
String Matching Algorithm Using Multi-Characters Inverted Lists

CHOUVALIT KHANCOME

Computer Science Department, Faculty of Science

Ramkhamhaeng University

282 Ramkhamhaeng Road , Huamark , Bangkapi Bangkok

THAILAND.

Abstract:-This research article introduces a new string-matching algorithm that utilizes the multi-character

inverted lists structure, implemented using a perfect hashing method. The new solution processes the pattern

input string in a single pass. In the searching phase, the algorithm takes a linear time complexity. This approach

demonstrates efficient and rapid performance in practical experiments when a binary character set is used. It also

handles fewer characters and shorter lengths, even when the pattern length is increased. In some cases, this

algorithm exhibits superior text search performance compared to other algorithms. It has been observed that this

superiority is particularly evident when searching for smaller amounts of text. This algorithm can be explored

more quickly, especially when the search factor is between 0.25 to 0.75 times the length of the pattern,

approaching the performance of the traditional algorithm.

Key-Words: - String Matching Algorithm, Inverted Lists, Inverted Index, Pattern Matching, Exact String

Matching.

Received: May 29, 2022. Revised: July 23, 2023. Accepted: September 6, 2023. Published: October 3, 2023.

1 Introduction
String matching is the process of finding keywords or

character sequences in large texts. It is a fundamental

technique in computer science with a wide range of

applications, including search, data filtering,

analysis, validation, data access, and artificial

intelligence. In search tasks, string matching is used

to find words or sentences in text documents, such as

keyword-based website searches. In data filtering, it

is used to filter out spam emails, censor offensive

language, and sift through online shopping data. It

can also be used to analyze sentiments and uncover

trends or patterns in text. In validation, string

matching is used to check passwords, detect

copyright infringement, and identify privacy

violations. In data access and manipulation

applications, it can be used to replace and edit words

in word processing programs. String matching is also

essential for artificial intelligence, where it can be

used to create versatile tools for a variety of

situations.

Focusing on the principles of computer science,

string matching is a principle that locates all

occurrences of a pattern string, denoted as p =

c1c2c3…cm, in a given text string T = t1t2t3…tn, where

m is the length of p and n is the length of T.

Essentially, the pattern p is transformed into a

suitable data structure during the processing phase.

Then, the searching methods scan the text T using

appropriate techniques, which [8] are divides into the

prefix search, the suffix search, and the factor search.

Existing solutions, as cited in references [1]-[4],

[9]-[10], [15]-[19], and [22], use various data

structures such as automata, shift tables, or bit-

parallel techniques to generate the pattern p. During

the search phase, these methods are used to reduce

time complexity. The optimal solution [4] achieves a

pre-processing time complexity of O(m) and a space

complexity of O(1) while attaining an average search

time complexity of O(n) and a best-case search time

complexity of O(n/(m+1)). For a comprehensive

overview of solutions to this problem, shown in the

articles [7] and [8].

The inverted index has been used to address

information retrieval challenges in a variety of

applications, as described in references [2], [10],

[17]-[19], and [23]. By focusing on keywords and

their positions, the inverted index, as discussed in

references [5], [20], and [21], can be adapted to

different data structures, enabling faster searches.

This raises the question of whether the inverted index

can be used to develop a new data structure that can

provide even faster solutions. The findings presented

in this article provide an answer to this question.

Thus, this research article introduces a new exact

string matching algorithm using a data structure that

extends the inverted index concept discussed in

references [5], [20], [21], and [23]. The data structure

is called multi-character inverted lists (m-cIVL). The

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.18 Chouvalit Khancome

E-ISSN: 2224-2872 151 Volume 22, 2023

algorithm has a pre-processing time complexity of

O(m/k) and a searching time complexity of O(n +

nocc), where m is the pattern length, k is the factor by

which a single pattern is divided, n is the length of

the text being searched, and nocc is the matching

time.

Empirical experiments reveal the effectiveness and

speed of this approach when applied to binary

characters. In certain instances, it excels in text

search efficiency, particularly when employing fewer

characters, shorter character lengths, and configuring

the search factor (character splitting) within the range

of 0.25 to 0.75 times the character length. When

dealing with small search texts, such as 100 bytes, the

new algorithm consistently yields search results that

are either faster or equivalent to those produced by

the traditional algorithm.

The remaining sections are organized as follows.

Section 2 discusses related works and derives the

algorithm's principles. Section 3 introduces the basic

definitions and construction of the inverted lists.

Section 4 explains the search algorithm and provides

an illustrative example. Section 5 presents the

experimental results. Section 6 discusses the

findings. Section 7 concludes the paper, and Section

8 suggests algorithm improvements and future work.

2 Related Works
Since the inverted index structure has been used for

the information retrieval problem, it has been applied

to many applications. This structure represents words

in the target documents in the form of <documentID,

word:pos>, where documentID is the assigned

number used to refer to the document, word is the

keyword known as the vocabulary, and pos is the

position of the word's occurrence in the documentID.

The original sources [20] and [21] consider all

documents as D={D1…Dn}, where Di represents each

document containing various keywords in multiple

positions and ni 1 . Surprisingly, each document

D can be replaced by the multiple pattern P={p1, p2,

p3,…,pr}, and each pi can be represented as Di. The

characters and their occurrence positions in each pi

are referred to as individual posting lists.

Subsequently, all posting lists are organized into a

hashing table. The single inverted lists data structure

can be represented as follows.

Example 1: An example with p=aabcz demonstrates

an inverted list illustrated in Table 1.

Table 1. Example of single inverted lists.

 (single-Character) (IVL:inverted lists)

a <1:0>,<2:0>

b <3:0>

c <4:0>

z <5:1>

The efficient hashing table, known as perfect

hashing, requires O(n) space and operates in O(1)

time (as demonstrated in [11], [12], and [13]), where

n is the size of the data. Typically, the perfect hashing

principle is suitable for static keywords, such as

reserved words in programming languages. This

structure comprises: 1) A universal key, denoted as U

and f(), which accommodates all keys for accessing

data within the table and 2) Two levels of

implementation. The first level consists of k keys for

accessing the second level using a function f(k). The

second level contains data items associated with the

corresponding key, k. In this research, we assign U as

the universal key and use f(k) for the first level of the

perfect hashing table. The data items in the second

level are groups of posting lists. This research applies

the perfect hashing principle to accommodate multi-

character inverted lists. An illustrative example is

provided in the next section.

3 Multi-Characters Inverted Lists
Building upon the ideas presented above, this section

provides fundamental definitions of inverted lists,

accompanied by illustrative examples for each

definition. Additionally, it explains the pre-

processing phase, which outlines how to create and

validate the inverted lists table.

Definition 1: Let k be a multiple of m, denoted as k-

m, representing the character factor of the string

pattern p, where m is the length of the pattern and

k=1,2, 3, ... , m.

Definition 2: The inverted lists, constructed using the

k-m factor, are represented in the form of <appearing

position: termination status> and are referred to as

m-cIVL.

Example 2: For a pattern p = aabcz, when k is set to

2, 3, 4, and 5 as shown in Definition 1.

Table 2. The m-cIVL example.

 (2-m) m-cIVL

aa <1:0>

bc <2:0>

z <3:1>

 (3-m)

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.18 Chouvalit Khancome

E-ISSN: 2224-2872 152 Volume 22, 2023

aab <1:0>

cz <2:1>

 (4-m)

aabc <1:0>

z <2:1>

 (5-m)

aabcz <1:1>

Definition 3. Any key word wpos,ter is a part of p

derived representing any k-m factor, where pos is the

position that appears in p from 1 to m / k by rounding

an integer. If there is a fraction; ter is 1, if the end

character(s) of p, or 0 if not the last character(s).

Definition 4. Any keyword of p representing wpos,ter

contains the following keywords: w1,0 , w2,0 , w3,0 ,

wm/k-3,0 …, wm/k-2,0, , wm/k-1,0, wm/k,1.

Example 3: The 2-m of p = aabcz, as defined in

definition 4.

w1,0 = aa1,0

w2,0 = bc2,0

wm/k,1 =z3,1

Definition 5. Any multiple-character inverted lists

structure is a form of representing definitions 3 and 4

in the form of wpos,ter :<pos,ter>.

Example 4: The multiple-character inverted lists of

p = aabcz from 2-m of definition 4.

w1,0 = aa1,0 written with aa: <1,0>

w2,0 = bc2,0 written with bc: <2,0>

wm/k,1 =z3,1 written with z: <3,1>

Definition 6. Given that <pos,0> is the index of the

multiple characters inverted lists as denoted by Ipos,0,

and <pos, 1> is represented by Ipos,1 . Therefore,

Wpos,ter : Ipos,0 when k <m / k or Ipos,1 when k = m / k.

Definition 7. Let HT be a hashing table for the m-

cIVL of Definition 6 with two columns, containing

Wpos,ter and either Ipos,0 or Ipos,1.

Table 3 illustrates the example.

Table 3. Any m-cIVL of HT.

Wpos,ter Ipos,0 / Ipos,1

W1,0 I1,0

W2,0 I2,0

W3,0 I3,0

… …

Wm/k-3,1 Im/k-3,0

Wm/k-2,1 Im/k-2,0

Wm/k-1,1 Im/k-1,0

Wm/k,1 Im/k,1

Theorem 1: Accessing Ipos or Ipos,1 in the HT table

has a time complexity of O(1).

Proof: Assuming that f(x) is a hash function, Wpos,0

serves as a key for accessing any Ipos,0 and Wpos,1

serves as a key for accessing any Ipos,1.

 Based on the properties of a perfect hashing table,

accessing information within it typically has a

complexity of O(1). Therefore, using f(Wpos,0) to

access Ipos,0 and f(Wpos,1) to access Ipos,1 in HT also has

a complexity of O(1). #

4 String Matching Algorithms
There are two phases of the algorithm: pre-

processing and searching. These phases are

characterized as follows.

The pre-processing algorithm creates a multiple

inverted lists table and adds all Wpos,ter and Ipos,0 / Ipos,1

pairs to the HT table. Then, the algorithm reads p as

a k-m factor and generates characters for Wpos,ter and

Ipos,0 / Ipos,1 pairs, adding them to the HT table.

Algorithm 1 shows the steps of the pre-processing

algorithm.

Algorithm 1: Pre-processing phase

Input: p[c1c2c3…cm] of m lenth, k-m

Output: table HT

1. Create empty HT

2. pos=1, begin=1, end=k, terminate=0

3. For i=1 To m Do

4. Wpos, terminate p[cbegin…cend]

5. Ipos,ter Wpos, terminate

6. HT Ipos,ter

7. begin = begin +(k+1)

8. end = begin+k

9. IF end>= m Then

10. end = m

11. End of IF

12. IF end= m Then

13. terminate=1

14. End of IF

15. pos=pos+1

16. End of For

17. Return HT

The time complexity of Algorithm 1 is O(m/k),

where m is the length of a pattern p, and k is the k-m

value of the selected pattern p. The maximum space

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.18 Chouvalit Khancome

E-ISSN: 2224-2872 153 Volume 22, 2023

required is O (| | + m) and, on average, it takes

O(2(m/k)), as proven by the following theorems.

Theorem 2: The time complexity to create HT is

O(m/k) when k>1 or O (m) when k=1.

Proof: By choosing k and defining the lengths of the

multiple characters for each Wpos,ter, we establish that

p has a length of m.

When k is greater than 1, the primary source of

complexity arises from the 'For' loop (lines 3-16).

Each iteration of this loop processes the creation of

multiple inverted lists Ipos,ter for the substring p[cbegin

... cend].

Next, Ipos,ter is inserted into HT, taking O(1) time

as per Theorem 1. This loop operates m/k times,

where k varies from 1 to m/k. Therefore, the

complexity of the 'For' loop is O(m/k). Other sections,

both inside and outside the 'For' loop, have O(1)

processing time. When k equals 1, this loop operates

m times, resulting in a time complexity of O(m).

So, the most complex of the pre-processing

algorithm is O (m / k) when k> 1 or O (m) when k =

1.#

Theorem 3: The space complexity of HT, processed

by algorithm 1, takes O(| |+m) in the worst case

and O(2(m/k)) in the average case scenario.

Proof: The space complexity is determined by the

method used to create the multiple characters'

inverted lists in the HT table.

First, an empty HT is created in line 1. Then,

the 'For' loop in lines 3-16 is responsible for

generating all of the m-cIVLs. Each inverted list is

generated by creating a Wpos, terminate value from p

[cbegin... cend] (as seen in line 4) and associating it with

a unique key in the first column of the table. At the

same time, the space required to store the inverted

lists Ipos,ter in lines 5-6 is O(1) (single inverted list).

Every inverted list is created uniquely with an

existing key.

So, the number of inverted lists to be stored in HT

is 2(m/k). In the average case, the space complexity

is O(2(m/k)) when k>1. However, in the worst case

(k=1), the first column of the table takes up | |

space, and the second column takes up m space.

Therefore, HT has a space complexity of O(|
|+m) in the worst case and O(2(m/k)) in the average

case.#

The searching algorithm starts with the default

value given to the navigator and then scans the search

window from front to back to match the pair. For each

attempt to find a match, the algorithm obtains the

characters from the T[tbegin ... tend] as a key to access

HT using the hash function to find the termination

status pos. If pos matches and terminate is 1, then a

correct match is found. The search algorithm is as

follows.

Algorithm 2: SMCIVL

Input : HT, k, p=c1c2,c3…cmT = t1t2t3 . . . tn

Output : All occurrences are reported, and T is

scanned.

1. end=k, terminate=0, j=1, matchwindow=1

2. While j<=(n-(k*m) Do

3. pos=1, begin=j, end=begin+k, terminate=0,

matchwindow=1

4. While matchwindow=1 AND end<=n Do

5. st=text[tbegin…tend]

6. IF HT(f(st)) Then

7. h Ipos, ter of st

8. IF h contains pos and terminate Then

9. IF terminate=1 Then

10. report occurrence at text[tbegin…tend]

11. matchwindow=0

12. Else

13. pos=pos+1

14. begin=begin+k, end=begin+k

15. IF pos=m/k Then

16. terminate=1

17. IF (m mod k) !=0 Then

18. end=end-1

19. End of IF

20. End of IF

21. End of IF

22. Else

23. matchwindow=0

24 End of IF

25. Else

26. matchwindow=0

27. End of IF

28. End of While

29. j=j+1

30. End of While

This new search idea can compare multiple

characters in a single comparison, making searching

faster than ever. The search window can be more

varied, and the search factor can be set to the width

of the search window (1, 2, 3, ..., m), which will also

make searching faster.

The time complexity of the algorithm is primarily

determined by two loops: the first loop has a

complexity of O(n), and the inner loop iterates a

number of times equal to O(nocc), where nocc is the

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.18 Chouvalit Khancome

E-ISSN: 2224-2872 154 Volume 22, 2023

number of successful matches. The proof is

illustrated in the following Theorem 4.

Theorem 4: The multi-character string matching

algorithm, utilizing multiple inverted lists, has a time

complexity of O(n + nocc).

Proof: The proof is divided into three parts. In the

first part, starting from the second line, the entire

complexity of the algorithm is controlled by the

variable j, which ranges from 1 to n - (k * m) - 3, n -

(k * m) - 2, n - (k * m) - 1, to n - (k * m). In this case,

the normal search window moves from one location

to the next until it reaches n - (k * m), resulting in a

time complexity of O(n).

The second part (lines 4-28) considers two cases:

when k = 1 and when k > 1. In the first case,

comparisons are made for each window, resulting in

m comparisons per window. In the second case (k >

1), there are m / k comparisons per window. The

overall complexity of this part is determined by the

number of successful matches, 'nocc,' with HT access

having a constant complexity of O(1) as per Theorem

1. The second case occurs when all search attempts

are mismatched. The operation will only access HT

once in each j with a constant time according to

Theorem 1. Furthermore, the other case involves

comparing only a portion of p that does not result in

a match. Each of these external loops is compared for

each j value. The number of attempts required to find

a match is less than m when k = 1 or less than nocc.

Therefore, the maximum time complexity of the

second part remains O(nocc), as demonstrated in the

second case.

Part three involves a detailed examination of each

line of work. The loops and conditional (IF) functions

have a constant factor of O(1) complexity because

they only depend on configurable variables.

Therefore, the inner While loop operates at most

nocc times, while the outer loop operates at most n -

(k * m) times. The overall complexity is nocc + (n -

(k * m)) times, which is equal to O(n + nocc).#

5 Experimental Results
The researcher developed a computer program using

the Java language and conducted experiments on a

16-GB Intel Core i7 processor running Windows 10.

The experiments involved using different random

text as pattern characters and search data, with

varying sizes for each.

Next, famous algorithms from the Handbook of

Exact String Matching [7] were implemented: Brute

Force (BF), Knuth-Morris-Pratt (KMP), Boyer-

Moore (BM), Shift-Or (SO), Karp-Rabin (KR), and

Quick Search(QS). Additionally, the PFIVL

algorithm from [23] and the q-gram algorithms

BNDM and BNDMq from [15] were implemented

for comparison with the new solution, SMCIVL.

The size and quantity of random text were 100

bytes, 1 KB, 10 KB, 100 KB, 1 MB, and 10 MB. The

length of characters (L) was 2, 4, 8, 16, 32, or 64

characters. The number of active characters (Σ) was

2 (binary), 4, 8, 16, 32, or 64 characters.

With respect to the amount of search text, the

newly developed algorithm delivers faster search

times when searching for a small amount of text, for

example, 100 bytes. The search times match or

closely approach those of traditional algorithms,

especially when the search factor is large, ranging

from 0.25 to 0.75 times the length of the pattern.

Considering the same hash algorithm, KR [7], and

PFIVL [23], the new solution is expected to deliver

better overall performance. Fig. 1 displays the results

for scenarios with a small volume of text, a short

pattern length, and a small Σ. Additional

experimental results are presented in Fig. 2 for

scenarios involving a large volume of text and a large

Σ.

Fig. 1: Experimental results when Σ = 2, text size=

100 KB, and Length = 2.

Fig. 2: Experimental results when Σ = 64, text size=

10 MB, and Length = 64.

Fig. 3: Experimental results when Σ = 2, 4, 16, 64,

text size= 10 KB, and Length = 8.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.18 Chouvalit Khancome

E-ISSN: 2224-2872 155 Volume 22, 2023

Furthermore, the real-world experiments were

conducted using data obtained from three open

sources:

1. DNA Sequences from the GenBank database

(https://www.ncbi.nlm.nih.gov/genbank/) with a

volume of 1.8 MB.

2. Data from the British National Corpus

(BNC) word bank (BNC Consortium - OUP,

Longman, UCREL, OUCS, Chambers)

(http://ota.ox.ac.uk/desc/2553), which consists of

380,640 words.

Data from the American National Corpus (ANC)

word bank

(http://www.anc.org/data/masc/downloads/data-

download/), which consists of 201,488 words.

The experiment measured the time taken to search

real data (on the x-axis) in nanoseconds, as shown in

Fig. 4 to 6. The experiments were conducted with

ANC, BNC, and DNA data, varying the factors from

1-m to 64-m based on the character string length from

2 to 64 (on the y-axis).

Fig. 4: Experimental results of ANC.

Fig. 5: Experimental results of BNC.

Fig. 6: Experimental results of DNA.

 Figures 4-6 confirm that the new algorithm is

faster than the original algorithm, especially when

splitting the pattern into more than one character.

This is particularly true for k-m values between 0.25

and 0.75 times the length of the pattern. In these

cases, the new algorithm is at least as fast as the

original algorithm, and often faster.

6 Discussions
The following discussion will analyze and evaluate

complexity. It will examine experimental results,

including character length and text quantity

specifications, and compare them to algorithms with

similar hashing designs presented in the article.

In evaluating method complexity, the pre-

processing step demonstrates a superior time

complexity of O(m/k), surpassing other methods.

Moreover, the search step exhibits a linear time

similar to that of the KMP method, with a complexity

of O(n + nocc).

Based on the experimental results, the new

method demonstrates excellent efficiency when the

character set size is binary, particularly for scenarios

with small character counts and short lengths.

However, as the character set size increases to 4, 16,

and 64, the new method exhibits consistent search

speeds due to unchanged values in the mismatch

table. The primary factor influencing performance is

the length of the characters.

When examining the quantity of text employed

for searches, it becomes clear that the recently

devised method demonstrates superior or nearly

equal search performance in comparison to the

conventional method. This advantage is particularly

noticeable when adjusting the search factor

parameters (character splitting) to encompass larger

values, spanning from 0.25 to 0.75 times the

character length.

In contrast to methods employing similar hash

table construction principles, such as KR and PFIVL,

the novel approach generally demonstrates superior

efficiency. This advantage stems from its utilization

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.18 Chouvalit Khancome

E-ISSN: 2224-2872 156 Volume 22, 2023

of character subdivision into factors, resulting in a

relatively faster search process.

In scenarios where search performance is

evaluated with longer characters and larger text

volumes, the new algorithm's search outcomes do not

consistently match those of other algorithms. This

discrepancy arises from the need for continuous

analysis of longer characters in each search

operation, resulting in a higher frequency of analyses.

Furthermore, the actual search process can be

influenced by computer programming, as character

segmentation based on factor values directly affects

search time. Additionally, it's worth noting that the

new algorithm lacks a shift table, unlike algorithms

such as BM or KMP, which allows for shifting the

search window by more than one character.

7 Conclusion
This research introduces a novel data structure

known as multi-character inverted lists (m-cIVL)

designed for searching string data. The development

of this structure enhances the ability to compare

character strings, going beyond the limitations of

one-to-one character matching. Theoretical findings

suggest that this newly created data structure exhibits

a time complexity of O(m / k) for constructing string

matches, a worst-case space complexity of O(|Σ| +

m), and an average-case space complexity of O(2(m /

k)). The search algorithm operates with a time

complexity of O(n + nocc). In experimental

evaluations, this new solution proves to be a good fit

and performs efficiently, especially when utilizing a

binary character set with a limited number of

characters and shorter lengths. It is noteworthy that

this algorithm adapts well to longer patterns and

outperforms other approaches in terms of text search

performance.

8 Suggestions for future work
Although the new algorithm is effective, there is

room for improvement, especially in algorithms for

finding or comparing pairs, which only require a

single shift of the search window. Developing

strategies or algorithms that allow multiple characters

to be scrolled simultaneously would significantly

improve the efficiency of the search process.

Additionally, the following suggestions could be

considered to further improve the algorithm's

efficiency and open up new avenues for future

research:

1. Develop processes for generating shift tables

that accommodate multiple characters in the search

window.

2. Optimize the search direction, including

exploring reverse searches within the search window.

3. Utilize simultaneous access factors across

various segments of a character pattern during

searches.

4. Investigate techniques to expedite the

verification of the inverted lists continuity.

Acknowledgement:

Special thanks to Ramkhamhaeng University for

providing funding for this research. Extensive

gratitude goes to the Department of Computer

Science for their support, including the provision of

necessary time and research space. Finally,

appreciation is extended to Assoc. Prof. Dr. Veera

Boonjing for collaborating on the creation and

expansion of the inverted lists in the initial version of

this research structure.

References:

[1] Boyer R.S. and Moore J. S., A fast string

searching algorithm, Communications of the

ACM. 20, pp. 762-772, 1997.

[2] Chrochemore M. and Handcart C., Automata

for Matching Patterns, Handbook of Formal

Languages, Volume 2, Linear Modeling:

Background and Application, G. Rozenberg and

A.Salomaa ed.,Springer-Verlag,Berlin., Ch. 9,

pp. 399-462, 1997.

[3] Chrochemore M., Off-line serial exact string

searching, Pattern Matching Algorithms, A.

Apostolico and Z. Galil ed., Oxford University

Press. Chapter 1, pp. 1-53, 1997.

[4] Crochemore M., Gasieniec L., and Rytter W.,

Constant-space string-matching in sublinear

average time, Compression and Complexity of

Sequences 1997, pp. 230 – 239, 1997.

[5] Monz C. and Rijke M. de. (2006, August, 12)

Inverted Index Construction. Available:

http://staff.science.uva.nl/~christof/courses/ir/tr

ansparencies/clean-w-05.pdf.

[6] Escardo M., (2008, October 15), Complexity

considerations for hash tables Available:

http://www.cs.bham.ac.uk/~mhe/foundations2/

node92.html.

[7] Charras C. and Lecroq T.. (2008, October 10).

Handbook of Exact String Matching. Available:

www-igm.univ-lv.fr/~lecroq/string/string.pdf.

[8] Navarro G. and Raffinot M., Flexible Pattern

Matching in Strings, The press Syndicate of

The University of Cambridge., pp. 15-40, 2002.

[9] Galil Z., Giancarlo R., On the exact complexity

of string matching upper bounds, SIAM Journal

on Computing, 21(3)., pp. 407-437, 1992.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.18 Chouvalit Khancome

E-ISSN: 2224-2872 157 Volume 22, 2023

[10] Kesong H., Yongcheng W. and Guilin C.,

Research on A Faster Algorithm for Pattern

Matching, Proceedings of the fifth International

workshop on Information retrieval with Asian

languages. 2000, pp. 119-124.

[11] wikipedia, (2020, November 15), Hash table.

Available:http://en.wikipedia.org/wiki/Hash_ta

ble.

[12] Loudon K., (2020, November 24), Hash Tables.

Available:www.oreilly.com/catalog/masteralgo

c/chapter/ch08.pdf.

[13] DINH V. H., (2020, November 24), Hash Table.

Available:http://libetpan.sourceforge.net/doc/A

PI/API/x161.html.

[14] Law J., Book reviews: Review of Flexible

pattern matching in strings: practical on-line

algorithms for text and biological sequences by

Gonzolo Navarro and Mathieu Raffinot,

Cambridge University Press 2002”. ACM

SIGSOFT Software Engineering Notes, vol. 28

Issue 2, pp. 1-36, 2003.

[15] Navarro G., Raffinot M., Fast and flexible string

matching by combining bit-parallelism and

suffix automata, December 2000 Journal of

Experimental Algorithmics (JEA), Vol. 5, 2000.

[16] Knuth D.E., Morris J. R., and Pratt J. H., Fast

pattern matching in strings, SIAM Journal on

Computing 6(1), pp. 323-350, 1977.

[17] Ager M. S., Danvy O. and Rohde H. K., Fast

partial evaluation of pattern matching in strings,

ACM Transactions on Programming

Languages and Systems (TOPLAS), No. 28

Issue 4, pp. 3-9, 2006.

[18] Ager M. S., Danvy O. and Rohde H. K., On

obtaining Knuth, Morris, and Pratt's string

matcher by partial evaluation, Proceedings of

the ASIAN symposium on Partial evaluation and

semantics-based program manipulation, pp. 32-

46, 2002.

[19] Morris J. R., and Pratt J. H., A linear pattern-

matching algorithm, Technical Report 40,

University of California, Berkeley. 1970.

[20] Zaïane O. R. (2001, September 15), “CMPUT

391: Inverted Index for Information Retrieval”,

University of Alberta. Available:

http://www.cs.ualberta.ca/~zaiane/courses/cmp

ut39-03/.

[21] Yates R. B. and Neto B. R., Mordern

Information Retrieval, The ACM press. A

Division of the Association for Computing

Machinery, Inc, pp. 191-227, 1999.

[22] Simon I., String matching and automata,

Results and Trends in Theoetical Computer

Science, Graz, Austria, J. Karhumaki, H.

Maurer and G. Rozenerg ed., Lecture Notes in

Computer Science 814, Springer-Verlag,

Berlin, pp. 386-395, 1994.

[23] Khancome C. and Boonjing V. Inverted lists

string matching algorithms, International

Journal of Computer Theory and Engineering

Vol.2 , No.3, pp.352–357, 2010.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2023.22.18 Chouvalit Khancome

E-ISSN: 2224-2872 158 Volume 22, 2023

Special thanks to Ramkhamhaeng University for

providing funding for this research. Extensive

gratitude goes to the Department of Computer

Science for their support, including the provision of

necessary time and research space. Finally,

appreciation is extended to Assoc. Prof. Dr. Veera

Boonjing for collaborating on the creation and

expansion of the inverted lists in the initial version of

this research structure.

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
The author contributed in the present research, at all

stages from the formulation of the problem to the

final findings and solution.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself

Conflict of Interest
The author has no conflict of interest to declare that

is relevant to the content of this article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

	Blank Page

