applications performance, three benchmarks are 

studied in this work.  

 

2.3.1 NPB benchmarks  

The NAS Parallel Benchmarks (NPB) are a small set 

of programs designed to help evaluate the 

performance of highly parallel supercomputers. The 

benchmarks are derived from computational fluid 

dynamics (CFD) applications and consist of five 

kernels and three pseudo-applications. We study 

three representative programs from NPB 

benchmarks:  

1. CG: Conjugate Gradient, irregular memory access 

and communication  

2. FT: discrete 3D fast Fourier Transform, all-to-all 

communication 

3. LU: Lower-Upper Gauss-Seidel solver  

 

2.3.2 Flash 

Flash benchmark is multiphysics multiscale 

simulation code. We select Sedov explosion problem 

in this study. The Sedov explosion problem is a 

hydrodynamical test to check the code’s ability to 

deal with strong shocks and non-planar symmetry.  

  

2.3.3 STREAM 

STREAM is a simple, synthetic benchmark designed 

to measure sustainable memory bandwidth (in MB/s) 

and a corresponding computation rate for four simple 

vector kernels. STREAM is the representative of 

memory intensive jobs.  

 

3 Analysis 

 
3.1 NPB Benchmarks 

 

 

 

Figure 1: The execution time of NPB benchmarks. The 

green bars represent the execution time without 

checkpoints; the red bars represent the execution time 

with checkpoints but without fault injections; the blue 

bars represent the execution time with checkpoints and 

fault injections. 
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For NPB benchmarks, we choose the largest problem 

size E to do all the experiments.  

In order to show the fault tolerance influence on 

power consumption, each application ran three 

times with the same settings, except the checkpoints 

and faults. The first run records the power 

information without checkpoints and faults. The 

second run adds checkpoints but no injected faults. 

The third run adds both checkpoints and injected 

faults.  

 

 

 

Figure 2: The energy consumption of NPB benchmarks. 

Figure 1 and figure 2 presents the effects of 

checkpoints on execution time and energy 

consumption respectively.  

The following subsection gives more detailed 

analysis on these three benchmarks.  

 

 

Figure 3: NPB: CG power consumption on 1024, 2048, 

4096 and 8192 nodes respectively. \w/o FTI" denotes 

experiment without checkpoints and faults. \w/ 

FTI(1,2,3,4)" denotes experiment with FTI and the 

checkpointing frequencies from level 1 to level 4 are 1, 2, 

3 and 4 respectively. \w/ FTI(1,2,3,4) I" denotes the 

experiment with FTI and inject faults. 
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3.1.1 CG  
Figure 3 and figure 4 show the CG program power 
consumption on 1024, 2048, 4096 and 8192 nodes 
respectively. CG programs ran at four scales. They are 
1k, 2k, 4k and 8k nodes, which means 1k, 2k, 4k and  
8k MPI ranks separately. Since chip core, dram, 
networks consume most energy and checkpoints and 
faults do not significant influences on other domains, 
we ignore other domains.  
 
3.1.2 FT 
Figure 5 and 6 show FT’s power consumption on 
different problem sizes. The FT experiment ran on 1k, 
2k, and 4k nodes. We skip the experiment on 8k nodes, 
because FT experiment on 8k nodes is too short to 
gather enough power consumption information.  

 
 

 
Figure 4: Box plot comparison of average power 

consumption at the node card level for NPB: CG. 

 

Table 1: Incremental percentage of average power, execution time and energy. Negative percentage denotes the 

decrease, for example, the power consumption with FTI of the NPB: CG on 2048 nodes decrease 1.71% 

compare to that without FTI. 

to that without FTI.percentage denotes the 

Figure 5: NPB: FT power consumption on 1024, 2048 and 4096 nodes respectively. 

Figure 6: Box plot comparison of average power consumption at the node card level for NPB: FT. 
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Figure 7: NPB: LU power consumption on 1024, 2048, 4096 and 8192 nodes respectively. 

Figure 8: Box plot comparison of average power consumption at the node card level for NPB: LU. 
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Figure 9: The execution time and energy of Flash: Sedov application. 

 

Figure 10: Flash: Sedov power consumption at 512 scale. 

Figure 11: The execution time and energy of STREAM benchmark. 

Figure 12: STREAM power consumption on 32 nodes. 
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3.1.3 LU 
Figure 7 and 8 show LU’s power consumption on 
different problem sizes.  

 

3.2 Flash 
In-build checkpoint option in flash code enables us 
doing checkpoint at regular time or instruction 
intervals. In this experiment, we compare the power 
consumption of Sedov ran on 512 nodes with 
checkpoints and that with checkpoints.  

Figure 9 presents the execution time and energy 
consumption of Flash: Sedov application. Figure 10 
represents Flash’s power consumption at 512 scale.  

3.3 STREAM 
Note that for STREAM, FTI is used to do regular 
checkpoints and random fault injection. Figure 11 
presents the execution time and energy consumption 
of STREAM.  

Figure 12 represents STREAM’s power consumption 
on 32 nodes.  

3.4 Key Observations 
Based on the comprehensive analysis on NPB, Flash, 
and Stream benchmarks, we summarize the key 
observations with the following five categories.  

 
3.4.1 With checkpoint or without checkpoint  

 The power consumption remains the same or 
reduces a little (-3.58% -0.24%) in most cases by 
adding checkpoint without injecting faults. The 
possible reason is that checkpointing is not 
computation intensive task, hence the chip core 
power is reduced in most cases, which causes the 
total power reduced too. There are only four 
exceptions, which are luE1024, luE2048, ftE2048 
and cgE1024, but the differences are trivial and 
have not exceeded 1% in all three cases.  

 The execution time and energy increase after 
adding checkpoints. Adding the checkpoints with 
the same frequencies have the different effect on 
different application and even the same 
application running on different scales. For NPB 
benchmarks, the increases in the time range from 
6.41% to 38.85% and the increases in the energy 
range from 4.17% to 27.95%. We can see from 
figure 7, that the energy cost is close related to 
execution time and they follow the same trend. 
For Stream benchmark, the execution time 
increase 33.15% and the energy increases 
31.99% by adding checkpoints. Stream 
benchmark is more sensitive to the checkpoints. 
This is because Stream is a memory-intensive 
application. There is no local disk on nodes, FTI 

saves the level 1, 2 and 3 checkpoints in memory, 
which cause the competition between the 
checkpoint and progress of stream and we can 
observe the higher DRAM power than other 
benchmarks in this study. Hence, we observe 
more significant influence on Stream benchmark 
comparing with NPB benchmarks.  

3.4.2 Inject fault or not  

 Injecting faults cause the power increases or 
remain the same (-0.68% 3.76%) in most cases 
comparing to only adding checkpoints without 
faults. The main increases came from the chip 
core power increases because the recovery 
process is computationally intensive. From Table 
1, we observe that CG and LU average power on 
all 4 different scales increase the power 
consumption. Adding faults seems to reduce the 
power consumption for FT, this is because FT 
benchmark runs too short, that these two 
experiments do a different number of the four-
level checkpoint and the difference of the number 
of checkpoints have a great influence on the short 
jobs. Stream benchmark and Flash benchmark 
also show the same trend.  

 Another finding is that injecting faults make the 
power consumption fluctuate. We can see it from 
the boxplots. It is clear that there are more 
outliers for power consumption with fault 
injections. There are more spikes after injecting 
faults. The recovery process first retrieves 
information from disk then re- computes from the 
latest checkpoint. The retrieving process is the 
not computationally intensive, but the re-
computation is. The interruption of faults explains 
why there are more ups and downs when 
injecting faults.  

 Randomly injected faults have different effects on 
execution time and energy. Figure 7 shows that 
injected faults make the execution time of 
cgE1024, ftE4096 and luE8192 increase 
significantly. The logs of these runs show that all 
these runs experienced the fault error and 
recovered from level 4 checkpoint, which is the 
most time-consuming recovery process. Another 
observation is that as the number of nodes 
increases, the recovery process takes more time. 
For example, a fault error of luE8192 takes 
90.69% more than that without error.  

 If we ignore the cases that experienced a fatal 
error, FTI is very efficient in recovery. The 
incremental percentage of execution time is 
ranging from 0.30% to 6.27% and that of energy 
is ranging from 0.31% to 4.79%. In reality, the 
failure rate is lower than the rate in our 
experiment, because we injected faults. Hence, we 
can say that if there are no errors that requiring 
all the nodes back to last checkpoints, faults have 
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a trivial effect on execution time and energy. 
Stream also shows the same feature that injects 
faults without a fatal error does not affect the 
execution time and energy too much.  

3.4.3 Number of nodes  

 For CG and FT, increasing the number of nodes 
seems further lowered the power with 
checkpointing comparing to that without 
checkpointing. The difference may be the result of 
the communication delay by introducing 
checkpoint. Level 2 and level 3 require storing 
checkpoints at other nodes, which involves the 
network. More nodes mean there are more 
communication and information needed to 
transfer in the system, which may delay the 
computation. As the result, the chip core power 
goes down as the number of node increases.  

3.4.4 Energy  

 From the energy figures and Table 1, we can see 
that running application without checkpoints 
consumes less energy than running the same 
application with checkpoints. It is also true that 
application with fault injection consumes more 
energy than application without fault injection.  

3.4.5 Time  

 The column plots present that running 
application without checkpoint takes less time 
and running application with fault takes more 
time than that without faults.  

 The time has a dominate role in energy. Although 
larger scale results in shorter execution time, the 
total energy consumed by application increase as 
the scale becomes larger. From energy usage 
view, smaller scale help saves energy.  

4 Conclusion 
In this paper, we have analyzed the effect of application 
checkpoints on power consumption. The observations 
provide insight to design power- and checkpoint-
aware scheduling policies.  
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