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Abstract: - Viscosity emerges as a physical property of primary importance in the modeling of flow within a 
porous medium, as well as in the processes of production, transport, and refining of crude oils. The direct 
measurement of viscosity is carried out through laboratory tests applied to samples extracted from the bed of a 
well, being these samples characterized by their difficult collection and the considerable time lapse required for 
their acquisition. Several techniques have been developed to estimate viscosity, among which the empirical 
correlation with Nuclear Magnetic Resonance logs stands out. This study presents a methodology for creating a 
representative predictive viscosity model, adapted to specific reservoir conditions, using measurements and 
well logs using machine learning techniques, in particular, Support Vector Machines (SVM). It is concluded 
that SVM trained with a polynomial kernel (R² = 0.947, MSE = 631.21, MAE = 15.16) exhibits superior 
performance compared to SVM trained with linear and RBF kernels. These results suggest that SVMs 
constitute a robust machine-learning technique for predicting crude viscosity in this context. 
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1  Introduction 
Viscosity, as stipulated in literature, [1], 
characterizes the fluid's opposition to shear stress or 
flow and holds paramount significance in the 
computational representation of engineering 
procedures spanning the entirety of the petroleum 
sector, encompassing fluid processes from 
extraction to the refinement stage. Accurately 
estimating the propelling forces driving fluid flow 
necessitates the accessibility of viscosity data 
contingent on pressure, temperature, and density. As 
a result, hydraulic computations pertinent to fluid 
production and conveyance systems, as well as flow 
simulations within porous media, hinge upon the 
capability to prognosticate fluid viscosity under 
defined procedural circumstances, [2]. 

The characteristic under consideration assumes 
a pivotal role in formulating and advancing 
procedures aimed at recuperating, enhancing, and 
refining viscous crude oils. Owing to their elevated 
viscosity, these oils encounter notable impediments 
in spontaneous migration towards the wellbore, 
thereby rendering conventional production 
techniques insufficient for their extraction, [3]. By 
contrast, normal oils have viscosities of around 1 
(cP) to 10 (cP), whereas heavy crudes can exceed 
the 1 million (cP) limit in normal circumstances. 
Since these crudes make up as much as 70% of the 

world's petroleum reserves, specific recovery 
techniques have been created for the reservoirs that 
contain these oils, which makes viscosity mitigation 
tactics necessary, [4]. 

Viscosity measurements are directly obtained by 
the study of crude oil samples that are extracted 
from the wellbore, [5]. These samples must be of a 
significant caliber to provide timely, accurate, and 
useful results for effective manufacturing systems. 
Fluid characteristics are altered as a result of the 
large temperature and pressure changes that the 
reservoir fluids undergo during the collection 
process. These differences from in situ conditions 
are substantial. The samples are forwarded to labs 
for analysis once they are collected. Nevertheless, 
this procedure may cause a delay in data 
availability, which might impair the capacity to 
decide on development plans quickly, [6]. 

Some other approaches to the assessment of 
viscosity include petro-physical Nuclear Magnetic 
Resonance (NMR) logging. This method is used for 
the thorough assessment of characteristics including 
saturation, porosity, and permeability as well as the 
characterization of various fluids in geological 
formations, regardless of lithology, [7]. The 
underlying physical process is the induction of a 
magnetic field that drives the fluids in the porous 
medium's magnetic cores into action. These cores 
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interact, especially with hydrogen cores, to collect 
energy and then release it again. 

Relaxation periods are defined as the rate at 
which the magnetic signals connected to this 
energy's re-emission diminish exponentially with 
time, [8]. Measurements of oil viscosity and this 
degradation pattern have been found to correlate 
empirically, [9]. The link between temperature and 
hydrogen index is dependent on several factors. 
Unfortunately, these relationships do not work well 
enough to forecast heavy crude viscosities, [10]. 

Complex and nonlinear engineering problems 
have been solved in the scientific literature by using 
Machine Learning techniques including Artificial 
Neural Networks (ANN), Support Vector Machines 
(SVM), and Linear Regression. These methods have 
demonstrated impressive effectiveness in the 
modeling of issues with many variables, 
nonlinearity, and large amounts of data, [11]. 

In this study, machine learning—more 
particularly, Support Vector Machines—is used to 
propose a predictive viscosity model based on 
Nuclear Magnetic Resonance logs (SVM). A 
database composed of 366 logs was employed, 
using API gravity, gas-liquid ratio, sampling depth, 
temperature, pressure, and X and Y geographic 
coordinates as predictor variables. The target 
variable was viscosity (cP). The Python 
programming language was employed alongside the 
application of the Support Vector Machines (SVM) 
Machine Learning methodology.  

The subsequent sections of the manuscript are 
organized as follows: Section 2 delineates the 
problem formulation, Section 3 expounds upon the 
theoretical framework, Section 4 outlines the 
methodology, and Section 5 details the presentation 
and discussion of results. The paper culminates with 
a conclusion. 

 
 

2  Problem Formulation 
Viscosity, understood as the resistance of a fluid to 
shear stress, [12], is used for the modeling of 
engineering processes present in all aspects of the 
petroleum industry, [13], from production to the 
refining of fluids, [14]. Viscosity values at the given 
pressure, temperature, and density are required to 
estimate the driving forces for the fluid flow, [15]. 
Therefore, hydraulic calculations for production and 
transport systems, as well as the modeling of flow in 
porous flow modeling in porous media depend on 
the prediction of the fluid viscosity at the process 
conditions, [16]. 

One of the methods to estimate viscosity is the 
Nuclear Magnetic Resonance (NMR), [17], which is 

used to estimate properties such as porosity, 
permeability, saturation, and characterization of the 
different fluids present in the geological formation 
independent of lithology, [18]. The physical 
principle that governs it consists of an induced 
magnetic field that stimulates the magnetic nuclei of 
the fluids housed in the porous medium, [19], which 
absorb and re-emit energy through interaction with 
other nuclei of the fluid components, specifically 
hydrogen, [20]. 

In recent years, complex and non-linear 
engineering problems have been solved with 
Machine Learning techniques such as Artificial 
Neural Networks (ANNs), Support Vector Machines 
(SVMs), and Linear Regression, as they have shown 
satisfactory performance in modeling satisfactory 
performance in the modeling of problems with 
multiple variables, non-linear and with large 
volumes of information, [21]. For this reason, the 
objective of the present research is to develop a 
methodology to develop a predictive model of 
viscosity from petro-physical logs and viscosity 
measurements, by implementing the Machine 
Learning workflow. 

 
 

3  Background 
-Reservoir Fluids - Petroleum: petroleum 

constitutes a sophisticated amalgamation of diverse 
constituents, encompassing various natural 
hydrocarbon compounds, organic compounds 
containing nitrogen, oxygen, and sulfur, 
nonhydrocarbons, and trace quantities of metallic 
elements such as nickel, iron, and vanadium, [22]. 
The composition and characteristics of these fluids 
exhibit considerable heterogeneity contingent upon 
geological formations, including factors such as 
density, viscosity, and volatility. 

-Presence in the Reservoir: petroleum manifests 
itself within the reservoir as either liquid oil or 
natural gas. As crude oil pressure diminishes, light 
hydrocarbons and nonhydrocarbons separate from 
the liquid oil reservoir fluids, transitioning into a 
gaseous phase, [23]. Essentially, natural gas 
mixtures comprise light alkanes (ranging from 
methane to n-butane) and nonhydrocarbons, such as 
nitrogen (N2), carbon dioxide (CO2), hydrogen 
sulfide (H2S), helium (He), and trace amounts of 
water vapor. Moreover, they may contain minimal 
quantities of heavier hydrocarbon components, other 
gaseous non-hydrocarbons, and inert gases, [24]. 

-Importance of Physical Properties in Process 

Modeling: the physical properties of petroleum 
fluids, irrespective of phase, play a pivotal role in 
process modeling. Therefore, it is imperative to 
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consider diverse classifications of crude oil, [25]. 
Notably, a primary classification is based on fluid 
volatility, which correlates with specific gravity (° 
API) and the quantity of dissolved gas (GOR) under 
reservoir conditions. In this context, five types of 
reservoir fluids are delineated: black oil, volatile oil, 
gas condensate, wet gas, and dry gas, [13]. 

These crude oils can further be categorized based 
on their specific gravity (Table 1) or by their density 
and viscosity (Table 2). 
 

Table 1. Crude Oil Typology 
Type of crude 

oil 
Density 
 (Kg/m³) °API 

Light  < 870 > 31.1 
Medium  870 - 920 22.3 – 31.1 
Heavy  920 - 1000 10.0 – 22.3 

Extra-heavy           > 1000 < 10.0 
 

Table 2. Heavy Crude Oil Classification 
Type of crude 

oil 
Viscosity 

(cP) 
Density 
(Kg/m³) °API 

Light < 100 < 934 > 20 
Heavy 100 - 100000 934 - 1000 10-20 

Bitumen >100000 >1000 < 10 
 

Crude oil typologies are also segregated 
according to their extraction method. In this 
instance, conventional oils denote light and medium 
category oils, characterized by relatively low 
viscosities, obtained by traditional recovery 
methods. In contrast, unconventional crudes 
comprise high-viscosity oils, such as heavy, extra-
heavy, and bituminous oils, or light oils hosted in 
very low permeability rock formations, [26]. 

The hydrocarbon sampling procedure plays a 
crucial role in reservoir development decision-
making. Two main approaches for acquiring such 
samples stand out: downhole sampling and surface 
sampling. The former involves the introduction of 
sampling tools through a production test string 
(DST), wireline, or tubing to the productive region. 
In situations where the well has not been cased or 
the hole remains open, sampling can be carried out 
using the modular formation dynamics tester 
(MDT), [27]. 

Cased hole sampling incorporates the Cased 
Hole Dynamics Tester (CHDT), which seals a pack 
against the borehole or casing wall and then presses 
a probe against the formation. When pumping is 
initiated, the fluid contained in the rock is drawn out 
through the probe's intake port. This type of 
sampling allows, in general, the preservation of the 
sample in conditions as close as possible to those of 
the reservoir, [28]. 

On the other hand, surface sampling is most 
often carried out at the separator under stable flow 
conditions. It involves the collection of gas and 
liquid samples and can be performed throughout the 
productive life of the well, [29].  

After sample collection, samples are subjected 
to a series of laboratory tests for fluid 
characterization. Standardized analyses in this 
context include composition, density, gas-oil ratio, 
saturation pressure, asphaltene stability, and 
viscosity, [30]. Viscosity is the resistance of a fluid 
to shear stress. In Newton's viscosity law, it is 
defined in terms of the velocity gradient (𝑢) and the 
shear stress (𝜏xy) as follows: 

 
 τ𝑥𝑦 =  −µ 

∂µ𝑥

∂𝑦
 (1)  

 

     The generation of momentum transfer is 
attributable to shear stress, and viscosity is defined 
as the proportionality constant between the driving 
force and the subsequent velocity gradient, [31]. 
Crude viscosity is evaluated using various 
laboratory devices, such as rheometers and 
viscometers designed to operate at high pressures. In 
addition, the use of other instruments such as 
hydrometers, pressure pumps, and temperature 
baths, among others, is necessary, [32]. 
 
 
4   Methodology 
The dataset consisted of 7 attributes and 366 logs. It 
contains, geographic coordinates and depth data, 
physicochemical characteristics of the crude oil, and 
viscosity tests with its corresponding pressure and 
temperature. The dataset used is available in, [33]. 
Table 3 presents the complete description of the 
same. 

The CRISP-DM methodology was used to build 
the model. Figure 1 shows all the phases that 
comprise it, each of them is described below: 

- Stage 1 Business Understanding: In this phase, 
a comprehensive understanding of the business 
objectives is pursued. Critical factors related to the 
desired results are identified, the project objectives 
are established, and a plan is drawn up that defines 
the steps to be followed, the tools and techniques 
required, and the success criteria that will determine 
the achievement or failure of the proposed 
objectives, [34]. Likewise, success criteria are 
defined, which will determine the achievement or 
failure of the proposed objectives, [35]. 

- Stage 2 Data Understanding: Data collection, 
identification of quality problems in the data, and 
obtaining the first relevant knowledge are carried 
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out. During this phase, subsets of data of interest for 
the formulation of new hypotheses may be 
identified, [36]. 

- Stage 3 Data Preparation: The raw data are 
cleaned and converted before the processing and 
analysis stage. The final objective of this phase is to 
obtain the final data on which the models will be 
applied; the universe of data to work with is 
established and debugged, [37]. 

- Stage 4 Modeling: With the data normalized 
and cleaned, we proceed to the construction of the 
models with the optimal parameters (cross-
validation), [38]. 

- Stage 5 Evaluation: The performance of the 
models built from the performance metrics is 
evaluated and the optimal one is selected, [39]. 

- Stage 6 Implementation: The optimal model 
identified in the previous phase is implemented, 
either through a graphical user interface or directly 
from software (Python, R, Matlab, etc.), [40]. 

 
Table 3. Description 

Variable Description 

API Gravity 
(V1) 

Crude oil density indicator at standard 
conditions. Samples within the range of 
9.9 to 13.8 °API have been 
incorporated, covering crudes from 
extra-heavy to heavy category. 

Gas Oil 
Ratio  
(V2) 

The ratio of the volume of gas released 
by the fluid to the volume of oil at 
standard conditions (scf/bbl). The data 
set contains information from tests on 
dead crude and live samples in the 
range of 5.3 to 24.8 scf/bbl. 

Sampling 
Deth 

TVDES 
(V3) 

Vertical depth to sea level of the well in 
feet (ft). Samples were obtained in the 
depth range of -5329 to -6462 ft. 

Viscosity 
Test 

Temperature 
(V4)  

Temperature in (°F) at which the 
viscosity measurement was performed. 
Tests were performed from 140 to 350 
ºF. 

Viscosity 
Test 

Pressure 
(V5) 

Pressure (psi) at which the viscosity 
measurement was made. The evaluation 
range is 15 to 4015 psi. 

Geographic 
coordenate  

X 
(V6) 

X east-west geographic coordinate of 
the location of the well where the crude 
oil sample was obtained. 

Geographic 
coordenate  

Y 
 (V7) 

Geographic Y north-south coordinates 
of the location of the well where the oil 
sample was obtained. 

Viscosity 
(V8) 

Dynamic viscosity (cP) is measured at 
constant temperature and variable 
pressure. 

Note: All variables are continuous numerical. 

 
Fig. 1: CRISP-DM Methodology 
 

In Machine Learning, the quality and volume of 
data influence the accuracy of predictive models. To 
guarantee the model's applicability, it is also crucial 
to validate the model and understand the findings. 
Iterations and tweaks may be necessary in this 
procedure based on the validation findings. Since 
this study involves regression, the machine learning 
(ML) approach of support vector machines with 
several kernel types (linear, polynomial, and RBF 
radial basis functions) was applied. Equation (2) 
presents the general equation for Support Vector 
Machines (SVM).  

Equations (3), (4), and (5) illustrate the various 
kernel types: polynomial, linear, and RBF. The 
kernel function is represented by K, the intercept by 
b, the dual coefficients by Alphas, and the 
optimization parameters by C, γ, r, and d. 
 

𝑓(𝑥) =  ∑ 𝛼𝑖𝐾 (𝑥𝑖 , 𝑥) + 𝑏

𝑛

𝑖=1

 (2) 

 
Lineal Kernel 
 
𝐾(𝑥𝑛 , 𝑥𝑖) =  (𝑥𝑛, 𝑥𝑖)  (3) 
 
RBF Kernel 
 
𝐾(𝑥𝑛 , 𝑥𝑖) =  𝑒𝑥𝑝 (− 𝛾 ||𝑥𝑛 −  𝑥𝑖||2 ) + 𝐶 (4) 
 
Polynomial Kernel 
 
𝐾(𝑥𝑛 , 𝑥𝑖) =  ( 𝛾 ( 𝑥𝑛 , 𝑥𝑖  ) +  𝑟) d

 (5) 
 
 
5   Results and Discussion 
Table 4 depicts the correlation matrix, illustrating 
the interrelationships among eight variables denoted 
as V1 to V8. The correlation coefficients within the 
range of -1 to 1 signify the strength and direction of 
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associations, with a value of 1 denoting a flawless 
positive correlation, -1 indicating a flawless 
negative correlation, and 0 signifying the absence of 
correlation. 
 

Table 4. Correlation matrix 
 V1 V2 V3 V4 V5 V6 V7 V8 

V1 1,00        
V2 -0,03 1,00       
V3 0,04 -0,08 1,00      
V4 -0,03 -0,05 0,03 1,00     
V5 -0,03 0,09 0,09 0,05 1,00    
V6 0,03 -0,02 -0,03 0,14 0,00 1,00   
V7 0,06 -0,02 0,04 0,13 0,16 0,12 1,00  
V8 -0,04 -0,08 -0,02 -0,02 -0,02 0,04 -0,03 1,00 

Note: V1 = API Gravity, V2 = Gas Oil Ratio, V3 = 

Samplig Deth TVDES, V4 = Test Temperature, V5 = 

Test Pressure, V6 = X, V7 = Y, V8 = Viscosity. 

 
These correlations provide insights into the 

linear relationships between pairs of variables. Keep 
in mind that correlation does not imply causation 
and other statistical methods may be needed for a 
more comprehensive analysis.  

Table 5 presents the results of the different 
trained models, Accuracy, Recall, precision, and F1-
Score metrics were calculated. The fit tests were R², 
MSE, and MAE. The polynomial kernel performed 
better than the other two (higher R² and lower MSE 
and MAE). 
 

Table 5. Results 

Metrics 
SVM 

Kernel 
Lineal 

SVM  
Kernel 
RBF 

SVM  
Kernel 

Polynomial 
R² 0.879 0.826 0.947 

MSE 1450.51 2088.98 631.21 
MAE 25.82 24.15 15.16 

 
The Support Vector Machine (SVM) model 

with a polynomial kernel has shown a remarkably 
superior performance in terms of fit metrics 
compared to other models evaluated. This finding 
implies that the complexity and nonlinear 
interactions seen in the examined data have been 
well captured by the kernel selection. 
 
 
6  Conclusion 
There is a clear relationship of viscosity concerning 
temperature, viscosity decreases critically with 
increasing temperature, but concerning depth 
viscosity increases. This is because the change in 
viscosity at reservoir conditions responds more to a 
change in fluid density than to in-situ temperature. 

Viscosity information is dependent on many 
other characteristics apart from geographical 
position and depth. For future research, it is 

suggested that more information is suggested to 
correlate viscosity behavior with more chemically 
influential characteristics.  
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