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Abstract: In this study, an effective earthquake forecasting model is introduced using a hybrid metaheuristic machine learning 
(ML) algorithm with CUDA-enabled parallel processing. To improve the performance and accuracy of the model, a novel 
hybrid ML model is developed that utilizes parallel processing. The model consists of a Chaotic Chimp based African Vulture 
Optimization Algorithm (CCAVO) for feature selection and a Hybrid Levenberg-Marquardt Back-Propagation Neural Network 
(HLMt-BPNN) for prediction. The proposed model follows a four-step process: preprocessing the raw data to identify seismic 
indications, extracting features from the preprocessed data, using optimized ML algorithms to forecast the earthquake and its 
expected time, epicenter, and magnitude, and implementing the model using the Python platform. The model's performance is 
evaluated using various criteria, including accuracy, precision, recall, F-measure, specificity, false negative ratio, false positive 
ratio, negative prediction value, Matthew’s correlation coefficient, root mean square error, mean absolute error, and mean 
absolute percentage error. The proposed model achieved an accuracy of 98%, which is higher than the accuracy of existing 
earthquake prediction methods. 
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1.  Introduction 

The most frequent natural disaster is an earthquake, which 
happens when tectonic plates slide past one another or 
laterally. This causes significant losses in human lives and 
material goods by disrupting the seas and land masses. The 
Richter scale, which ranges from 0 to 9, is used to quantify the 
intensity of earthquakes [1] [2] [3]. Strong earthquakes are 
those with a Richter scale value greater than or equal to 6. 
Furthermore, due to changes in the structure of the region that 
is prone to rupture, selective release of tension, and a variety 
of additional flaws, earthquakes do not occur on a regular 
basis. This proves that the intervals between these seismic 
occurrences must be unquestionably erratic in character [4] 
[5]. One of the key factors in an earthquake's categorization is 
its magnitude. The strength of the earthquake source is shown 
via a logarithmic scale. Magnitude is utilized in scientific 
study as well as to quickly educate the public about 
earthquakes [6] [7] [8]. 

Numerous research have proposed several forms of 
magnitude scales ever since the so-called local (ML) or 
Richter scale, which is used to measure earthquake magnitude. 
Although these magnitude scales may indicate fundamentally 
distinct aspects of the source, they are appropriate for a variety 
of magnitude of earthquakes and the distances between 
epicenters despite measuring differing seismic wave 
attributes. Quantity scales are often empirical. Typically, a 
magnitude is calculated using a formula containing a number 
of constants [9] [10] from the time and amplitude of a certain 
type of seismic wave. These constants are chosen such that, at 
least within a particular magnitude range, a new scale's 
magnitudes match those of an existing one. On a seismogram, 
the length of shaking can occasionally be used to estimate 
magnitude. Because of this, there may be more than one 
magnitude unit of difference between the values of the various 
magnitude categories for both very large and very small 
earthquakes as well as for some specific classes of seismic 

source. This is due to the complicated physical mechanism 
that causes an earthquake [11] [12] [13]. 

The development of an awareness system utilizing ML has 
been a growing area of research across all sectors of 
engineering and science as a result of the losses brought on by 
an earthquake. Numerous studies have advanced in this 
approach. Geologists and earthquake specialists now have a 
new, creative technique to assess seismic risk and trigger 
future earthquakes that exceeds the traditional, established 
ways they had previously used. Earthquake projections can be 
divided into two categories: forecast predictions and short-
term predictions [14] [15]. In contrast to long-term estimates, 
which are made months to years before it happened, short-
term earthquake predictions are created hours to days 
beforehand. The main goal of this research is to use various 
ML methods to forecast whether a significant earthquake 
would be labelled as a negative or positive event. The model 
cannot be solved perfectly using ML alone. A new ML model 
is created in parallel to improve the model's accuracy and 
performance. Since the parallelism is naturally supplied by 
employing the architecture for constructing GPU utilizing 
computational techniques, known as the Compute Unified 
Device Architecture, the shortcomings of ML using a central 
processing unit (CPU) may be solved by Graphic Processing 
unit (GPU) implementation (CUDA). The implementation of 
hybrid state vector machine (HSVM) algorithm using parallel 
processing through CUDA is used to forecast earthquakes. 

 The foremost contribution of the paper is as follows, 

• Chaotic Chimp based African Vulture Optimization 
Algorithm (CCAVO) is used for feature selection. 

• The CUDA model is used for train the extracted data. 
The CUDA model will process the data parallelly. This is the 
main advantage of CUDA model. 

• Then the prediction is performed with the help of 
HLMt-BPNN model. The accuracy of the prediction model is 
improved using the ISOA. 
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• By comparing the CPU and GPU's respective 
computation times, the performance of the proposed model is 
compared to that of the present model. 

 This essay's remaining sections are organized as 
follows: Section 2 discussed the literature reviews that were 
completed by earthquake forecasting and the history of the 
ideas employed in this article. The methodology of the 
proposed models was explained in Section 3. the outcomes of 
all the approaches are provided, and the best method is 
determined by comparison with a few other tried-and-true 
techniques are described in Section 4. The study was 
concluded in Section 5.   The formatter will need to create 
these components, incorporating the applicable criteria that 
follow. 

2. Proposed Methodology 

In this article, an HLMt-BPNN algorithm is created for use 
with GPUs and the CUDA programming environment. The 
computation speed and performance of the forecasting model 
were increased by the method by adding the GPU to machine 
learning, which further enhanced resilience. Preprocessing, 
feature extraction, feature selection, model training, and 
predictions are eventually made on an unobserved portion of 
the dataset are other procedures that are involved. The 
effectiveness of the prediction model is ultimately assessed, 
and comparisons are made. Fig.1 depicts the overall 
architecture diagram. 

The The eight seismic parameters described in Section 3.1 
have been subjected to a variety of ML techniques. The 
earthquake is classified by considering the threshold value 
specifically based on magnitude i.e., Magnitude>5.5 
illustrates that the earthquake is occurred. Conversely, the 
Magnitude<5.5 shows that the earthquake is non occurred. 
This can be stated as 0 or 1 problem which means 0 denotes 
non-occurred and the 1 denotes occurred. The major 
indention of the proposed model is to deal with the binary 
classification issue. After these approaches have been trained, 
output on unknown data parameters is generated, and 
performance is then assessed in Section 4. The preprocessing 
is significant step for enhancing the prediction performance. 
The subsequent section describes the feature selection step in 
detail.   
 

2.1 Feature Selection 

To select the best optimal features from the extracted 
features, a Chaotic Chimp based African Vulture 
Optimization Algorithm (CCAVO) is used. 

1) Chaotic Chimp based African Vulture Optimization 

Algorithm 

The AVOA (African Vulture Optimization Algorithm) is a 
nature-inspired metaheuristic algorithm that was developed 
as a tool for optimization. It is based on the observed behavior 
of African vultures, which are known for their ability to find 
food in a wide range of environments. One potential 
advantage of AVOA is its ability to effectively search for 
solutions in a wide range of optimization problems, including 
those with many variables and complex constraints. It is also 
relatively simple to implement, as it only requires a few 
parameters to be set by the user. AVOA has been applied to 

various optimization problems and has shown to be effective 
at finding good solutions. AVOA has been tested on a variety 
of optimization problems and has demonstrated its ability to 
find high-quality solutions.  

 
 
 

 
 

Fig. 1. Block diagram of the proposed methodology. 
   
Stage 1: Vulture Group Formation 

In the first phase of the CCAVO method, the initial 
population of vultures is created and the fitness of all 
solutions is evaluated. The vulture corresponding to the best 
solution is identified as the first vulture, the vulture 
corresponding to the second-best solution is identified as the 
second-best vulture using the Eq. (11), and all the other 
vultures are assigned to the third group according to the 
second criteria. This phase sets the foundation for the 
subsequent phases of the foraging stage, in which the 
vultures' positions are updated and their fitness values are 
reevaluated. 

𝐵𝑣𝑎𝑖 = {
𝐵𝑣𝑎1  if 𝑛𝑖 = 𝑟1

𝐵𝑣𝑎2  if 𝑛𝑖 = 𝑟2
  (1) 

In this phase, the variables 𝐵𝑣𝑎1 and 𝐵𝑣𝑎2 represent the best 
and second-best vultures, respectively and r_1 and r_2are two 
random values in the range [0,1] such that their sum is 1. The 
value of 𝑛𝑖   is determined using the roulette-wheel technique 
as shown in Eq. (2). 

𝑧𝑖 =
𝐹𝑖𝑡𝑛𝑖

∑ 𝐹𝑖𝑡𝑛𝑖
𝑛
𝑖=1

   (2) 

In this phase, 𝐹𝑖𝑡𝑛𝑖, which represents the fitness of the first 
and second groups of vultures, and n, which represents the 
combined number of vultures in both groups, are used. 

 
Stage 2: Vulture Starvation Level 

The CCAVO algorithm uses the hunger level of vultures, as 
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calculated by Eq. (3), to determine their exploration and 
exploitation behavior. When vultures are not hungry, they 
have the energy and endurance to fly long distances in search 
of food. However, if they are hungry, they will not be able to 
sustain flight for as long and may act aggressively in their 
search for food. The 𝑖𝑡ℎ   hunger level of the vultures, 
represented by (𝐹𝑖𝑡𝑖), serves as an indicator of their transition 
from exploitation to exploration. In this way, the CCAVO 
algorithm is able to simulate the real-world behavior of 
vultures in the search for food and apply it to the optimization 
process. 

𝐹𝑖𝑡𝑛𝑖 = (2 × 𝑟𝑎𝑛𝑎′ + 1) × 𝑑 × (1 −
𝑖𝑡𝑒𝑟𝑖

max(𝑖𝑡𝑒𝑟𝑖)
) + 𝑦

      
      (3) 

Where 𝐹𝑖𝑡𝑛𝑖 denotes that the vultures have consumed all of 
the available food, 𝑟𝑎𝑛𝑎′ is a random variable with a value 
between 0 and 1, 𝑑 is a random number with a range of [1,1] 
that varies with each iteration, and t is determined by Eq. (4). 

 

𝑥 = 𝑏 × (𝑠𝑖𝑛𝑐 (
𝜋

2
×

𝑖𝑡𝑒𝑖

max(𝑖𝑡𝑒𝑖)
) + 𝑐𝑜𝑠 (

𝜋

2
×

𝑖𝑡𝑒𝑖

max(𝑖𝑡𝑒𝑖)
) − 1)     (4) 

Where the value c determines the likelihood that the vulture 
will execute the exploitation stage. In addition, 𝑖𝑡𝑒𝑖 stands for 
the current iteration number, max(𝑖𝑡𝑒𝑖) for the total number 
of iterations, and 𝑏 for a random number between -2 and 2. 
When the value of 𝐹𝑖𝑡𝑛𝑖 is greater than 1, the vultures begin 
the exploration phase and look for new food sources in 
diverse places. In the absence of this, vultures enter the stage 
of exploitation and search the nearby area for better food. 

 

Stage 3: Search Stage  

Vultures can swiftly seek food and identify dead animals 
because of their excellent vision in the natural world. But 
because they spend a lot of time scanning their surroundings 
before taking off, vultures can have trouble finding food. A 
long way in search of nourishment. A parameter labelled 
𝑧2 in the range [0,1] is used to select which of two different 
techniques vultures in the CCAVO can use to check 
numerous random sites. 

A random number randp1 between 0 and 1 is used to select 
one of the strategies during the exploration phase. 𝑍(𝑖 + 1) 
represents the position of the vulture in the next iteration of 
the optimization process 
𝑍(𝑖 + 1) = 𝐵𝑣𝑎𝑖 − 𝐿(𝑖) × 𝐹𝑖𝑡𝑛𝑖   (5) 

𝑍(𝑖 + 1) = 𝐵𝑣𝑎𝑖 -  𝐹𝑖𝑡𝑛𝑖 +  𝑟𝑎𝑛𝑎′2 × ((𝑈𝑏 − 𝐿𝑏) ×

𝑟𝑎𝑛𝑎′3 + 𝑙𝑏)   (6) 
Where, 𝑟𝑎𝑛𝑑′2 is a random integer between 0 and 1, 𝐵𝑣𝑎𝑖 

is one of the best vultures selected in the current iteration, 
𝐹𝑖𝑡𝑛𝑖 is the current iteration's rate of vulture satiation derived 
using Eq. (6), and 𝐿𝑏  and 𝑈𝑏 are the variables' lower and 
upper bounds, respectively. 𝑟𝑎𝑛𝑎′3  is used to give a high 
random coefficient at the search environment scale, 
increasing diversity and the search for different search space 
areas. Eq. (7) calculates 𝐿𝑖, which stands for the separation 

between the vulture and the currently optimal one. 
𝐿𝑖 = |𝐴 × 𝐵𝑣𝑎(i) − Z(i)|   (7) 
Here, ‘A’ is a randomly chosen number between 0 and 2, 

and 𝐿𝑖 denotes the location of the ith vulture.  
 
Stage 4: First Exploitation Stage 

The efficiency stage of the CCAVO is investigated at this 
point. If 𝐹𝑖𝑡𝑛𝑖 value is less than 1, the CCAVO initiates the 
first phase of exploitation. The selected approach is 
determined by the parameter 𝑧2  in the interval [0,1]. A 
random integer between 0 and 1 is generated at the beginning 
of this phase, 𝑟𝑎𝑛𝑑𝑧2

. If this 𝑟𝑎𝑛𝑑𝑧2
 is greater than or equal 

to parameter 𝑧2, the siege-fight tactic is employed gradually. 
If not, the circular flying method is employed. As per Eq. (8), 

 
𝑍(𝑖 + 1) =

{
𝐿𝑖 × (𝐹𝑖𝑡𝑛𝑖 +  𝑟𝑎𝑛𝑎′4) − 𝑔(𝑡)   𝑖𝑓 𝑧2 ≥ 𝑟𝑎𝑛𝑎𝑧2

𝐵𝑣𝑎𝑖 − (𝑞1 + 𝑞2)      𝑖𝑓 𝑧2 < 𝑟𝑎𝑛𝑎𝑧2

  (8) 
 
Where 𝑔(𝑡) represents the distance between the vulture and 

one of the two groups' top vultures, as determined by Eq. (9), 
and 𝑟𝑎𝑛𝑎′4 is a random number between 0 and 1. 

 
𝑔(𝑡) = 𝐵𝑣𝑎𝑖 − Z(i)   (9) 

𝑉𝑎𝑠1 = 𝐵𝑣𝑎𝑖 × (
 𝑟𝑎𝑛𝑎′5×Z(i)

2𝜋
) × cos (Z(i)) (10) 

𝑉𝑎𝑠2 = 𝐵𝑣𝑎𝑖 × (
 𝑟𝑎𝑛𝑎′6×Z(i)

2𝜋
) × sin (Z(i)) (11) 

𝑠 = 𝑐ℎ𝑎𝑜𝑡𝑖𝑐_𝑣𝑎𝑙𝑢𝑒    (12) 
𝑍(𝑖 + 1) = 𝐵𝑣𝑎𝑖 − 𝑠 ∙ (𝑉𝑎𝑠1 + 𝑉𝑎𝑠2)  (13) 
 
𝑟𝑎𝑛𝑎5 and 𝑟𝑎𝑛𝑎′6 are random numbers between 0 and 1. 

Eq. (10) and Eq. (11) are used to determine saturated vulture 
one 𝑉𝑎𝑠1 and saturated vulture two 𝑉𝑎𝑠2, and 𝑠 is the chaotic 
vector based on chimp optimization. 

 
Stage 5: Second Exploitation Stage (Chaotic Chimp based 

Enhancement in AVO) (proposed) 

The chaotic maps listed in Table 1 are used to enhance the 
performance of CCAVO. These deterministic processes can 
also produce random behavior. The update process is 
modeled as follows as per Eq. (12) 

 
𝑌𝑣𝑢𝑙𝑡𝑢𝑟𝑒(𝑡 + 1) = {𝐶ℎ𝑎𝑜𝑡𝑖𝑐_𝑣𝑎𝑙𝑢𝑒,    |𝐹𝑖𝑡𝑛𝑖| ≥  0.5 

  (14) 
 
where, 𝜇 is the random number in [0,1]. 
To summarize, the CCAVO algorithm begins by generating 

a random population of "vultures" (candidate solutions). Each 
vulture then updates its 𝑓 coefficients using its own group's 
strategy. During the iteration, the attacker, barrier, chaser, 
and driver all estimate the possible locations of the prey. The 
candidate solutions also update their distance from the prey. 
The adaptive tuning of the 𝑐 and 𝑚 parameters help to avoid 
local optima and improve the convergence rate. Additionally, 
the value of 𝑓  is reduced from 2.5 to 0 to enhance the 
exploitation process. If the inequality |𝑎| > 1 is satisfied, the 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2023.22.11 Manoj Kollam, Ajay Joshi

E-ISSN: 2224-2872 92 Volume 22, 2023



chimps diverge from the prey, otherwise they eventually 
converge towards it. Finally, the chaotic maps help to speed 
up convergence without getting stuck in local minima. 

Table 1: Chaotic Maps 

S. No Name Chaotic Map Range 

1 Bernoulli 𝑥𝑖+1 = 2𝑋𝑖(𝑚𝑜𝑑 1) (0,1) 

2 Quadratic 𝑥𝑖+1 = 𝑥𝑖
2 − 𝑐, 𝑐 = 1 (0,1) 

3 Iterative 𝑥𝑖+1 = sin (
𝑎𝜋

𝑥𝑖
), 

𝑎 = 0.7 

(-1,1) 

 

2.2 Earthquake prediction 

The eight seismic parameters have been subjected to 
various ML techniques. With earthquakes of magnitude 5.5 
and bigger being classified as Yes or 1 and earthquakes of 
lesser magnitude as No or 0, the prediction job is approached 
as a binary classification issue. These strategies produce 
results on unknown data parameters after training. 
1) Levenberg–Marquardt backpropagation (LMA) 

The Levenberg-Marquardt method is implemented here 
using the usual backpropagation approach. The algorithm 
bears the names of the researchers who developed it. It is 
taught how to train feedforward networks using the 
Levenberg-Marquardt method, and it is made clear how much 
better neural networks compute when they use this algorithm 
rather than backpropagation as is often done. Because of this, 
attempts were made to change the LMA-based 
backpropagation learning algorithm, which is noteworthy 
from the perspective of a contribution. The writers of this 
work described every mathematical formulation and function 
used to modify the conventional backpropagation along the 
lines of LMA. The construction of a "Hessian" matrix using 
this approach has the benefit of using initial derivatives with 
regard to network weights, which are conveniently handled 
by the usual backpropagation. So, the algorithm's overall 
computing complexity decreases. The algorithm is 
specifically made to reduce the total squared mistakes. A 
Taylor series can be used to expand the error vector to first 
order if there is little difference between the old and new 
weight vectors. The error function can therefore be provided 
as per Eq. (15), 

𝐸𝑓 =
1

2
‖𝑒𝑓(𝑖) +

𝜕𝑒𝑓(𝑘)

𝜕𝑤𝑓(𝑗)
(𝑤𝑓(𝑖 + 1) − 𝑤𝑓(𝑖))‖

2

 (15) 

𝑒𝑓(𝑖) is an error vector and 𝑒𝑓(𝑘) is its element, 𝑤𝑓(𝑖 +

1) and 𝑤𝑓(𝑖) are new and previous weight vector 
respectively. When the aforementioned function is minimised 
with regard to the new weight vector as per Eq. (16) 
𝑤𝑓(𝑖 + 1) = 𝑤𝑓(𝑖) − (𝐶𝑇𝐶)−1𝐶𝑇𝑒𝑓(𝑖)      

𝑤ℎ𝑒𝑟𝑒 𝐶𝑘𝑗 =
𝜕𝑒𝑓(𝑘)

𝜕𝑤𝑓(𝑗)
      (16) 

The formula is based on linear approximation, which is 
another factor. In order to guarantee the validity of the linear 
approximation, the step size is kept small in the LMA while 
the error function is reduced. The error function is somewhat 

adjusted as a result: 

𝐸𝑓 =
1

2
‖𝑒𝑓(𝑖) +

𝜕𝑒𝑓(𝑘)

𝜕𝑤𝑓(𝑗)
(𝑤𝑓(𝑖 + 1) − 𝑤𝑓(𝑖))‖

2

+ 𝜑‖𝑤𝑓(𝑖 +

1) − 𝑤𝑓(𝑖)‖
2
     (17) 

In this, 𝜑 determines the step size. Similar to this, reducing 
the error now in relation to 𝑤𝑓(𝑖 + 1) results in 

𝑤𝑓(𝑖 + 1) = 𝑤𝑓(𝑖) − (𝐶𝑇𝐶)−1𝐶𝑇𝑒𝑓(𝑖)       (18) 
 

2) Levenberg–Marquardt backpropagation (LMA) 

The topology of the BP neural network is shown in Fig. 2. 
The network's input layer, hidden layer, and output layer's 
corresponding node counts are represented by the letters n, T, 
and m. ℎ𝑥𝑦 and ℎ𝑦𝑧 are used to represent connection weights. 
The BP neural network's input value is represented by the 
letters 𝑎1 , 𝑎2 , 𝑎3 , and 𝑎𝑙 , while the predicted value is 
represented by the letters 𝑏1, 𝑏2, 𝑏3, and 𝑏𝑙 . The BP neural 
network is trained using the following method: the neural 
network should be started. According to the criteria for real 
prediction, the values are chosen, and the hidden layer 
threshold a and output layer threshold b are initialized. 
Following that, the neural network's learning rate and the 
neuron's excitation function are calculated. 

1. The chosen implicit layer excitation function in this 
work, f, is: 

𝑔(𝑎) = 1/(1 + 𝑒−𝑎)  (19) 
 

 

 
 

Fig 2: Topological structure of NN 
 

2. Determine the buried layer's output. Given that a, ℎ𝑥𝑦, 
and p are known, it is possible to calculate the hidden layer's 
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output 𝐻𝑙𝑂𝑢𝑡: 
𝐻𝑙𝑂𝑢𝑡 = 𝑔(∑ ℎ𝑥𝑦𝑎𝑥 − 𝑝𝑦)𝑙

𝑥=1   𝑤ℎ𝑒𝑟𝑒 𝑦 =

1,2, … . , 𝑚   (20) 
The buried layer's N nodes are what make up the formula.  

 3. Determine what the output layer should be. The 
expected output 𝑂𝑢𝑡𝑧 value may be determined from Hl, ℎ𝑦𝑧, 
and y. 

𝑂𝑢𝑡𝑧 = ∑ 𝐻𝑙𝑂𝑢𝑡ℎ𝑦𝑧  − 𝑦𝑧     𝑤ℎ𝑒𝑟𝑒 𝑧 = 1,2, … . 𝑛𝑛
𝑦=1   (21) 

 4. Determine the inaccuracy in the forecast. By 
deducting 𝑂𝑢𝑡𝑧  from the anticipated output b, one may 
derive the model prediction error 𝑒𝑧. 

𝑒𝑧 = 𝑏𝑧 − 𝑂𝑢𝑡𝑧, 𝑧 = 1,2, … 𝑚    (22) 
 5. Update the weights. Update ℎ𝑥𝑦  and ℎ𝑦𝑧  in 

accordance with 𝑒𝑧. The following are the expressions: 
ℎ𝑥𝑦  = ℎ𝑥𝑦 + 𝜁𝐻𝑙𝑂𝑢𝑡(1 − 𝐻𝑙𝑂𝑢𝑡)𝑎(𝑥) ∑ ℎ𝑦𝑧

𝑛
𝑧=1 𝑒𝑧     (23) 

where 𝑥 = 1, 2, … . . , 𝑙 & 𝑦 =  1, 2, … . . , 𝑚  
ℎ𝑦𝑧  = ℎ𝑦𝑧 + 𝜁𝐻𝑙𝑂𝑢𝑡𝑒𝑧  (24) 

where 𝑦 = 1, 2, … . . , 𝑚 & 𝑧 =  1,2, … . . , 𝑛 

where, h is the learning rate.  
 6. Update threshold. Update 𝑝, 𝑞 according to 𝑒𝑧 

𝑝𝑦 = 𝑝𝑦 +  𝜁𝐻𝑙𝑂𝑢𝑡(1 − 𝐻𝑙𝑂𝑢𝑡) ∑ ℎ𝑦𝑧
𝑛
𝑧=1 𝑒𝑧        (25)

 where 𝑦 = 1, 2, … , 𝑚 

𝑞𝑧 = 𝑞𝑧 + 𝑒𝑧 where 𝑧 = 1, 2, … , 𝑛 (26) 
7. Determine if the model has converged, and if not, 

return to step 2 to continue the iteration. 

3.  Result and Discussion 

In this section, the performance of the proposed model is 
compared with the existing models by using the performance 
metrics. The computation time for the CPU is compared with 
the GPU-CUDA model. The comparison table is shown in 
table 2. 

3.1 Dataset description  

Modern automatic phase pickers have been compared 
using the dataset, a global collection of more than a million 
seismic waveforms labelled with both P- and S-arrival 
(Mousavi et al., 2020). To evaluate how successfully the 
recommended technique identified phases, we used the same 
test set (120,000 waveforms). The phase selecting networks 
were used to choose P- and S-phase arrivals from the 
waveforms after the feature extraction network processed the 
waveforms. In order to identify phases and pinpoint arrival 
timings, we chose the peaks from the predicted activation 
sequences that were higher than a threshold of 0.5. True 
positives are those projected selections that are within 0.5 
seconds of the manual labelling. The remainder are regarded 
as false positives.  

3.2 Performance Metrics 

Define Utilizing performance metrics including accuracy, 
precision, recall, F-measure, RMSE, MAE, and MAPE, the 
suggested model's performance is assessed. 

Table 2: Comparison of the performance metrics between 

the proposed and existing techniques 

Method Accu

racy 

Preci

sion 

Recall F-

measu

re 

specif

icity 

FNR 

Proposed

_HLMt_B

PNN 

98.00 95.84 97.95 94.57 95.73 0.04 

Existing_

LSTM 

95.80 92.38 96.58 91.36 92.72 0.07 

Existing_

GRU 

90.12 90.58 90.99 87.58 90.22 0.07 

Existing_

CNN 

89.77 86.40 90.10 85.91 86.40 0.09 

Existing 

ANN 

85.80 84.50 88.52 84.25 87.00 0.10 

 
Method FPR MCC NPV RMSE MAE MAPE 

Proposed

_HLMt_

BPNN 

0.01 96.21 93.74 0.25 0.41 0.36 

Existing_

LSTM 

0.05 93.78 91.60 5.84 18.87 13.58 

Existing_

GRU 

0.08 90.68 90.66 57.90 49.96 46.90 

Existing_

CNN 

0.08 86.63 88.69 32.69 38.87 34.71 

Existing 

ANN 

0.09 83.99 87.95 236.59 183.95 175.78 

 
The tabulated values are shown in the form of graphs. The 

performance metrics for the proposed model are higher than 
the existing models which are explained separately.  

 
The accuracy values for the proposed and the existing 

techniques like LSTM, GRU, CNN, and ANN are 98.00, 
95.80, 90.12, 89.77, and 85.80 respectively. The proposed 
model produces higher accuracy than the other existing 
techniques. 

 
The precision values for the proposed and the existing 

techniques, such as LSTM, GRU, CNN, and ANN, are, 
respectively, 95.84, 92.38, 90.58, 86.40, and 84.50. The 
suggested model has higher precision than the other methods 
that are already in use. 

The values for recall for the suggested and existing 
techniques, such as LSTM, GRU, CNN, and ANN, are 97.95, 
96.58, 90.99, 90.10, and 88.52, respectively. In comparison 
to other methodologies, the suggested model produces results 
with higher recall. 

iv) F-Measure 

The Proposed HLMt-BPNN's F-measure is compared to 
the accuracy of existing models such as the LSTM, GRU, 
CNN, and ANN. Fig. 6 displays a graphical comparison of 
the F-measure rates.    
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Fig 6: Comparison of F-measure between proposed and existing papers 
 
The values for F-measure for the suggested and the 

existing techniques, such as LSTM, GRU, CNN, and ANN, 
are 94.57, 91.36, 87.58, 85.91and 84.25, respectively. In 
comparison to other methodologies, the suggested model 
produces results with higher F-measure. 

The specificity values for the suggested and the currently 
employed techniques, such as LSTM, GRU, CNN, and ANN, 
are 95.73, 92.72, 90.22, 86.40, and 87.00, respectively. 
Comparing the specificity of the suggested model to other 
methods currently in use. 

The FNR values for the suggested and existing techniques, 
such as LSTM, GRU, CNN, and ANN, are 0.04, 0.07, 0.07, 
0.09, and 0.10 correspondingly. Compared to other methods 
already in use, the suggested model produces results with low 
FNR. 

The recommended and current techniques, such as LSTM, 
GRU, CNN, and ANN, have FPR values of 0.01, 0.05, 0.08, 
0.09, and 0.09, respectively. The proposed approach yields 
outcomes with lower FPR compared to existing techniques. 

The MCC values for the proposed and existing techniques, 
such as LSTM, GRU, CNN, and ANN, are, respectively, 
96.21, 93.78, 90.68, 86.63, and 83.99. The suggested model 
generates results with higher MCC compared to other 
techniques already in use. 

The NPV values for the proposed and existing techniques, 
such as LSTM, GRU, CNN, and ANN, are, respectively, 
98.00, 95.80, 90.12, 89.77, and 85.80. The suggested model 
generates results with higher NPV compared to other 
techniques already in use. 

The FRR values for the proposed and the existing 
techniques, such as LSTM, GRU, CNN, and ANN, are 98.00, 
95.80, 90.12, 89.77, and 85.80, respectively. The proposed 
model generates results with lower FRR compared to other 
existing approaches. 

The recommended and current techniques, such as LSTM, 
GRU, CNN, and ANN, have RMSE values of 0.25, 5.84, 
57.90, 32.69, and 236.59, respectively. The proposed 
approach yields outcomes with higher RMSE compared to 
existing techniques. 

The values for F-measure for the suggested and the 
existing techniques, such as LSTM, GRU, CNN, and ANN, 
are 94.57, 91.36, 87.58, 85.91and 84.25, respectively. In 
comparison to other methodologies, the suggested model 
produces results with higher F-measure. 

The MAPE values for the proposed and the currently used 
techniques, including LSTM, GRU, CNN, and ANN, are 
0.36, 13.58, 46.90, 34.71, and 175.78, respectively. The 
suggested model yields low-loss findings when compared to 
other techniques currently in use. 

In order to determine the proposed model's processing 
performance on CPU and GPU, 4000 epochs are taken into 
account because the model's correctness is constant after 
2000 epochs. The proposed model is run on an Intel Core i7, 
8 GB of RAM, and a GT 1050Ti GPU with 4 GB of RAM 
and 768 CUDA cores. The training of 4000 epochs for the 
PSVR model using GPU took 200 seconds, but the same task 
on the CPU took roughly 900 seconds. As can be observed 
the proposed model significantly outperformed the CPU in 
terms of computing speed when training the seismic catalog 
model. 

 
Table 3: Exploring the Differences in Computation Time between CPU 

and GPU  

Method 

CPU 

(ms) 

GPU 

(ms) 

Proposed_HLMt_BPNN 44526 21102 
Existing_LSTM 71421 48903 
Existing_GRU 74234 55274 
Existing_CNN 88706 59001 
Existing_ANN 99934 77392 

Table 3 shows the computation time differences between 
CPU and GPU models. The computation time of the CPU is 
high because the data is processed serially. But in the GPU 
model, the data is processed parallelly, so the computation 
time is low. This is the main advantage of the proposed model 
for forecasting an earthquake. 

4.  Conclusion  

In this study, an effective earthquake forecasting model 
was presented that employs a hybrid metaheuristic machine 
learning algorithm with CUDA-enabled parallel processing. 
A novel hybrid ML model was developed to improve model 
performance and accuracy, using Chaotic Chimp based 
African Vulture Optimization Algorithm (CCAVO) for 
feature selection and a Levenberg-Marquardt Back-
Propagation Neural Network for prediction. The Seagull 
Optimization Algorithm was also utilized to further enhance 
prediction accuracy. The model follows a four-step process 
involving preprocessing raw data, extracting features, using 
optimized ML algorithms to predict earthquakes, and 
implementing the model using the Python platform. The 
performance of the proposed model was evaluated using a 
variety of performance criteria, and the model achieved an 
accuracy of 98%, outperforming existing earthquake 
prediction methods. The use of parallel processing in the 
model's design enables efficient and fast prediction, making 
it suitable for real-time applications. These findings suggest 
that the proposed model could be a valuable tool for 
predicting earthquakes and potentially mitigating their 
impact.  
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