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Abstract: - This article presents a proposal for the architectural components that enable the organized and 

collaborative request, transport, and effective utilization of large volumes of historical information without 

compromising the performance of the information systems and the supporting technological platform. The 

architecture and some variants, successfully implemented in semantic interoperability projects within the Smart 

Grid context, are discussed, with a focus on the use and adoption of the Common Information Model (CIM) as 

defined in the IEC 61968 and IEC 61970 standards. 
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1 Introduction 
Traditionally, the information systems used for the 

operation of an electric utility consider the handling 

of large amounts of information related to the 

operating status of the Electric Power System (EPS), 

including substations, feeders, transformers, 

switches, sectionalizers, and reclosers, among others.  

This information is measured in the field by 

monitoring, protection, control, and automation 

devices and is collected by monitoring and control 

systems, such as SCADA systems. The information 

includes digital values (states, alarms, locks) and 

analog values (voltage, current, real power, reactive 

power, power factor, imbalance, temperature, 

humidity, amount of dissolved gases, events 

intensity, operation counters, among other values).  

 

These values are generated in real-time in the EPS 

and are almost always stored in large databases that 

contain the memory of what happened every day. As 

a whole, this database includes knowledge of the 

behavior of the EPS under different operating 

conditions that occurred over a considerably long 

time, sometimes 10 years or more. 

 

In this sense, recovering historical information, 

processing it, and using it in an agile and effective 

way for its analysis allow operators and those 

responsible for the operation of the EPS to capitalize 

on historical knowledge to improve current and 

future operations, prevent adverse situations in the 

event of failures and contingencies, improve the 

response to maneuvers required for maintenance and 

clearance, and, therefore, improve the productivity, 

efficiency, safety, reliability, and quality indexes 

associated with the operation of the EPS. 

 

When an electric utility has enough historical 

information collected directly from the devices 

installed in the EPS, it has the ability to elevate the 

level of support and sustenance for each operational 

decision in: 

 

 Normal or steady-state operation, to meet 

objectives such as productivity and 

efficiency. 

 Emergency situations, to expedite recovery 

and enhance security, reliability, and quality. 

 Unusual situations or cases, such as 

disturbances due to natural events, failures, 

unforeseen demand peaks, or specific 

maintenance requirements. 

 

 

2 Problem Formulation 
Once the volume of data becomes considerably high, 

and different operational actors use it in the electrical 

utility, a typical problem arises associated with the 

extraction's performance and its ease of use. It is 

common for an increasing number of users to require 

access to this data for their daily processes. However, 

the architecture of legacy systems does not 
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adequately consider the utility's operational 

evolution. 

2.1 Smart Grid Context 
In this regard, the Smart Grid and its strategies for 

adopting increasingly advanced analytical functions 

introduce a new stress factor on technological 

platforms. The evolution of the traditional grid is 

particularly guided by data, communications, and the 

ability to make new and better decisions with the 

support of information and inherent knowledge. If 

this knowledge cannot be retrieved efficiently, it 

remains stagnant in information warehouses, 

resulting in a wasted capacity within the utilities. 

One of the most crucial functions of the Smart 

Grid is effective information management to support 

operational decision-making. Therefore, there is a 

clear need for more effective and efficient strategies 

to manage information in a unified manner. [1] [2] 

 

2.2 Data Quality 
Another serious issue that information users face is 

the consistency and quality of the data, which stems 

from various factors such as the acquisition processes 

themselves, sensors, device configurations in the 

field, communication interruptions, data channel 

speed, and equipment, among others. The raw data 

stored may not always be of sufficient quality to be 

used correctly in high-impact analytical functions. 

For example, power flow calculations for feeder 

reconfiguration maneuvers, the substation’s design 

and sizing, and the configuration of protection 

devices, are highly sensitive to data accuracy. 

Data quality is often assumed to be a part of the 

acquisition and storage system that contains the data, 

leading end-users to believe that the data always has 

the correct value and appropriate quality. However, 

this assumption is not necessarily true, and the 

responsibility for validation is left to the user. 

 

2.3 Components Architecture 
Traditionally, the extraction, conditioning, and use of 

historical EPS information in the information 

systems of an electric utility are carried out directly 

by querying the databases that contain the records 

(raw data) as shown in Fig.1. How the data will be 

used is delegated to the system or user making the 

request, without analyzing the end-use for each 

extraction or analytical function. 

In this traditional architecture, strategies are not 

implemented to prevent the saturation of the 

technological platform. Optimization strategies are 

also lacking for handling multiple massive queries to 

serve all concurrent users efficiently and provide 

consistent responses as quickly as possible. 

 

Based on the author's experience, there are 

information systems with more than 10 years of 

historical data stored for a few hundred or thousands 

of devices in the field at EPS, resulting in millions of 

records. These systems can be easily affected if the 

architecture of their components does not account for 

the situations described. For instance, with a single 

direct query to the database management system, the 

system can "fail" if the query is executed without 

restrictions. For example: 

 

Select * from HISTORICAL_TABLE 

 

Under controlled conditions, it is straightforward to 

carry out the necessary validations to avoid 

overloading the technological platform. It is essential 

to have data backup measures and the capability to 

easily restore data, and physical or virtual processing 

servers. 

 

 
Fig. 1. Traditional components architecture for 

historical information extraction. 

 

 

3 Problem Solution 
The proposed solution is based on an Optimal 

Extractor, whose modular architecture, as shown in 

Fig.2, is easily adaptable to any specific situation 

because it includes several modules, and each one 

addresses one or a group of situations. The main 

features of the solution are described below. 

 

3.1 Users Concurrency 
When an electric utility begins to accumulate reliable 

historical information from the EPS, a large number 

of users and needs naturally arise for its proper 

management. This management enables the 

improvement of the utility's business processes, 

encompassing planning, construction, operation, 
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maintenance, optimization, reconfiguration, and 

eventual replacement and disposal. 

 

The most critical data utilization occurs in the 

field of operation. Adequate analytical management 

of historical information, along with timely response 

times, allows EPS operators to make better 

operational decisions with an approach that optimizes 

both technical and commercial processes. 

 

For an EPS operator to use the required information 

correctly, it must appear on their screen as quickly as 

possible, with maximum response times of 10 

seconds for simple queries and 50 seconds for 

complex queries. This speed is essential because, 

once the operator obtains the necessary information, 

they have only a few minutes to apply it effectively 

in response to failures during normal and emergency 

operations. 

 

It's worth noting that, in most cases, an EPS operator 

primarily requires straightforward queries to enhance 

their decision-making capabilities. Typically, they 

need answers to simple questions such as: 

 

 What was the maximum demand for this 

circuit yesterday and last week? 

 At what time does peak demand typically 

occur on circuits 1 and 2? 

 What is the typical maximum current for 

circuit X? 

 What is the hourly profile for circuit Y during 

summer holidays? 

 How does the voltage behave when demand 

decreases during winter holidays? 

 

Occasionally, an operator responsible for EPS 

operation requires slightly more complex queries to 

make operational improvements focusing on 

reducing technical losses, enhancing reliability, or 

improving power quality, among other goals. In these 

cases, the questions may include: 

 

 Which circuits in a substation have had the 

greatest current imbalance in the last week 

and the last month? 

 What are the daily profiles for reactive power 

and power factor at circuit X? 

 What is the maximum capacity of circuit Y to 

receive an energy transfer during the 

maximum daily demand in the last month? 

 Among circuits 1, 2, and 3, which can most 

effectively receive half the power of circuit Z 

on a permanent basis? [3] 

 

On the other hand, for an EPS analyst, particularly in 

planning and construction roles, information queries 

tend to be more comprehensive and complex. For 

instance, they may need to identify the Maximum 

Demand Peak (MDP) of a circuit in a year and track 

its evolution over the past 5 years. Similarly, they 

may need to identify Coincident Peak Demand 

(CPD) for a wide region or a set of circuits for a 

specific period [4]. These types of queries, of great 

interest to this user, consume significant resources on 

the technological platform because the amount of 

data required can range from thousands to millions, 

depending on the period and the number of circuits. 

Notably, the user often requires only 1 to 100 

significant data points, but the data retrieval process 

can be computationally complex and time-

consuming. 

 

To address the concurrency situation, a commonly 

used alternative is an Enterprise Service Bus (ESB). 

An ESB, in addition to having a highly efficient 

queue manager, allows for the implementation of 

intermediary services to prioritize queries based on 

the type of query and the user's request. [5] 

 

When an ESB is used, the functions of the Optimal 

Extractor are accessible to any application or client 

system that requires historical data, without the 

necessity of understanding the internal data structure 

of the source systems (Fig.2). 

 

 
 
Fig. 2. Proposed components architecture for 

historical information extraction for syntactic 

interoperability. 
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However, if an ESB is not available, the Component 

Control module must handle the sequencing and 

prioritization of multiple simultaneous queries. It can 

even break down queries into smaller parts to free up 

machine time across the entire technological 

infrastructure, as described in Section 3.5. 

 

3.2 Data Quality Verification 
The historical data stored retains the quality with 

which it was acquired at the moment in real-time; 

however, multiple factors can affect its quality and 

precision. A viable option to ensure a response with 

highly reliable data is to integrate a Validation 

module. This module is responsible for analyzing the 

data request in a query and applying specific 

validation, verification, and completeness 

algorithms. In case it detects inconsistencies, it 

performs an estimate of the corresponding 

replacement data and informs the requester about the 

actions taken in the response calculation. 

Within this Validation module, the quality of raw 

data can be verified in several ways. For example: 

 

 Integrity: Counting the number of records 

available for a data series in a defined period. 

 Consistency: Validating a data set according 

to the electrical or physical laws that model it. 

 Accuracy: Comparing a data set with external 

measurements, redundant measurements, or 

manual measurements taken during the same 

period or by integrating measured values at 

different points in the ESP. 

 Behavior: Comparing the profile of a data set 

with the typical profile of that measurement. 

 Validity: Cross-comparing measured values 

with similar measurements, geographically 

close measurements, or calculated values. 

 AI: Additionally, considering the data 

complexity, it is feasible to train Artificial 

Intelligence (AI) algorithms to perform much 

more comprehensive validations. For 

example, this can include identifying and 

applying typical profiles, autonomous 

autoregression, predictive models, correlation 

with exogenous variables, comparison with 

nearby data points (case-based reasoning), 

and automatic clustering algorithms, among 

others. 

 

3.3 Handling Large Data Sets 

If the database does not impose query restrictions, a 

request can yield a substantial amount of data as a 

response. This situation could lead to the saturation 

or collapse of the technological platform, causing 

delays in all other concurrently running processes. 

To address this issue, the Component Control 

module, working in conjunction with the Response 

Builder module, can adopt a strategy to prioritize, 

segment, or break down queries into smaller parts. 

This approach allows for the handling of multiple 

responses so that the user who requested the data 

ultimately receives a complete response. In this 

sense, the data is processed in manageable packages 

by the technological platform. Consequently, all 

other concurrent users are served, and the waiting 

time is distributed among them. As a result, high-

priority users receive their answers within the 

required timeframe, while users with large data 

volume requests (typically not of high priority) 

receive their responses only slightly later than if the 

query were executed directly (in any case, the 

processing time will be considerably longer than for 

simple queries). 

 

3.4 Database Operational Security 
Another specific issue in traditional architecture is 

that the operational stability of the technological 

platform is not guaranteed. As explained in section 

2.3, it is relatively easy to disrupt it through 

uncontrolled use. 

The solution proposed by the Optimal Extractor, 

as shown in Fig.2, involves breaking down queries 

into smaller parts to manage the machine time of the 

technological infrastructure. In this regard, the 

Component Control module is responsible for 

executing the following actions: 

 

 Calculate the amount of data that will be 

queried in a user request. 

 If the data amount exceeds an empirically 

defined limit (based on the hardware 

resources of the technology platform and the 

granularity of stored data), the query will be 

segmented or divided into sections, and the 

Query Constructor and Response Builder 

modules will be notified. 

 Multiple partial queries are generated. 

 A waiting period is introduced between 

queries (the duration is also determined 

empirically using the same criteria as the data 

limit). 

 Partial responses are consolidated into a 

single coherent response. 
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 The Validation Module algorithms are 

executed. 

 The final result is delivered to the user who 

initiated the request. 

3.5 Standard Data Access 
A significant issue with the traditional architecture 

depicted in Fig.1 is that each application or client 

system requires the application of the data access 

standard to the technological platform. Furthermore, 

they need to have knowledge of the database's 

internal structure. The problem becomes more severe 

when, for specific reasons, the database undergoes 

changes in technology, data access standards, or 

internal structure. 

To address this problem, the Optimal Extractor, 

as presented in its architecture in Fig.2, incorporates 

a data abstraction layer. Consequently, if an ESB is 

used, all clients must adopt a single connectivity 

standard determined by the ESB, which is typically 

open and well-known. In cases where an ESB is not 

available, the proposed architecture provides 

flexibility by allowing access to the Component 

Control module through one or more standard data 

interfaces, such as Web Services (WS), Java Message 

Service (JMS), OLE for Process Control (OPC), OLE 

for Process Control - Unified Architecture (OPC-

UA), and others. If necessary, it can even 

accommodate communication protocols like DNP, 

Modbus, or ICCP. 

 

An additional advantage of this architecture is that if 

the database undergoes changes in technology or 

internal structure, it will only require modifications 

to the Data Recovery module, without any impact on 

the data clients. [6] [7] 

 

3.6 Standard Data Model 
For Smart Grid applications, it is highly 

recommended to implement semantic 

interoperability between applications or systems. To 

achieve this, a canonical data model based on 

standards should be used. This model enables the 

unification and formalization of the meaning of 

exchanged data. It is particularly advisable to adopt 

the Common Information Model (CIM) defined 

primarily in the set of standards IEC 61968 and IEC 

61970. 

In the architecture proposed in Fig.2, a wrapper 

should be added on the Component Control module 

side, as well as another on the Client side. This 

addition ensures that all information transported 

between applications can be read, interpreted 

correctly, and unified by any current or future 

application client, as illustrated in Fig.3. 

Furthermore, the adoption of standards allows for the 

utilization of various integration patterns, including 

those defined in the IEC-61968-100 standard. 

 

 

 
Fig. 3. Proposed components architecture for 

historical information extraction for semantic 

interoperability. 

 

For a comprehensive and advanced architecture, it is 

essential to define a specific profile based on the 

Canonical Data Model that represents the particular 

data sets. 

 

If CIM is utilized, established methodologies enable 

the definition of the CIM Profile for data exchange 

within a semantic interoperability strategy for the 

Smart Grid. [8] 

 

In the architecture of Fig.3, the Data Model module 

is responsible for implementing the wrapper that 

performs the translation between data from the 

source system and the Client requiring the 

information. 

 

Fig.4 illustrates a portion of the CIM Profile 

proposed for the implementation of the developed 

Optimal Extractor. 

 

This partial view encompasses the use cases and 

relationships involved in integrating the CIM Profile 

associated with analog measurements in the EPS. It 

takes into account elements such as timestamp for 

synchronization, maximum and minimum values, 
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unit multiplier, associated equipment type, and its 

unique identification within the entire context. 

 
Fig. 4. CIM Profile (partial view) for Smart Grid 

semantic interoperability strategy. 

 

 

4 Optimal Extraction and Conditioning 
This section describes some of the key optimal 

conditioning functions for efficient data transfer 

between the source system and the client in need of 

the information. 

 

4.1 Raw Data 
The following data can be queried for any time range 

and any variable registered in a steady-state: 

 Normal: This option retrieves registered data 

without applying filters or validations. It is not 

recommended, as it consumes the most resources 

on the technology platform. The rules described 

in sections 3.3 and 3.4 apply 

 Discrimination: This option retrieves data while 

eliminating invalid values. It verifies the 

consistency of measurement values based on the 

rules described in section 3.2 

 Missing rows: In some cases, specific reasons 

can prevent certain measurement equipment 

from collecting data during a period, resulting in 

gaps in the historical database. This function 

identifies missing samples for each selected 

equipment in the queried period. It includes two 

options: "Only missing rows" and "Raw data 

with missing rows". 

 

The following values can be calculated for any time 

range, at any of the data groupings by frequency, for 

any recorded steady-state variable. The rules 

described in section 3.2 apply. 

 

 Average: This represents the arithmetic mean of 

the requested values. 

 Maximum: This corresponds to the highest value 

among the requested values. It is useful for 

identifying extreme values that could be outliers 

or data entry errors. 

 Minimum: This represents the lowest value 

among the requested values. It is employed to 

identify extreme values that might be outliers or 

data entry errors. 

 Sum: This is the result of adding up all the 

requested values. It is useful for aggregating 

values within a region, such as the real power of 

substation circuits or a group of substations. 

 Standard deviation: This is the square root of the 

variance of the requested values. It serves as a 

measure of dispersion and is particularly 

characteristic. 

 

4.3 Data Grouping by Frequency 
The following grouping strategies of the calculated 

values of section 4.2 allow optimizing the queries, 

generating and transporting only the data that is really 

useful to the end-user, depending on the function in 

which it will be used. 

 

 Hourly: Returns a single data point for each 

requested hour. It facilitates the creation of daily 

profiles of EPS electrical behavior 

 Daily: Returns a single data point for each 

requested day. It facilitates the generation of 

weekly or monthly profiles of EPS electrical 

behavior 

 Weekly: Returns a single data point for each 

requested week. It facilitates the generation of 

monthly profiles of EPS electrical behavior 

 Monthly: Returns a single data point for each 

requested month. It facilitates the generation of 

annual profiles of EPS electrical behavior. 

 Annual: Returns a single data point for each 

requested year. It allows for comparisons of 

annual EPS electrical behavior and trends 

 Period: Returns a single data point for the entire 

requested time range. This function is used to 

compare EPS electrical behavior during specific 

periods of interest 

 

4.2 Statistical Data 
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The following values can be requested for any time 

range, but metering devices must have power quality 

functions. 

 Interruptions: These are instantaneous changes in 

frequency from the steady state of current, 

voltage, or both. They have unidirectional 

polarity and are primarily characterized by their 

rise and fall times and their maximum value 

o Momentary. Obtains values with a voltage 

percent less than or equal to 10% and a 

duration less than or equal to 3,000 ms. 

o Temporary. Obtains values with a voltage 

percent less than or equal to 10% and a 

duration greater than or equal to 3,000 ms but 

less than or equal to 60,000 ms. 

o Sustained. Obtains values with a voltage 

percent of 0% and a duration greater than or 

equal to 60,000 ms. 

o All. Retrieves all interruptions when the 

current flow stops for any reason in the 

selected time range. 

 

 SAGS: These are decreases in the effective 

voltage value between 0.9 and 0.1 per unit (P.U.) 

with durations ranging from 16 ms up to a few 

seconds 

o Instant. Values with a voltage percent greater 

than or equal to 10% but less than or equal to 

90%, and a duration greater than or equal to 

16 ms and less than or equal to 500 ms. 

o Momentary. Values with a voltage percent 

greater than or equal to 10% but less than or 

equal to 90%, and a duration greater than 500 

ms and less than or equal to 3,000 ms. 

o Temporary. Values with a voltage percent 

greater than or equal to 10% but less than or 

equal to 90%, and a duration greater than 

3,000 ms and less than or equal to 60,000 ms. 

o All. Retrieves all SAGs records stored for the 

selected time range. 

 

 SWELL: These are increases in the effective 

voltage value between 1.1 and 1.8 P.U. with 

durations ranging from 16 ms up to a few 

seconds. 

o Instant. Values with a voltage percent greater 

than or equal to 110% but less than or equal 

to 180%, and a duration greater than or equal 

to 16 ms and less than or equal to 500 ms. 

o Momentary. Values with a voltage percent 

greater than or equal to 110% but less than or 

equal to 140%, and a duration greater than 

500 ms and less than or equal to 3,000 ms. 

o Temporary. Values with a voltage percent 

greater than or equal to 110% but less than or 

equal to 120%, and a duration greater than 

3,000 ms and less than or equal to 60,000 ms. 

o All. Retrieves all SWELLs records stored in 

the selected time range. 

 

4.5 Calculated Data 

 SCADA Equivalent Value: This is used when 

real-time data is unavailable, typically from a 

SCADA system, or when it's necessary to 

compare the actual SCADA value with an 

estimated value based on historical data. It is 

obtained through the following sequence. 

o Calculate the equivalent previous date, such 

as the day of the previous week that is similar 

to the current day or the day of the previous 

month that is similar to the current day 

o Use the current time without minutes. 

o Request the average of historical values for 

the current time on the equivalent previous 

date. 

 Last Stored Value: For any variable, this request 

provides the last value that was entered in the 

historical record along with the corresponding 

timestamp. It allows for validation of the 

operational status of the historical record and 

estimation of the quality of the stored data. 

 

 

5 Conclusion 
The value added by the Optimal Extractor to the 

processes of supporting operational decisions in a 

Smart Grid context has been highly significant. 

Specialist users continually discover new ways to 

leverage the advantage of visualizing the EPS 

behavior over time. 

For example, the Optimal Extractor enables the 

graphical representation or export to Excel of hourly 

average measurements by phase for each substation 

circuit in a year. This query generates approximately 

8,760 values per electrical parameter (365*24), 

regardless of the equipment's sampling frequency. In 

contrast, a standard extraction of raw data with a 10-

minute sampling frequency involves transferring 

approximately 52,560 values for each parameter 

(365*24*6), and double that if the sampling 

frequency is 5 minutes (365*24*12). Additionally, it 

consumes time and hardware resources on the client-

side to process all the obtained data. 

 

The integration of technology, optimal data 

extraction strategies, and the adoption of standards 

have enabled the execution of high-level functions 

with exceptional performance, reducing user 

response waiting times by up to 95%. For instance: 

 

4.4 Power Quality Events 
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 An EPS operator can generate the graph of the 

hourly real and reactive power profiles for the 

last 24 hours in approximately 5 seconds. 

 The graph or table displaying the hourly 

maximum values for voltage or real power 

measurements of a circuit over a year can be 

generated in approximately 50 seconds. 

 If the above query is requested daily, the 

response time is less than 20 seconds. 

 

A very representative and valuable query of the 

Optimal Extractor in support of operational 

decisions for an EPS operator during a failure and 

reestablishment event is the ability to calculate, on 

the fly (OLAP), the maximum hourly demand profile 

for the circuits involved, including the circuit that 

experienced the fault and those that can support the 

restoration. This integrated function allows for 

displaying the graph on screen in less than 3 seconds 

for each circuit. 

 

Another integrated function that provides significant 

value for users responsible for EPS operational 

analysis is the computation of the Coincident Peak 

Demand (CPD) for all circuits in a geographical 

region over a year [4]. Manually, this analysis for a 

geographical region with at least 500 circuits can take 

from 2 to 3 months. The Optimal Extractor 

calculates the value in approximately 30 seconds, and 

2 minutes if data quality algorithms are applied, 

along with generating the necessary calculation 

memory to support the results and operational 

decisions. This specific function enables impressive 

time savings and eliminates human errors that may 

occur when manually managing large amounts of 

data. 

 

 

 

Table 1 displays the results obtained by comparing 

the performance of three architectures. 

 

 ARQ1: Traditional components architecture. 

 ARQ2: Proposed components architecture for 

syntactic interoperability. 

 ARQ3: Proposed components architecture for 

semantic interoperability. 
 

In all the Test Cases, ARQ2 provides the best 

response time for the end user, with notable 

improvements compared to ARQ1. Regarding 

ARQ3, when the data volume is relatively low, the 

response time for the end user may be greater than 

ARQ1 due to the metadata required by implementing 

the CIM Instances. However, in general, this effect 

does not occur as the data volume increases, and the 

end user's perception is not affected since the total 

added time is less than 2 seconds. 

 

The architecture and strategies proposed for the 

Optimal Extractor facilitate the implementation of 

functions for the Smart Grid within the context of 

EPS operations. These functions, along with the 

architecture for semantic interoperability, were 

successfully implemented in multiple information 

systems in Mexico, supporting EPS operations. 

 

Future work for advanced Smart Grid applications 

includes the application of Artificial Intelligence to 

enhance response times, improve data quality, 

implement new validations, and enhance the user 

experience. For example, this could involve 

incorporating prognostics for demand, voltage drops, 

or climate-related impacts; all without affecting 

hardware performance or increasing end-user waiting 

times. 
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Case
Grouped by 

frequency
Period

Float values* 

transferred

Total time for 

user [s]

Float values* 

transferred

Total time for 

user [s]

Time % 

(ARQ2/ARQ1)

Float values* 

transferred

Total time for 

user [s]

Time % 

(ARQ3/ARQ1)

1 Hour 420                 0.15                35                   0.09                60.0% 35                   0.28                186.7%

1 Day 10,080           0.47                840                 0.16                34.0% 840                 1.52                323.4%

1 Week 70,560           0.80                5,880             0.14                17.5% 5,880             2.42                302.5%

1 Month 302,400         6.73                25,200           0.86                12.8% 25,200           5.57                82.8%

1 Year 3,679,200     71.36             306,600         6.92                9.7% 306,600         15.89             22.3%

1 Day 10,080           0.37                35                   0.13                35.1% 35                   0.32                86.5%

1 Week 70,560           0.70                245                 0.29                41.4% 245                 1.33                190.0%

1 Month 302,400         5.93                1,050             1.36                22.9% 1,050             2.73                46.0%

1 Year 3,679,200     70.86             12,775           2.62                3.7% 12,775           6.88                9.7%

1 Month 302,400         6.23                35                   0.27                4.3% 35                   0.43                6.9%

1 Year 3,679,200     70.06             426                 1.92                2.7% 426                 3.06                4.4%

Anualy 1 Year 3,679,200     69.26             35                   1.74                2.5% 35                   1.89                2.7%

CPD Anualy 1 Year 18,396,000    ̂86729.55 4                     3.90                0.004% 4                     4.09                0.005%

* 32 Electrical measurements + Timestamp (date - time) + Circuit ID

 ̂Includes 86,400 [s] for CPD processing in the client side

Test Case ARQ1 ARQ2 AQR3

Statistical 

(AVG)

Hourly

Daily

Monthly
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Table 1. Comparison results using the three architectures described. 
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