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Abstract: - Artificial intelligence and big data have become widely utilized in industry and thus machine 
learning has been extensively researched. However, it is challenging to apply existing data-driven methods 
when the amount of data is insufficient. Therefore, transfer learning, which reuses knowledge acquired from 
domains with similar data characteristics and tasks, has gained attention for achieving fast and accurate model 
learning in new domains. Although numerous transfer learning methods have been proposed for classification 
problems, few have been proposed for regression problems. Moreover, conventional fuzzy regression transfer 
learning tends to work well only in limited domain environments with extremely limited target data, making its 
application to real-world data challenging. The present study applies a combination of regression models based 
on Takagi-Sugeno fuzzy theory and transfers learning to regression problems in domains with incomplete 
knowledge. We propose two methods, one based on a genetic algorithm and one based on differential evolution 
combined with a genetic algorithm, for optimizing mapping for input space modification and applying them to 
real datasets. The results of evaluation experiments demonstrate that the proposed methods have higher 
efficiency and learning accuracy than those of conventional methods. 
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1 Introduction 
Data science focuses on the processes and systems 
involved in extracting knowledge from vast amounts 
of data. Many machine learning methods assume 
that training data are collected from a similar feature 
space or distribution as that for the target domain. 
When the data distribution changes, most statistical 
models require the collection of new training data 
and a complete reconstruction of the model. 
However, these tasks are costly and sometimes 
impossible. 

Transfer learning, a machine learning method, 
addresses this issue by leveraging knowledge from 
models built in a source domain where extensive 
data can be collected and applying this knowledge 
to construct models for the target domain. Transfer 
learning thus offers the potential for high-precision 
learning with minimal data and a short training time. 

Currently, transfer learning is applied to tasks 
such as the classification of product reviews, spam 
emails, and web documents and the estimation of 
Wi-Fi location. Numerous methods have been 
proposed, particularly for text and image 
classification, [1], [2]. However, research on 

transfer learning for regression problems remains 
limited. 

Transfer learning is often combined with deep 
neural networks; however, domains with insufficient 
information can introduce uncertainty in predictions. 
Fuzzy systems, capable of efficiently handling 
uncertainty, have gained attention in such situations. 
Traditional regression transfer learning based on the 
Takagi-Sugeno fuzzy theory is effective only when 
the target domain has extremely limited training 
data, [3]. This indicates a highly restricted domain 
environment, making application to real datasets 
challenging. Moreover, only particle swarm 
optimization and differential evolution (DE) 
methods have been used for optimizing mapping for 
input space modification, [4], [5]. 

The present study first verifies the relationships 
between learning data in different domains using a 
regression transfer learning method based on the 
Takagi-Sugeno fuzzy theory for domains with 
incomplete knowledge. Then, two methods, one 
based on a genetic algorithm (GA) and one based on 
DE combined with a GA, are proposed for 
optimizing mapping for input space modification. 
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We apply these methods to some real datasets and 
assess their effectiveness through evaluation 
experiments. 
 

 

2   Related Research 
 

2.1  Transfer Learning 
Transfer learning is a machine learning approach 
distinct from conventional machine learning, where 
training and testing are typically conducted within 
the same task. In transfer learning, the knowledge 
gained from learning a given task is utilized for a 
new task. In other words, transfer learning 
effectively and efficiently addresses the data 
scarcity problem by reusing data and learning 
outcomes for a related problem, [1], [2]. 

In transfer learning, the source domain (where 
knowledge is transferred from) and the target 
domain (where knowledge is transferred to) are 
defined. The applicability of transfer learning 
depends on the strength of the relationship between 
the source and target domains; specifically, when 
there is a strong correlation between the tasks, data 
features, and distributions across domains, transfer 
learning is viable. 

Many transfer learning methods have been 
developed. Instance-based methods attempt to select 
related source instances for transfer, [6], [7], [8], 
[9]. One study investigated the transferability of 
features within deep learning networks and the 
potential reuse of features across various tasks and 
domains, [10]. An unsupervised domain adaptation 
method that employs backpropagation has been 
developed, [11]. The amalgamation of transfer 
learning and semi-supervised learning, with model 
sharing across disparate tasks, has been investigated, 
[12]. A method for the efficient transfer of data 
across distinct domains using GAs for multiple-
kernel learning has been proposed, [13]. 
 
2.2  Fuzzy Regression Transfer Learning 
The regression model based on the Takagi-Sugeno 
fuzzy theory predicts outcomes according to the 
following fuzzy rules, [3], [14]: 
If  𝒙𝒌  is  𝑨𝒊(𝒙𝒌, 𝒗𝒊), 𝑡ℎ𝑒𝑛  𝐲𝐤  𝑖𝑠  𝑳𝒊(𝒙𝒌, 𝒂𝒊)     (1)  

 
where 𝑣𝑖  is a cluster centroid and 𝑎𝑖  is the 
coefficient of a linear function. 

This equation is constructed by forming a 
membership function 𝐴𝑖  that represents the degree 
of membership of the input 𝑥𝑘 to each cluster and 
estimating the parameters of the linear function 𝐿𝑖 in 

the conclusion part of the rule. The fuzzy regression 
model predicts the output 𝑦𝑘. 

Fuzzy regression transfer learning combines the 
Takagi-Sugeno fuzzy regression model and transfer 
learning, [3]. Figure 1 shows the relationship 
between the source and target domains. The 
characteristics of the target domain should approach 
those of the source domain because the 
characteristics of the two domains are similar but 
never the same. Therefore, the feature quantity of 
the target domain is made to approach the feature 
quantity of the source domain by passing the 
mapping Φ. 

 

 
Fig. 1: Relationship between source domain and 
target domain 
 
 

3 Fuzzy Regression Transfer 

 Learning Using Genetic Algorithm 
In fuzzy regression transfer learning, when applying 
the fuzzy regression model M constructed based on 
the Takagi-Sugeno fuzzy theory to the target 
domain, it is necessary to modify the input space. 
 
3.1  Modification of Input Space  
In the present study, the input space is modified as 
shown in Figure 2 to bring the characteristics of the 
target domain data closer to those of the source 
domain data.  

 
Fig. 2: Modification of input space using nonlinear 
continuous mapping 
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Here, M is a model built in the source domain. 
Model M' is model M combined with the nonlinear 
continuous mapping Φ. 

Modifying the input space specifically means 
that the number of features in the input data in the 
target domain is modified so as to be adapted to 
model M. The input space 𝑥′ for the target domain is 
modified by obtaining the mapping𝛷(𝑥𝑘

′ ) of each 
input variable in the following equation: 

𝜱(𝒙′
𝒌) =

[
 
 
 
𝛷1(𝑥

′
𝑘1
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    (2)  

 
where  𝑥′𝑘𝑖  is the ith input variable of  𝑥′

𝑘 . The 
mapping for each input variable is constructed 
through a network that is composed of P nodes 
(𝑍𝑘𝑖1, 𝑍𝑘𝑖2, … , 𝑍𝑘𝑖𝑃) located in the middle layer and 
a single node located in the output layer. The nodes 
in the middle layer are a sigmoid function consisting 
of the two parameters in the following equation: 

𝑍𝑘𝑖𝑝 = 
1

1 + 𝑒−𝛼𝑖𝑝(𝑥′
𝑘𝑖−𝛽𝑖𝑝)

      (3)  

𝑖 = 1,2, … . , 𝐷,    𝑝 = 1,2, … . , 𝑃, 𝛼𝑖𝑝 > 0 
 
When modifying the input space, it is important 

to optimize the parameters α and β in the sigmoid 
function and the weight W. In the present study, we 
adopt a GA to optimize these parameters and 
evaluate the improvement of the resulting limited 
domain environment. 
 
3.2 Optimization of Mapping using Genetic 

Algorithm 
GAs are optimization algorithms inspired by natural 
selection and genetics. They belong to the broader 
category of evolutionary algorithms and have been 
widely used to find approximate solutions to 
optimization and search problems. GAs are based on 
the principles of evolution, including selection, 
crossover (recombination), and mutation, [15], [16], 
[17], [18], [19], [20]. 

In this study, we apply a GA to optimize the 
parameters for the mapping Φ. The representation of 
individuals in the GA uses a matrix whose size is 
determined by the number of attributes and the 
number of nodes. The representation of an 
individual for parameter α is shown in Figure 3. 
Similar representations are used for β and W. Here, 
since we use a real-valued GA, each element in the 

matrix is a random real number within a specified 
range. 

 

 
Fig. 3: Representation of individual for parameter α 
in genetic algorithm 
 

The fitness function uses the mean squared error 
(MSE): 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝒚𝒌 − 𝒚𝒌′)

2
𝑁

𝑘=1
         (4)  

 
where 𝑦𝑘′is a predicted value based on the input 
space modified using the parameters of the 
individual in the current generation and 𝑦𝑘  is a 
target value. 

Finally, for genetic manipulation, single-point 
crossover is performed, as shown in Figure 4. Each 
element of the matrix is stochastically mutated one 
by one. The individuals are then compared and the 
one with the best fitness is selected. Additional 
individuals are selected by roulette selection. These 
individuals make up the next generation. 

 

 
Fig. 4: Diagram of single-point crossover 
 

3.3 Optimization of Mapping Using 

Differential Evolution Combined with 

Genetic Algorithm 
In the optimization of mapping using a GA, it is 
considered that in a real-valued GA, the fitness of 
the initial individuals has a significant impact on the 
final accuracy. Increasing the population size, 
mutation probability, and number of generations in 
the GA can enhance the coverage of the search 
space; however, this may also increase the 
computation time. 

DE is a population-based optimization algorithm 
that falls under evolutionary algorithms. It 
iteratively evolves a population of candidate 
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solutions through processes such as mutation, 
crossover, and selection. DE is known for its 
simplicity and effectiveness in solving optimization 
problems across various domains, [21], [22], [23], 
[24]. 

In this study, we propose a mapping optimization 
method that combines DE and GA, denoted as DE-
GA. Initially, optimization is conducted using DE. 
Then, further optimization is conducted by applying 
a GA to the solution set obtained from DE. In this 
approach, the initial optimization using DE is 
performed to enhance the fitness of the initial 
individuals for the real-valued GA. It is expected 
that combining DE with a GA will improve the 
prediction accuracy (even though a smaller solution 
set and fewer generations are used compared to 
those for GA alone) and reduce the computation 
time. 
 

3.4  Proposed Model and Evaluation Metric 
In this study, we propose five patterns for model M' 
in the target domain, where the model is transferred 
from the constructed model in the source domain. 
 

𝑀′𝑇: model built with only target data (Φ=1) 
𝑀′𝑆: model built with only source data (Φ=1) 
𝑀′𝐷𝐸: Φ and M optimized using DE 
𝑀′𝐺𝐴: Φ and M optimized using GA 
𝑀′𝐷𝐸_𝐺𝐴: Φ and M optimized using DE-GA 
 
The evaluation metric used in the validation 

experiments on a real dataset is the root-mean-
square error (RMSE) between the target values 𝑦 
and the predicted values 𝑦′ , as defined in (5). In 
addition, the standard deviation (SD) of the 
prediction errors, defined in (6), is calculated to 
assess the variability of the predictions. 
𝑦 ′̅ represents the mean value of the predicted values. 
Furthermore, to assess the efficiency of the models, 
a comparison of the computation time from model 
learning to prediction is conducted for 𝑀′𝐷𝐸, 𝑀′𝐺𝐴, 
and 𝑀′𝐷𝐸_𝐺𝐴. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑘 − 𝑦𝑘′)2

𝑁

𝑘=1
       (5)  

𝑆𝐷 = √
1

𝑁
∑ (𝑦𝑘′ − 𝑦′̅)

2𝑁

𝑘=1
             (6)  

 

 

 

4   Experiment and Results 
Validation experiments were conducted using the 
proposed five models on real datasets. The five 

models were applied to various tasks for real 
datasets. The proposed method was evaluated in 
terms of prediction accuracy and computation time. 
Cross-validation was also performed. The 
experimental conditions are shown in Table 1.  
 

Table 1. Experimental conditions 
 

Fuzzy Regression 

 

DE 

Cluster C  * Solution Group 200 
Fuzzy 
Degree m  

* Generation 200 

Mapping Scaling Factor F    * 
Node 3 Crossover Rate CR * 

 

GA 

 

DE-GA 

Individuals 50 Solution Group 
(Individuals) 

50 

Generation 1000 DE generation 100 
Elite Rate 0.2 GA generation 100 
Mutation 
Rate 

0.05 No other changes 

 
Since  𝑀′𝑆 did not require five-fold cross-

validation, all target data were used as the test data 
for this model. In addition, the parameters were set 
to values believed to be sufficient for the learning of 
each model based on preliminary experiments. For 
parameters C and m for the fuzzy regression model 
and parameters F and CR for DE, the values were 
set to accommodate the given dataset. 
 
4.1  Experiment 1: Boston Housing Dataset 
In this experiment, the Boston housing dataset, an 
open dataset for regression problems, was utilized. 
For the transfer learning process, the input space 
was constructed using two attributes from this 
dataset, namely ROOM (average number of rooms 
in each neighborhood) and DISTANCE (distance 
from each neighborhood to five employment centers 
in Boston). 

The target variable was the median housing price 
in each neighborhood. For the transfer learning task, 
instances with the attribute TAX (property tax rate 
per $10,000) below 600 were considered as the 
source data (one dataset with 370 instances) and 
those with TAX equal to or above 600 were 
considered as the target data (three datasets with 30, 
60, and 90 instances, respectively). The input space 
for the two domains is shown in Figure 5. As 
shown, the two domains have different data 
distributions. 
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Table 2. Results for Boston housing dataset 
Target M'T M'S M'DE M'GA M'DE_GA 

30 104.32   8.44  5.38  9.75  
50.24  6.65  12.69  4.71  

37.80  26.33  32.47  33.61  
32.50  34.54  18.61  17.51  

24.85  39.33  20.00  35.51  
Mean 49.94±28.42 16.71  23.06±13.34 17.83±8.96 20.22±12.41 
60 13.32   9.20  6.52  7.21  

27.63  24.47  21.94  22.40  
11.80  4.83  6.70  4.05  

5.64  7.46  4.96  10.39  
9.58  6.42  9.18  6.77  

Mean 13.59±7.48 13.62  10.48±7.14 9.86±6.19 13.37±5.27 
90 24.71   25.68  21.08  19.53  

17.21  12.86  12.58  11.33  

7.35  9.13  7.86  9.05  
5.32  4.85  5.57  4.14  

5.12  4.78  5.27  4.43  

Mean 11.94±7.78 12.22  11.46±7.72 10.47±5.92 9.70±5.63 

Time Ratio  1.00 4.66 0.56 
 

 
Fig. 5: Input space for source and target domains in 
Experiment 1 
 

Table 2 shows the results of five-fold cross-
validation for each trial, including the RMSE, 
average, and SD for various target data sizes and the 
ratio of the average computation time. The 
parameters used were C = 6, m = 1.8, F = 0.5, and 
CR = 0.9. As shown in the table, 𝑀′𝐺𝐴and 𝑀′𝐷𝐸_𝐺𝐴  
often have smaller errors than those for the other 
models, indicating higher prediction accuracy. 
However, for the target dataset with 30 instances, 
both𝑀′𝐺𝐴 and 𝑀′𝐷𝐸_𝐺𝐴 are inferior to 𝑀′𝑆. 
 
4.2  Experiment 2: Diabetes Dataset 
In this experiment, we utilized an open dataset 
related to diabetes for regression analysis. The input 
space was constructed using three attributes, namely 
BMI (body mass index indicating obesity), BP 
(blood pressure), and GLU (blood glucose level). 
The target variable was the progression of diabetes 
after 1 year.  

Here, instances with ages below 60 were used as 
source data (one dataset with 339 instances) and 
those with ages equal to or above 60 were used as 
target data (three datasets with 30, 60, and 90 
instances, respectively). The input space for the two 
domains is shown in Figure 6. In contrast to 
Experiment 1, the two domains have similar data 
distributions. 

 

 
 

Fig. 6: Input space for source and target domains in 
Experiment 2 

 
Table 3 shows the results of five-fold cross-

validation for each trial. The parameters used were 
C = 6, m = 1.8, F = 0.5, and CR = 0.7. A shown in 
the table, depending on the data split, there are cases 
where 𝑀′𝐺𝐴 and 𝑀′𝐷𝐸_𝐺𝐴 have smaller errors than 
those for the other models. However, on average, 
regardless of the number of instances in the target 
dataset, 𝑀′𝑆 has the best prediction accuracy in all 
cases. 
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Table 3. Results for diabetes dataset 
Target M'T M'S M'DE M'GA M'DE_GA 

30 4376.53   62.83  84.05  52.41  

678.69  149.21  128.89  114.99  

193.28  62.55  42.67  47.36  
5554.48  89.92  76.84  75.85  

91.44  87.94  48.28  51.75  
Mean 2178.88±2314.08 60.60  90.49±31.63 76.15±30.79 68.47±25.30 
60 73.64   66.10  63.60  62.93  

64.41  66.77  61.50  65.95  
56.75  65.61  65.63  73.66  
70.60  64.17  67.98  54.82  

74.97  63.10  59.24  52.68  

Mean 68.08±6.73 56.63  65.15±1.33 63.59±3.06 62.01±7.63 
90 68.49   72.35  57.32  55.19  

54.30  61.14  69.75  67.02  
54.44  62.46  64.66  54.76  

47.18  44.61  55.29  42.57  

64.67  49.48  59.45  54.22  
Mean 57.82±7.72 53.61  58.01±9.88 61.29±5.26 54.75±7.74 
Time Ratio  1.00 3.60 0.48 

 
Table 4. Results for cancer dataset 

Target M'T M'S M'DE M'GA M'DE_GA 

30 50.42   27.58  29.54  25.53  

60.93  44.51  38.29  39.71  
2362.65  71.81  63.92  100.46  
2208.44  27.60  42.51  40.22  
208.68  46.50  46.06  44.37  

Mean 978.22±1070.00 38.32  43.60±16.24 44.06±11.36 50.06±25.99 
60 33.38   37.10  36.22  34.87  

31.84  33.11  34.61  35.92  
35.80  40.33  39.39  34.37  
503.46  26.89  23.15  26.33  
48.28  23.07  35.52  32.59  

Mean 130.55±186.54 36.15  32.10±6.36 33.78±5.55 32.81±3.42 
90 39.58   36.71  32.96  32.02  

37.47  36.54  36.75  35.01  

34.56  28.12  32.62  28.18  
31.91  29.18  36.90  28.04  

36.59  29.28  28.99  28.08  

Mean 36.02±2.61 34.67  31.97±3.82 33.64±2.95 30.27±2.81 

Time Ratio  1.00 3.36 0.42 
 
4.3  Experiment 3: Cancer Dataset 
In this experiment, a dataset related to cancer 
incidence rates by county in the United States was 
utilized. The input space was constructed using two 
attributes, namely IR (cancer diagnosis rate per 
capita for each county) and INCOME (median 
income of residents in each county). The target 
variable was the per capita cancer mortality rate for 
each county. Instances with a poverty rate of less 
than 30% were used as source data (one dataset with 
2930 instances) and those with a poverty rate equal 
to or above 30% were used as target data (three 
datasets with 30, 60, and 90 instances, respectively). 

The input space for the two domains is shown in 
Figure 7. The two domains have different data 
distributions. 

Table 4 shows the results of five-fold cross-
validation for each trial. The parameters were set as 
C = 6, m = 1.4, F = 0.5, and CR = 0.7. As shown in 
the table, there are cases where 𝑀′𝐷𝐸_𝐺𝐴 has smaller 
errors than those for the other models. In 
addition,  𝑀′𝐷𝐸_𝐺𝐴  often has the smallest errors 
(highest prediction accuracy). However, for the 
target dataset with 30 instances, 𝑀′𝑆  has the best 
results. 
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Fig. 7: Input space for source and target domains in 
Experiment 3 
 

The results for the three experiments confirm 
that fuzzy regression transfer learning is effective 
for real datasets. However, in Experiment 2, for 
which the input space distributions of the source and 
target domains overlapped, the modification of the 
input space adversely affected the learning process. 
In addition, due to the large variability in input data 
in a real dataset, the method performed well even 
with a large number of instances in the target 
dataset. On the other hand, for a target dataset with 
30 instances, learning was insufficient. These 
observations suggest that depending on the 
conditions (e.g., data distribution and the number of 
instances), negative transfer through mapping may 
occur. 

Furthermore, a comparison of the computation 
times indicates that 𝑀′𝐺𝐴 was approximately 3.5 to 
4.5 times faster than 𝑀′𝐷𝐸  in all experiments. On 
the other hand, 𝑀′𝐷𝐸_𝐺𝐴  was about half as fast as 
𝑀′𝐷𝐸 . Considering both prediction accuracy and 
computation time, it can be concluded that  𝑀′𝐷𝐸_𝐺𝐴 
is the best model, verifying the efficient 
optimization of parameters with DE-GA. 

Although the proposed method requires certain 
conditions (e.g., the number and distribution of data 
instances in the source and target domains) to be 
met, it is applicable to various real-world regression 
problems. 
 

 

5   Conclusion 
In the present study, we applied fuzzy regression 
transfer learning to regression problems in domains 
with incomplete knowledge. First, for the target 
task, we found that the impact of the ratio of data 
between the source and target domains was 
negligible, but the distribution of data between the 
two domains had a significant effect. Incorporating 
a GA for optimizing the mapping for input space 
modification improved prediction accuracy and 

reduced computation time. The effectiveness of the 
proposed method was confirmed on real-world 
datasets. The proposed transfer learning method can 
only be applied when the dimensions and attributes 
of the input space are the same. 

The following challenges will be considered in 
future studies: 

(1) Handling datasets with different dimensions 
and attributes. The current method is applicable only 
when the dimensions and attributes of the input 
space are the same. Methods that can handle 
datasets with different dimensions and attributes are 
required. 

(2) Experiments using more diverse domains. 
Although the experiments in this study were 
conducted on real-world datasets, the effectiveness 
of the proposed method should be further verified 
using more diverse domains and datasets. 

(3) Automated parameter tuning. Some 
parameters in the current method are manually set. 
Methods for the automatic adjustment of these 
parameters should be developed. 

(4) Enhancing robustness to noise and missing 
data. Real-world datasets often contain noise and/or 
missing data. Improving the robustness of the 
proposed method in such situations is important. 
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