
Array, Linked List, and Binary Search Tree Comparison

MAJA SAREVSKA

Faculty of Informatics, European University Skopje,
NORTH MACEDONIA

Abstract: - In this paper, I present the comparison of necessary average programming steps for element search
and deletion in basic data structures, like arrays, linked lists, and binary search trees. It is well known that an
array is a very convenient data structure for accessing elements via indices, while it is complicated for element
deletion, as it requires rearranging all the rest elements. Sorted arrays are very convenient for binary element
search. On the other side linked list is a data structure that requires only a few steps for adding and deleting an
element. I quantitatively confirm that the binary search tree is efficient both for binary search and for element
deletion. This analysis may be used for the education of undergraduate and graduate students in computer
science.

Key-Words: - Array, linked list, binary search tree, binary search, element deletion, search algorithm.

Received: March 1, 2024. Revised: April 16, 2024. Accepted: May 22, 2024. Published: June 24, 2024.

1 Introduction
The most important aspects of any programming
language are Data Structures (DS). Data are
organized and stored in DS to be efficiently used for
data operations. DS are arranged data in a particular
way, saved in the memory so it can be retrieved to
be used later, [1].

An array DS is a basic concept in programming,
it is a collection of items of the same data type
stored in contiguous memory locations, [2]. This DS
is efficiently used in programming for manipulating
and organizing data with access to any array
element using indices. Another fundamental DS in
programming is a Linked List (LL), it is made of a
set of nodes, where each node is represented with
data and reference or link to the next node, [2]. This
DS efficiently adds and deletes elements in the LL.
A Binary Tree (BT) is a tree DS where each node
can have at most two children, and these two nodes
are referred to as the left child and the right child.
BTs have many applications in computer science,
like data storage and retrieval. Also, they can be
used to implement algorithms such as searching,
sorting, and graph algorithms, [3]. A Binary Search
Tree (BST) is a special type of binary tree in which
the left child has a value less than the node’s value
and the right child has a value greater than the
node’s value. This property provides efficient
application of various data operations like deleting,
searching, or inserting elements in the tree and it is
called the BST property, [4], [5].

The goal of this paper is to show exactly this
property of BST quantitatively. Namely, BST can

search elements efficiently like in a sorted array,
and at the same time BST can efficiently delete and
insert elements same efficiently like in LL. This
quantity is represented by program steps in the
programming language C. Section 2 defines
illustratively and with programming code the
appropriate DSs. Section 3 represents the
comparison between BST and Array. Section 4
presents the comparison between BST and LL. And
finally, in Section 5 some concluding remarks are
given.

2 Array, Linked List, and Binary

 Search Tree in the Programming

 Language C
As I explained an array is a set of items of the same
data type, stored in contiguous memory locations
that may be accessed efficiently with indices, [4]. If
the array is sorted then applying the appropriate
algorithm we can do an element search in a very
efficient and fast way. Figure 1 presents the array
illustratively. Figure 1a presents the element
deletion. First, the element should be found, then
removed from the array, and afterward, all upper
elements must be moved down to one place.

LL DS is a collection of elements called nodes,
where each node is represented with data and
reference or link to the next node. In this DS we can
efficiently add and delete elements, [4]. Figure 2
illustrates the LL DS. Figure 2a presents the
illustration of element deletion and the formation of
new links while deleting the element.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.12 Maja Sarevska

E-ISSN: 2224-2872 144 Volume 23, 2024

LL DS is very convenient for adding and deleting a
node [6], [7], in our analysis I will focus only on
element deletion, although the conclusion may be
easily driven in the case of adding an element.

Fig. 1: Array DS, illustratively and programming
code for definition in programming language C

Fig. 1a: Array DS, element deletion, [8]

Fig. 2: LL DS, illustratively and programming code
for definition in programming language C

Fig. 2a: LL DS, element deletion

BST is a special type of BT, [9]. [10], where the
value of the left child is less than the value of the
parent node and the value of the right child is
greater than the value of the parent node, [4]. Figure
3 illustrates the BST DS. Figure 3a presents the
element deletion in the BST and node rearranging
after element removal.

Fig. 3: BST DS, illustratively and programming
code for definition in programming language C

Fig. 3a: BST DS, element deletion, [4]

3 Comparison: Array and Binary

 Search Tree
The simulation experiment is done on the following
data example, sorted array:
{1,2,3,4,6,7,9,11,12,14,15,16,17,19,33,34,43,45,55,
66}. For the array, I use the Binary Search algorithm
and I count the steps in the program. For BST I
shuffle the elements, build the tree, and search for
the appropriate element, and I also count the
programming steps. I make thousands of trials and
estimate the mean number of steps. Then I compare
the steps, by presenting them in the chart in Figure
4.

For example, we may notice that the number of
programming steps to find the element 66 in the
array is 5 while for the BST is 3. Overall the values
are comparable.

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.12 Maja Sarevska

E-ISSN: 2224-2872 145 Volume 23, 2024

For the programming code in C, the reader is
kindly asked to contact the author. In the program, I
define function shuffle, which shuffles the elements
in the sorted array. This is done because in general
the items in the sequence are random when I build
the LL or BST. Then I define a function find(item),
that does the binary search for the element in the
sorted array. Namely, if the element that should be
found is greater than the middle element then I
continue the search in the upper sub-half array. If
not in the lower one. Iteratively I repeat this
procedure while I find the element. Then I define
the function insert(data), to build the BST by adding
the elements (nodes) one by one. I define the
function search(data). If the element that should be
found is smaller than the node value I continue to
search in the left sub-tree, else I search in the right
sub-tree. I repeat this iteratively until I find the
element. Then I define the main() function where I
do the binary search, count the procedure steps
while array binary search, shuffle the elements,
build the BST, do the element search in the BST,
and count the procedure steps.

Fig. 4: Steps comparison between Array and the
BST

Another simulation experiment is done on the
following data example, sorted array:
{1,2,3,4,6,7,9,11,12,14,15,16,17,19,33}. I decreased
the number of elements. For the array, I use the
Binary Search algorithm and I count the steps in the
program. For BST I shuffle the elements, build the
tree, and search for the appropriate element, and I
also count the programming steps. I make thousands
of trials and estimate the mean number of steps.
Then I compare the steps, by presenting them in the
chart in Figure 5.

For example, we may notice that the number of
programming steps to find the element 33 in the
array is 4 while for the BST is 3. Overall the values
are comparable. As it is expected there is a
decreased number of steps and the length of data

space decreases. Also, there is an influence on the
value of the data samples, but that’s for future
analysis.

Fig. 5: Steps comparison between Array and the
BST

4 Comparison: Linked List and

 Binary Search Tree
I again use the same data sample of 20 elements:
{1,2,3,4,6,7,9,11,12,14,15,16,17,19,33,34,43,45,55,
66}. I shuffle the elements and form the LL and the
BST. In both cases, I search for the appropriate
element and delete it. I do this trial a thousand times
and estimate the mean value of the programming
steps. The comparison is presented in Figure 6.

For example, we may see that the average
number of programming steps for LL is around 9
while for the BST is around 5. The better
performance of the BST is thanks to the faster data
search compared to the LL.

Fig. 6: Steps comparison between LL and the BST

For the programming code in C, the reader is
kindly asked to contact the author. In the program, I
define function shuffle, which shuffles the elements
in the sorted array. This is done because in general
the items in the sequence are random when we build
the LL or BST. I define the function insert(data), to

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.12 Maja Sarevska

E-ISSN: 2224-2872 146 Volume 23, 2024

build the BST by adding the elements (nodes) one
by one. I define the function search(data). If the
element that should be found is smaller than the
node value I continue to search in the left sub-tree,
else I search in the right sub-tree. I repeat this
iteratively until I find the element. Then I define a
function minValueNode, which is necessary when
deleting the node. The node with minimal value in
the left sub-tree should replace the deleted node, and
other nodes should be rearranged. I define the
function deleteNode for node deletion. I defined the
function insertFirst(data) to build the LL by adding
the nodes one by one. Next, I define the function
delete to delete a node from the LL and reorganize
the links. Then I define the main() function where I
shuffle the elements, build the BST and LL, do the
element search in the BST, and delete the desired
element, do the element search in the LL, and delete
the desired element, and I count the procedure steps.

5 Conclusions
In computer science, it is widely known that a sorted
array is efficient for element search while
complicated for element adding and deleting. On the
other side, LL is very convenient for element adding
and deleting. For a given sample of a data sequence
of 20 elements, I confirmed that BST is performing
binary element search as efficiently as a sorted
array. Also for the same data sample, I
quantitatively confirmed that the BST is the same
efficient in element deletion as LL. This analysis
may be used for the education of undergraduate and
graduate students in computer science.

Declaration of Generative AI and AI-assisted

Technologies in the Writing Process

The author wrote, reviewed, and edited the content
as needed and she has not utilized, artificial
intelligence (AI) tools. The author takes full
responsibility for the content of the publication.

References:

[1] Rubi Dhankhar, Sapna Kamra, Vishal Jangra,
”Tree concept in data structure”, 2014 IJIRT,
Vol. 1, Issue 7, ISSN: 2349-6002.

[2] Sthuti J, Namith C, Shanthanu Nagesh, “Data
Structures and its Applications in C”,
International Research Journal of

Engineering and Technology (IRJET), Vol. 8
Issue 4, Apr 2021

[3] Dimitrios Samoladas; Christos Karras;
Aristeidis Karras; Leonidas
Theodorakopoulos; Spyros Sioutas, “Tree

Data Structures and Efficient Indexing
Techniques for Big Data Management: A
Comprehensive Study”. PCI'22: Proceedings

of the 26th Pan-Hellenic Conference on

Informatics, November 2022, pp. 123–132.
[4] Tutorials Points. Data Structures and

Algorithms (DSA) Tutorial.
https://www.tutorialspoint.com/data_structure
s_algorithms/index.htm (Accessed Date:
March 1, 2024).

[5] Data Structures Tutorial, [Online].
https://www.geeksforgeeks.org/data-
structures/, (Accessed Date: March 1, 20024).

[6] Elshad Karimov, Linked Lists, Chapter in
Data Structures and Algorithms in Swift, pp.
41-54 Apress , 2020.

[7] D. VarshaaA. Keerthana DeviM. Sujithra,
Fundamentals of Data Structures: Stacks,
Queues, Linked Lists, and Graphs, Chapter n

Advanced Applications of Python Data

Structures and Algorithms (pp.1-34), IGI
Global, 2023.

[8] Techie Delight, [Online].
https://www.techiedelight.com/ (Accessed
Date: March 1, 20024).

[9] Travis Gagie. New Ways to Construct Binary
Search Trees, Conference: Algorithms and
Computation, 14th International Symposium,

ISAAC 2003, Kyoto, Japan, December 15-17,
2003.

[10] Roberto De Prisco, Alfredo De Santis, On
binary search trees, Information Processing

Letters, Vol. 45, Issue 5, 2 April 1993, pp.
249-253.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.12 Maja Sarevska

E-ISSN: 2224-2872 147 Volume 23, 2024

https://www.tutorialspoint.com/data_structures_algorithms/index.htm
https://www.tutorialspoint.com/data_structures_algorithms/index.htm
https://www.geeksforgeeks.org/data-structures/
https://www.geeksforgeeks.org/data-structures/
https://www.techiedelight.com/
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

