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Abstract: Wave excitations cause structural vibrations on the Oscillating Water Columns (OWC) lowering the power generated 
and reducing the life expectancy. The problem of generator deterioration has been considered for the Mutriku MOWC plant 
and a machine learning-based approach for prognosis and fault characterization has been proposed. In particular, the use of k-
Nearest Neighbor (kNN) models for predicting the time to failure of OWC generators has been proposed. The analysis is based 
on data collected from sensors that measure various operational parameters of the turbines. The results demonstrate that the 
proposed kNN model is an excellent choice for reducing maintenance costs by enabling maintenance scheduling months in 
advance. The model's high accuracy in predicting generator failures allows for timely and cost-effective maintenance, 
preventing costly breakdowns and improving turbine efficiency. The results highlight the potential of machine learning-based 
approaches for addressing maintenance challenges in the energy sector and underscore the importance of proactive maintenance 
strategies in reducing operational costs and maximizing energy production. 
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1. Introduction 

 Based on data from global energy forecast, it is projected 
that the demand for energy will witness a significant surge of 
4.6% in 2030, primarily due to climate change and the growth 
of emerging and developing economies [1]. Consequently, the 
global energy market is shifting its focus towards sustainable 
energy sources to cater for the basic energy requirements. 
Despite the availability of multiple renewable energy options, 
ocean energy, and wave in particular, have observed a 
substantial increase in their adoption in the last decade, as 
depicted in Figure 2. In line with these environmentally 
conscious policies, several studies have been conducted on 
ocean energy resources, such as [2-3]. 

As per the energy roadmap, Europe is under the obligation to 
establish a marine energy infrastructure capable of meeting 
roughly 10% of its energy consumption through wave and tidal 
energy by 2050 [4]. In the course of this development, Wave 
Energy Converters (WEC) have acquired significant importance 
[5].  In particular, by 2050, it is expected that 337 GW will be 
harnessed from the oceans throughout the world, and the 
technology needed will be developed by then [6]. In case of wave 
energy, it will be possible to generate 16 PWh of energy per year. 
Approximately 50% of the expected energy by 2040 would be 
achieved by means of wave energy.  

In the case of Basque Country, the Mutriku Wave Power 
Plant uses the Oscillating Water Column (OWC) principle to 

generate electricity from 
waves. This working 
principle is quite simple. 
It works as a result of 
oscillation of the internal 
water column within a 
chamber, which has an 
opening below the water 
level. The incoming and 
outgoing waves make the 
internal water column 
oscillate, and 
consequently the air 
within the chamber (see 
Figure 1) is compressed 
and decompressed. 
Therefore, there are 
pressure gradients across 
the turbine. The turbines 
deployed are 

unidirectional, and in this particular article Well´s turbines. For 
this reason, the generated bidirectional air flow passes through the 

 
Figure 1: Capture chamber for an 

OWCs in Mutriku MOWC 
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unidirectional turbine, thus generating electricity (Garrido et al., 
2022). Only onshore devices, such as the multiple OWC Mutriku 
Wave Power plant in the Basque Country, have shown consistent 
power generation and can be classified as TRL 8 [7]. 

Effective monitoring and maintenance strategies are essential 
for achieving high availability, capacity factor, and Annual 
Energy Production (AEP) in power plants. Good maintenance 
practices can help maintain steady operations, which has a strong 
influence on reducing downtime and increasing availability, 
power production, capacity factor, and AEP. Therefore, reducing 
Operational and Maintenance (O&M) costs is a critical approach 
to controlling the Levelized Cost of Energy (LCoE) [8]. 

To achieve optimal maintenance, scheduling adequate 
maintenance frequency and implementing the best maintenance 
strategy is crucial. Frequent maintenance can be costly, but 
neglect can lead to higher failure rates and longer downtime. An 
optimal maintenance system can reduce O&M costs by 11% to 
18% [9]. Predictive maintenance is critical for identifying 
potential failures before they occur, and analyzing data plays a 
vital role in this regard. Collecting and analyzing data on turbo 
generator performance can enable the development of predictive 
models for scheduling maintenance proactively, reducing 
downtime, minimizing repair costs, and improving operational 
efficiency. In ocean industries that heavily rely on equipment, 
such as manufacturing and transportation over a narrow time-
window, predictive maintenance is particularly important. By 
analyzing data, valuable insights into equipment performance can 
be obtained, enabling proactive measures to ensure optimal 
offshore device operation and minimize the risk of unexpected 
failures. 

Maintenance strategies are classified into reactive, proactive, 
and opportunistic categories based on the timing of maintenance 
tasks. Reactive maintenance strategy, also known as corrective 
maintenance, is a failure-based maintenance method that involves 
performing maintenance only after a failure has occurred. This 
strategy is efficient for small farms with high reliability, where 
downtime-related maintenance operations are negligible and can 
achieve high availability [10]. On the other hand, proactive 
maintenance strategy is an approach that involves scheduling 
inspections and replacements before the occurrence of failures to 
avoid small faults from developing into major failures. 
Preventive, condition-based and predictive maintenance are 

examples of proactive maintenance strategies [11].  Opportunistic 
maintenance strategy is the grouping of different planned 
preventive and corrective maintenance actions with unplanned 
preventive tasks that were meant for some worn-out components 
in the future [12]. 

To develop and implement an adequate maintenance 
strategy in onshore and offshore power plants, time-based and 
sensor-based information is gathered. However, processing 
this data is complicated due to the enormous amount of data 
gathered and the number of variables measured. Feature 
extraction is used to reduce redundant information and 
dimensionality in many fields [13-14]. including maintenance. 
Principal Component Analysis (PCA) is the most common 
feature extraction algorithm, which extracts important 
information from data and represents it as a set of new 
orthogonal variables called principal components [15]. 
Another well-known feature extraction method is Linear 
Discriminant Analysis (LDA), which involves finding the 
projection hyperplane that minimizes the interclass variance 
and maximizes the distance between the projected means of 
the classes [16]. 

In Section II a comprehensive overview of the 
manipulation and analysis of data from the Mutriku MOWC 
turbo generators will presented. Initially, data is collected by 
the PLCs using the data acquisition system, which must be 
imported, formatted, and stored in appropriate files. 
Subsequently, the data from each turbine is analyzed using 
various group statistics, and different data sets may be merged. 
The modified data can then be utilized in Section III to train a 
kNN classification model that predicts the health status of the 
turbo generator. The performance of the model will be 
evaluated in Section IV and any necessary improvements and 
future work will be presented in the Conclusions section that 
ends the article. 

 
Figure 2: Renewable electricity generation growth by technology by 2050 
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2. Import PLC Data 

In order to incorporate data from the output file of a 
Programmable Logic Controller (PLC) into the programming 
language of preference, a suitable method must be established. 
This may be accomplished by defining distinct sets of tables 
for each turbine, associated with specific time frames, thereby 
facilitating the import of data from the PLC into tables. Each 
column of the table represents a variable, allowing for a 
straightforward analysis and interpretation of the data.   

2.1 Bearing Analysis 

 In this section, a systematic approach is delineated to 
cluster and preprocess data from a turbine, with the aim of 
rendering it amenable for classification as exhibiting bearing 
deterioration. To accomplish this, the data tables are 
methodically refined through the elimination of any row that 
contains an undefined or missing value, as well as those rows 
or columns deemed extraneous for the purpose of the analysis.  

The statistical analysis of each turbine on a specific day 
can be determined by calculating the mean of the grouped 
values to the first power for each generated pressure. 
Subsequently, the resulting tables for different days can be 
combined by joining only those pressure values that appear on 
all tables. This process ensures that the analysis is consistent 
and accurate across all the observed days. 

As observed in Figures 3 and 4, there exists an optimal 
operating point at approximately 6.5kW, which is 
characterized by high output power and low levels of 
vibration. The existence of this is optimal operating point is 

further underlined when the vibrations are plotted against the 
pressure, grouped by power output, as illustrated in Figure 5. 

2.2 Resonance Analysis 

Analogous to Section A, we present a systematic approach 
for clustering and preprocessing data obtained from a turbine 
with the goal of facilitating its classification as experiencing 
resonance. The data tables are subjected to a methodical 
refinement process involving the elimination of any row 
containing undefined or missing values, as well as those rows 
or columns deemed extraneous to the analysis. For each 

turbine and day, the relevant statistics are computed in a 
similar manner to the previous case. Additionally, the tables 
obtained from different days are combined and subjected to a 
joint analysis.  

The study of the data presented in Figure 6 reveals that the 
turbine subject to vibrations resulting from resonance is 
comparatively less severely impacted when contrasted with 
the turbine affected by bearing wear off. This finding is further 
validated by the information presented in Figure 8, which 
indicates that the turbine experiencing resonance generates a 
higher production rate at the same pressure values as the other 
turbines. These observations provide valuable insight into the 
differential effects of distinct types of turbine vibration, and 

 
Figure 3: Relationship between the power output (kW) and the 

amplitude of the vibration (mmps) 

 
Figure 4: Relationship between the power output (kW) and the 

amplitude of the vibration (mmps) 

Figure 6: Relationship between the power output (kW) and the 
amplitude of the vibration (mmps) 

 
Figure 5: Relationship between the vibration amplitude (mmps) and 
the pressure across the turbine (daPa) grouped by power output (kW) 
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underscore the importance of implementing targeted 
maintenance and repair strategies that are tailored to the 
specific nature and severity of the observed vibration 
phenomena. 

Additionally, it is evident from Figures 6 and 7 that there 
exists an optimal operating point at approximately 15 kW. 
This point is distinguished by its ability to produce high output 
power while simultaneously minimizing levels of vibration. 
This optimal operating point is further emphasized when the 
vibrations are graphed against the pressure, categorized by 
power output, as illustrated in Figure 8.  

2. 3 Unbalance Analysis 

Finally, we propose a comprehensive methodology for 
clustering and preprocessing data collected from a turbine, 
aimed at facilitating its classification as experiencing turbine 
unbalance. To achieve this objective, the collected data 
undergo a meticulous refinement process that entails the 
elimination of any row containing undefined or missing 
values, as well as the exclusion of those rows or columns 
deemed irrelevant to the analysis. Subsequently, for each 
turbine and day, pertinent statistics are computed in a manner 
similar to the previous case. Furthermore, the tables obtained 
from different days are combined and subjected to a joint 
analysis. The proposed approach presents a systematic and 
rigorous methodology for preprocessing and clustering 

turbine data, with the ultimate goal of improving the accuracy 
and reliability of turbine unbalance classification. 

 The analysis of the data presented in Figure 9 reveals that 

the turbine vibrations caused by unbalance exhibit a more 
pronounced linear relationship with the generated power when 
compared to those vibrations resulting from resonance or 
bearing wear off. This assertion is supported by the findings 
presented in Figure 10, which show that the unbalance turbine 

generates a superior production rate at the same pressure 
values as the other turbines.  

In the context of this specific failure, a definitive optimal 
operating point for the turbo generator module is difficult to 
ascertain from the information presented in Figures 9 and 10. 
Morover, a more evident linear relationship between the 
vibrations and the pressure, grouped by power output, can be 
discerned from the data plotted in Figure 11. This 
visualization highlights the complexity of the underlying 
factors contributing to the failure, and underscores the 
importance of employing comprehensive and multifaceted 
analyses to diagnose and address such issues in a rigorous and 
effective manner. 

The aforementioned observations serve as compelling 
evidence for the potentially significant impact of turbine 
unbalance on the efficiency and productivity of the overall 
system. These findings underscore the critical importance of 
implementing timely and effective maintenance interventions 
to mitigate this issue and minimize any adverse effects on the 
system's performance. Such interventions may include the 
implementation of regular monitoring and inspection 

Figure 9: Relationship between the power output (kW) and the 
pressure across the turbine (daPa) 

 
Figure 7: Relationship between the power output (kW) and the 

pressure across the turbine (daPa) 

 
Figure 8: Relationship between the vibration amplitude (mmps) and 
the pressure across the turbine (daPa) grouped by power output (kW) 

 
Figure 10: Relationship between the power output (kW) and the 

amplitude of the vibration (mmps) 
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procedures, the incorporation of predictive maintenance 
strategies, and the utilization of advanced diagnostic tools and 
techniques to facilitate the early detection and remediation of 

turbine unbalance issues. 

3. Train a Model. 

Supervised Learning 

The findings of the preceding section serve as a motivation 
to propose a classification model for the purpose of 
prognostication, aimed at efficiently classifying the data 
output derived from the Programmable Logic Controller 
(PLC). The PLC generates various numerical statistics for 
each turbine, and following the creation and importation of 
diverse datasets in the preceding section, these datasets shall 
be segregated into training and testing sets. Subsequently, a k-
nearest neighbor (kNN) algorithm will be employed to 
construct a model capable of classifying the operational state 
of the turbine based on a set of PCL data. The classification 
model shall be trained using the training set and then 
leveraged to make predictions for the testing set. 

The k-Nearest Neighbors (kNN) is a supervised machine 
learning technique that was initially introduced by Evelyn Fix 
and Joseph Hodges in 1951 [17] and later expanded by 
Thomas Cover [18]. In kNN classification, the input data 
consists of the k closest training examples in a dataset. The 
output is a class membership assigned to the object being 
classified. The algorithm works by taking a plurality vote of 
its neighbors, with the object being assigned to the class that 
is most common among its k nearest neighbors. Since kNN 
relies on distance for classification, it is important to 
normalize the training data if the features come in vastly 
different scales. This normalization can significantly improve 
the accuracy of the algorithm. 

Initially, the data undergoes the customary procedures of 
cleansing and scaling as a primary step. Within this specific 
system, absolute values will be adopted to consider the 
pressure, as both pressure differentials induce a unidirectional 
rotation. Moreover, it is assumed that a given pressure 
differential will yield similar power generation by the turbine. 

The distance metric that measures the similarity between 
two data points in the feature space, is chosen to be the 

Euclidean distance because it presents an excellent 
performance in this case. Therefore, the Nearest Neighbors 
model calculates the distance between the new turbine data 
output and the data in the training set using the Euclidean 
distance formula as follows: 

𝑑 = √(𝑝𝑛 − 𝑝𝑖)
2 + (𝑤𝑛 − 𝑤𝑖)2 + (𝑣𝑛 − 𝑣𝑖)

2        (1) 

where 𝑝𝑛, 𝑤𝑛and 𝑣𝑛are the pressure, power and vibrations of 
the new turbine, and 𝑝𝑖, 𝑤𝑖 and 𝑣𝑖 are the pressure, power and 
vibrations of the ith turbine in the training set.  

Given a new turbine data, the kNN method has the 
capability of classifying a new turbine data by associating it 
with the most commonly occurring type among its k nearest 
neighbors. This technique is rooted in the principle of 
similarity, whereby the classification of a data point is based 
on the identities of its closest neighbors as defined by equation 
(1) in a high-dimensional space. Through this approach, the 
kNN algorithm seeks to classify the new turbine data as 
belonging to the same type as the turbines that have the highest 
frequency of occurrence among its nearest k neighbors. 

4. Simulation and Validation  

Using the kNN method, we can calculate the distances to 
each turbine in the training set and select the type of those 
turbines with the shortest distance. Choosing the optimal value 
of the hyperparameter k, the number of nearest neighbors to 
be considered, is a critical aspect in the algorithm. Large 
values tend to smooth out the decision boundary or prediction 
surface, while small values ender the system more sensitive to 
noise and overfitting. This value has been tuned to k=5 in 
order achieve optimal performance on the validation set. 

The Hold-out validation method has been used to estimate 
the performance of the model, randomly partitioning the 
available dataset into two subsets: a training set with 70% of 
the data and a validation set with 30%. This technique has 
been used because the available dataset has 21710464 entries, 
so that it is large enough to support a random partition into 
training and validation sets. This method allows for a quick 
estimate of the performance, as the model may be trained only 
once and then evaluated on the validation set.  

 The evaluation of a k-Nearest Neighbor (kNN) classifier's 
accuracy involves determining the number of correct 
predictions made and dividing that by the total number of 
observations within the test set as follows 

𝑎 =
1

𝑠𝑖𝑧𝑒𝑦𝑡
∑(𝑦𝑝 == 𝑦𝑡)              (2) 

where 𝑦𝑝  is a vector of predicted labels generated by the 
classifier for the test set, 𝑦𝑡 is a vector of true labels for the 
test set, and 𝑠𝑖𝑧𝑒𝑦𝑡  represents the total number of labels 
within the test set. Upon performing this evaluation, the 
resulting accuracy score of the kNN classifier (2) was found 
to be 0.9129. This score, which is indicative of the model's 
effectiveness, can be deemed as excellent. 

4.1 Validation Results 

 The validation has been carried out once the kNN model 
has been designed and trained. A confusion chart, has been 
used to evaluate the performance of a classification model. It 

 
Figure 11: Relationship between the vibration amplitude (mmps) and 

pressure across the turbine  (daPa) grouped by power output (kW) 

WSEAS TRANSACTIONS on COMPUTERS 
DOI: 10.37394/23205.2023.22.15

Izaskun Garrido, Jon Lecube, 
 Fares Mzoughi, Payam Aboutalebi, Irfan Ahmad, 

Salvador Cayuela, Aitor Garrido

E-ISSN: 2224-2872 124 Volume 22, 2023



shows the number of true positives (TP), true negatives (TN), 
false positives (FP), and false negatives (FN) for each class in 
a classification task. 

In a confusion chart as seen in Figure 12, the rows 
correspond to the true class labels, and the columns 
correspond to the predicted class labels. Each cell in the table 
represents the number of predictions that were classified as a 
certain class. The diagonal cells represent the number of 
instances that were correctly classified, while the off-diagonal 
cells represent the number of instances that were 
misclassified.  

In this example, it may be read in Figure 13 that the model 
correctly predicted correctly 10539388 instances for the 
bearing problem, while misclassifying 583275 instances as 
resonance and 179615 as unbalance. It also predicted correctly 
8088515 instances for the resonance problem, while 
misclassifying 868993 instances as bearing and 103003 as 
unbalance. Finally, it predicted correctly 1192596 instances 
for the unbalance problem, while misclassifying 104716 
instances as bearing and 50363 as resonance. The confusion 
chart produced by this kNN classification model reveals that 
the model has achieved an accuracy of approximately 90%, 
indicating that it has correctly predicted a substantial majority 
of the test set labels. This performance is indicative of a 
reliable model that may be useful for the intended application. 

5. Conclusions  

In this article, the authors have presented a study on the 
development and evaluation of machine learning models for 
prognosis and fault characterization of oscillating water 
columns (OWCs) using Mutriku data. The data collection 
involved the use of sensors to measure the mechanical and 
aerodynamic properties of the entire OWC system. A kNN 
model has been proposed for the replication of the OWC 
system behavior and structural performance. The model has 
been trained with appropriate parameters while adhering to a 
low Mean Squared Error (MSE) target function. The efficacy 
of the model has been successfully tested on a validation set 
to ascertain its computational efficiency, validity, and 
accuracy. The presented work has potential implications for 
improving the prognosis and fault characterization of OWCs 
through machine learning-based approaches. 

The results of the evaluation indicate that the proposed 
kNN model outperformed existing methods in accurately 
predicting turbine failures, further underscoring its potential 
for enhancing the prognosis and fault characterization of 
OWCs. 
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