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Abstract: - In this paper, a non standard finite difference method, with reference to the solution of a class of 
singularly perturbed singular boundary value problems on a uniform mesh, is discussed. The non-polynomial 
spline forms the tool for the solution of the problem. The discretized equation of the problem is developed 
using the condition of continuity for the first order derivatives of the non polynomial spline, at the interior 
nodes and it is not valid at the singularity.  Hence, at the singularity, the boundary value problem is modified in 
order to get a three term relation. The tridiagonal scheme of the method is processed using discrete invariant 
imbedding algorithm.  The convergence of the method is analyzed and maximum absolute errors in the solution 
are tabulated. Root mean square errors in the solution of the examples are presented in comparison with the 
methods chosen from the literature, to establish the proposed method. 
 
 
Key-Words: - Singularly perturbed two point singular boundary value problem, Interior nodes, Singular point, 
Non-polynomial spline, Boundary layer 
 
1 Introduction 
We consider a class of singularly perturbed two 
point singular boundary value problems of the form:    

( ) ( ) ( ) ( ) ( ), 0 1,ky x y x q x y x r x x
x

ε ′′ ′= + + ≤ ≤        (1) 

with boundary conditions  
        1(0)  y γ=   and   2(1)y γ=                          (2) 
where 0 1ε < , q(x), r(x) are bounded continuous 
functions in (0, 1), and 1 2,  γ γ  are finite constants.  

Let ( ) kp x
x

= .  If ( ) 0p x M≥ > throughout the 

domain [0, 1], where M  is a positive constant, then 
the boundary layer exist in the neighbourhood of      
x = 0.  If ( ) 0p x N≤ < throughout the interval        

[0, 1], where N  is a negative constant, then the 
boundary layer will be in the neighbourhood of         
x = 1. 
The numerical treatment of these problems gives 
major computational difficulties due to the presence 
of boundary and/or interior layers. A wide variety of 
books and papers have been published, describing 
various methods for solving singularly perturbed 
two-point boundary value problems, among these, 
we mention [1-7, 11].  Kadalbajoo and Aggarwal [4] 
proposed a fitted mesh B-spline method for singular 
singularly perturbed boundary value problems. 

Mohanty et al. [8, 9, 10] established various 
methods based on tension spline and compression 
spline methods both on a uniform and non-uniform 
mesh for singularly perturbed two point singular 
boundary value problems. J. Rashidinia [12] used 
Cubic spline solution of singularly perturbed two-
point boundary value problems on a uniform mesh. 
The paper is organized as follows: In section 2, the 
non polynomial spline method is defined. In section 
3, description of the numerical method is given. In 
section 4, truncation error and classification of 
various orders of the proposed method are projected. 
In section 5, convergence analysis of the method is 
discussed. Finally, Numerical results and 
comparison with other methods are presented in 
section 6. 
 
2 Non Polynomial Spline Method 

Decompose the domain of the integration [a, b] into 

N equal subintervals with mesh size 1h
N

= , so that 

,   ix a ih i= + = 0, 1, …, N  are the nodes with  

0 , Na x b x= = .  Let y(x) be the exact solution and iy  
be an approximation to ( )iy x  by the non 
polynomial cubic spline )(xSi  passing through the 
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points ( , )i ix y  and 1 1( , )i ix y+ + .  Here ( )iS x  satisfies 
interpolatory conditions at ix  and 1ix + , also the 
continuity of first derivative at the common nodes 
( , )i ix y are fulfilled. 

For each thi subinterval, the cubic non-polynomial 
spline function ( )iS x has the form 

    
( ) ( ) sin ( )

         cos ( ),   0,  1,..., 1.
i i i i i i

i i

S x a b x x c x x

d x x i N

τ

τ

= + − + −

+ − = −
         (3) 

where , ,i i ia b c  and id  are constants and τ  is a free 
parameter. 

      A non-polynomial function ( )iS x  of class 
[ ]2 ,  C a b  interpolating y(x) at the grid points              

ix , i = 0, 1, ..., N  depends on a parameterτ , and 
reduce to ordinary cubic spline in [a, b] as 0.τ →  

 

To derive an expression for the coefficients of Eq. 
(3) in term of iy , 1iy + , iM  and 1iM + , define  
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Using algebraic manipulation, the following 
expressions are obtained for the coefficients:  

1 1
2

1
2 2

, ,

cos ,
sin

   

    

i i i i i
i i i

i i i
i i

M y y M Ma y b
h

M M Mc d

τ τθ
θ

τ θ τ

+ +

+

− −
= + = +

−
= = −

 

where hθ τ= , for i = 0, 1, ... , N-1. 

Using the continuity of the first derivative at 
( , )i ix y , that is 1( ) ( )i i i iS x S x−′ ′= , we get the 
following relations for i =1,2,...,N-1. 

   
1 1

1 1 2

22 i i i
i i i

y y yM M M
h

α β α + −
+ −

− +
+ + =         (4) 

where 

2 2

''

1 1 1 cos,   ,
sin sin

( ),   1, 1  and j jM y x j i i, i h

θ
α β

θ θ θ θ θ θ

θ τ

−
= + = −

= = − + =
 

 

 
3 Numerical Scheme 

At the grid points ix ,  Eq. (1) may be discretized by  
( ) ( )i i i i i iy p x y q x y rε ′′ ′= + +                                    

Using spline’s second derivatives, we have  

    
 ( ) ( ) ( ) ( ) ( )

for  1  ,  1

j j j j j jM p x y x q x y x r x

j i , i i

ε ′= + +

= − +           (5) 

Using Eq. (5) in Eq. (4) and with the following 
approximations for the first derivative of  y :             

     

[ ]

[ ]

1 1
1

1 1
1

2
1 1 1

1

1 1

2
1 1 1

1

1 1

4 3 , 
2

3 4 ,   
2

1 2 [3 ]
2

    2  

1 2 [ 3 ]    
2

        

i i i
i

i i i
i

i i i
i i

i i i

i i i
i

i i

y y yy
h

y y yy
h

h q h p py y
h

p p y

h q h p p y
h

h r r

ω ω

ω

ω ω

ω

− +
+

− +
−

+ + −
+

+ −

− + −
−

+ −

− +′ ≈

− + −′ ≈

 + + +′ ≅  
 

− +

 + − +
−  
 

+ −
   

    (6) 

we get the tridiagonal system                                                                               
            1 1 1 1  i i i i i i iE y F y G y H− − + ++ + =                   (7) 
for  1, 2,...,  1   i N= −  
where 

[ ]2
1 1 1 1

3 2
1 1 1

3     3
2

2      
2

i i i i i

i i i i i

E p h p h p p

p h q p h q h h p

ε α β ω

αω β α β

− − + −

− + −

= − − + + −

+ + −

 

   
[ ]2

1 1 1

2
1

2 2   4  

2  2  

i i i i i

i i

F p h p h p p

p h q h

ε α β ω

α β

− + −

+

= + − +

− +
 

      

[ ]2
1 1 1 1

3 2
1 1 1

    3
2

32     
2

i i i i i

i i i i i

G p h p h p p

h p q p h q h h p

αε β ω

ω β α α β

+ − + −

+ + +

= − − + +

+ + + +

( )
( )

12

1

2  2  
 -        

2  

i i i

i

i i

p h r r
H h

p h r

α ωβ β

α ωβ

−

+

 − +
 =
 + + 
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( )  , ( )  , ( )i i i i i ip x p q x q r x r= = =  for 
1, 2,..., 1.i N= −   

For i = 1, the coefficients 1iy − , iy  and 1iy +  in     
Eq. (7) are not defined, thus we need to develop 
a formula for this case. Using L-Hospital rule 
and Eqs. (4), we get the following three term 
formula for i = 1: 

[ ]

2 2 2
0 1 2

0 1 2

2

0 1 2

21 2 1

2

α h q β h q α h qy y y
ε k ε k ε k

h α r β r α r
ε k

     
− + + + + − +     − − −    

= − + +
−

 
(8) 

We solve the tridiagonal system Eq. (7) 
together with the Eq. (8) for i = 1, 2,…, N-1                                                                                                                 
in order to get the approximations 

1, 2 1,..., Ny y y − of the solution y(x) at 1 2 1, ,..., Nx x x − . 
 

 
4 Truncation error 

The local truncation error associated 
with the scheme developed in Eq. (7), is  

 

[ ]

( ) ( )

2

4 6

4

( ) 1 2( ) ( )

1 24 ( ) ( )
3 3 ( )

1 12 ( )
12

i i

i i

i

T h h y x

p x y x
h O h

y x

α β ε

αωε β

εα

′′= − + +

    ′′′+ −      + + 
 + − +  

   

 Thus for different values of , , α β ω  in the 
scheme Eq. (7), indicates different orders:  
(i) for any choice of arbitrary  and α β  with 

1
2

α β+ =  and for any value of ω  , the 

scheme Eq.(7) gives second order 
method. 

  (ii) for 1 5 1,     and     
12 12 20

α β ω
ε

= = = − , from 

Eq. (7) fourth order method is derived.   

 
3 Convergence Analysis 

Incorporating the boundary conditions Eq. (2), 
the system of Eqs. (7) - (8) can be written in the 
matrix form as:                      

             ( ) ( ) 0D P Y Q T h+ + + =                      (9) 
where       

[ ], 2 ,

2 1 0 0 ........ 0
2 0 ........ 0

0 2 ........ 0
.. .. .. .. .. ..
.. .. .. .. .. ..
0 .. .. 0 2

    

    

D ε ε ε

ε ε ε
ε ε ε

ε ε

= − −

− 
 − − 
 − −

=  
 
 
 

−  

   

and     

[ ]
* *
1 1

2 2 2

3 3 3

1 1

, ,

0 0 ........ 0
0 ........ 0

0 ........ 0
.. .. .. .. .. ..
.. .. .. .. .. ..
0 .. .. 0

   

i i i

N N

P z v w

v w
z v w

z v w

z v− −

=

 
 
 
 

=  
 
 
 
    

where   
2 2

* *1 2
1 1

22 , 1   h q h qv w
k k

β α
ε ε

= + = − +
− −  

[ ]2
1 1 1

3 2
1 1 1

3 3
2

     2
2

i i i i i

i i i i i

zα p  h β p h ω p p

αω p β h q p h α q h - hβ p  

− + −

− + −

= − + +

− + +

 

[ ]2
1 1 1

2
1

2 4

     2 2

i i i i i

i i

vα p  h β p h ω p p  

α p h β q h

− + −

+

= − +

− +
 

                 

[ ]2
1 1 1

3 2
1 1 1

3
2

32
2

for 2 3 , 1

i i i i i

i i i i i

αw  p  h β p h ω p p

ωh β p q α p h α q h hβ p

 i , ,... N

− + −

+ + +

= − + +

+ + + +

= −

 and  
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( )
2

0 1 2

2
0

0 2 3 1 1 1

2

1 , , ,..., N N

h r r r
k

Q
h q q q q w

k

α β α
ε

α
γ γ

ε − −

 
+ + − =    + − + + −   

 

( )
( )

[ ] [ ]

[ ]

12

1

6

1 2 1 1 2 1

2  
where     ,  

2  2  

2,3,..., 1

1 5 1( ) 0( )  for , ,  
12 12 20

 and  , ,..., ,   ( ) , ,..., ,

0,0,...,0  are associated vectors of Eq. (8

i i

i

i i i

T T
N N

T

p h r
q h

r p h r

i N

T h h

Y Y Y Y T h T T T

O

α ωβ

β α ωβ

α β ω
ε

−

+

− −

 −
 =
 + + + 

= −

= = = = −

= =

= ).

Let [ ]1 2 1, ,....,   T
Ny y y y Y−= ≅ satisfies the 

equation 

                ( ) 0D P y Q+ + =                      (10) 

Let ,  1, 2,..., 1i i ie y Y i N= − = −  be the  
discretization error so that 

[ ]1 2 1, ,..., T
NE e e e y Y−= = − .      

Using Eq. (9) from Eq. (10), we get the error 
equation 

                   ( ) ( )D P E T h+ =                         (11) 

Let 1( )p x C≤  and 2( )q x C≤ where 1 2,C C  are 

positive constants. If ,i jP  be the ( ), thi j element 
of P , then 

2

, 1 21 0  for  1i i
hP C i

k
α

ε+ = + ≠ =
−

 

( )
, 1

2 2 2 3
1 2 1 1 2( ) 4 2 ,

i i iP w

h C h C h C h C Cα β α βω βω

+ =

≤ + + + +

2,3,..., 2i N= −
                

( )
, 1

2 2 2 3
1 2 1 1 2( ) 4 2 ,

2,3,..., 2

i i iP z

h C h C h C h C C

i N

α β α βω βω

− =

≤ + + + +

= −
Thus for sufficiently small h                                  

, 1 ,   1,2,...., 2i iP i Nε+ < = −  and                      

, 1 ,    2,3,...., 1i iP i Nε− < = −                          (12)                                         

Hence, (D + P) is irreducible (see Ref. [13]). 

Let iS  be the sum of the elements of the thi  row 
of the matrix (D + P), then we have  

( )
2

1 21 2   for 1i
hS q q i

k
β α

ε
= + + =

−
 

( ) ( )2 3
1 1 1 12 2

for  2,3,..., 2

i i i i i i iS h q q q h p q q

i N

α β α β ω− + + −= + + + −

= −

( ) ( )

( )

2
1 1 1

2 3
1 1 1

3 2
2

2  

for  1

i i i i i i

i i i i i

hS p p h p h q q

h p p p h p q

i N

αε β α β

βω βω

− + −

+ − −

= + − − + +

− + −

= −
  

Let *
*
11 1 1

min ( )   and  max ( )
i N i N

C p x C p x
≤ ≤ ≤ ≤

= = ,  

*
*
22 1 1

min ( )   and  max ( )
i N i N

C q x C q x
≤ ≤ ≤ ≤

= = . 

Since 0 1 ε< ≤  it is possible or easy to verify 
that for a given ,h ( )D P+ is monotone [13,14].   

Hence ( ) ( )1 1 exists and 0.D P D P− −+ + ≥ Thus 
using Eq.(10), we have 

             ( ) 1   E D P T−≤ +                         (13)  

Let ( ) ( )1 1

,
 be the ( , )  element of th

i k
D P i k D P− −+ +  

and we define  

( ) ( )
1

1 1

,1 1 1 11
max ,  ( ) max ( ) ,

N

i ki N i Nk
D P D P T h T h

−
− −

≤ ≤ − ≤ ≤ −
=

+ = + =∑
                                                                     (14a) 

Since    ( ) ( )
1

1 1

, ,
1

0  and  1
N

ki k i k
k

D P D P S
−

− −

=

+ ≥ + =∑ . 

 for  1, 2,..., 1i N= −  

Hence                                                

( ) ( ) *

1
2,

2

1 ,    1
2i k

i

kD P i
S h C

ε
α β

− −
+ ≤ < =

+
         (14b) 

WSEAS TRANSACTIONS on COMPUTER RESEARCH Lakshmi Sireesha Ch.

E-ISSN: 2415-1521 133 Volume 5, 2017



                                         

( )
( ) * *

1

, 2 2
2 1

1 1
2 4

for  1 

i k
i

D P
S h C C

i N

α β βω
−+ ≤ <

 + − 

= −  
(14c) 

Furthermore,                                     

( )
( )( )*

1
1

, 2
1 22 2

1 1 .
min 2

N

i k
k ii N

D P
S h Cα β

−
−

=
≤ ≤ −

+ ≤ <
+

∑
 

(14d) 

Using Eqs. (14a) - (14d), from Eq. (13), we get 

                          4( ).E O h≤                       (15) 

Since    ( ) ( )
1

1 1

, ,
1

0  and  1
N

ki k i k
k

D P D P S
−

− −

=

+ ≥ + =∑ . 

 for  1, 2,..., 1i N= −  

Hence the method Eq. (6) is fourth order 

convergent for 1 5 1,   ,   
12 12 20

α β ω
ε

= = = − .    

 
4 Numerical examples 

To demonstrate the proposed method 
computationally, we consider three problems of the 
type Eq. (1). These problems have been chosen 
because they have been widely discussed in the 
literature.  

    

Example 1.  Consider the singularly perturbed 
singular boundary value problem 

2(1 / ) (1 ) ( ),   0 1y x y x y f x xε ′′ ′− + + + = < < . 

The exact solution is   2( ) exp( )y x x= .  The 
maximum absolute errors are tabulated in Table 1 
for different valuesε  and h. Comparison of root 
mean square errors with the existing methods are 
presented in Table 2. 

Example 2. Consider the boundary value problem  
1 ( ),     0 1.y y f x x
x

ε ′′ ′− + = < <            The exact 

solution of this problem is ( )  sinh .y x x x=  

The maximum absolute errors are presented in 
Table 1 for different valuesε  and h.  Comparison 
of root mean square errors the existing methods are 
presented in Table 3. 

7 Discussions and Conclusion 

In this paper, non-polynomial spline method is 
discussed for a class of singularly perturbed singular 
two-point boundary value problems. The discretized 
equation is developed for the problem using the 
condition of continuity especially for the first order 
derivatives of the non polynomial spline at the 
interior nodes. It is not valid at the singularity zero. 
A three term relation is obtained by modifying the 
boundary value problem at the singularity zero. 
Using this, the discretized equation of the problem 
is solved using discrete invariant imbedding 
algorithm. Convergence of the method is explained. 
The maximum absolute errors are tabulated for the 
existing standard examples chosen from the 
literature with a view to demonstrate the method.  
Root mean square errors in the solution of the said 
examples are presented with comparison in order to 
justify the method. The proposed method is also 
applicable to non-singular problems and singularly 
perturbed delay differential equations. Based on the 
numerical results, it is observed that the method 
gives good results for smaller values of ε  also.  

TABLE 1. Maximum errors in the solution of 
Examples 
____________________________________ 
ε /N      32      42        52             62              72    
____________________________________                                                       
Example 1 
 

32−
 2.10(-3)  1.48(-4)  1.05(-5)  7.40(-7)  5.14(-8)     

42−
 2.60(-3)  1.96(-4)  1.45(-5)   1.05(-6)    7.58(-8)     

52−  3.50(-3)  2.80(-4)  2.17(-5)   1.64(-6)    1.21(-7)     
72−
 5.50(-3)   6.25(-4)  5.45(-5)  4.44(-6)    3.45(-7)     
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102−
5.90(-3)  1.20(-3)   2.02(-4)  2.06(-5)   1.78(-6)     

Example 2  
 

32−  7.90(-4)  5.69(-5)   4.03(-6)   2.82(-7)   1.95(-8)     
42−  1.00(-3)   7.98(-5)   5.92(-6)   4.27(-7)  3.03(-8)    
52−  1.40(-3)   1.20(-4)   9.33(-6)   6.95(-7)  5.05(-8)        
72−  1.90(-3)   2.65(-4)   2.50(-5)   2.01(-6)  1.53(-7)    
102−  1.90(-3) 4.07(-4)   8.05(-5)   9.42(-6)   8.32(-7)    

_______________________________________ 
 
TABLE  2. Comparison of Root mean square errors 
in the solution of Example 1  
_________________________________ 
ε /N    32         42           52            62           72                
_________________________________ 
R.K. Mohanty, Urvashi Arora method [10] 

32−  3.94(-2)  1.69(-2)   9.83(-3)   6.75(-3)   4.75(-3) 
42−  6.15(-2)  2.45(-2)   1.36(-2)   9.35(-3)   6.59(-3)   
52−   9.21(-2)  3.29(-2)  1.70(-2)   1.15(-2)   8.10(-3)    
72−     -            4.37(-2)   2.03(-2) 1.49(-2)    1.06(-2)      
102−      -         8.38(-2)   8.01(-2)   7.77(-2)   7.22(-2)        

Proposed method 
32−  1.80(-4)   1.25(-4)   8.95(-6)   6.30(-7)  4.38(-8)       
42−  2.20(-3)   1.66(-4)   1.24(-5)  9.11(-7)   6.55(-8)       
52−  2.80(-3)   2.33(-4)  1.84(-5)   1.40(-6)   1.04(-7)       
72−  4.00(-3)   4.80(-4)   4.43(-5)  3.72(-6)   2.95(-7)       
102−  4.30(-3)  8.39(-4)   1.44(-4)  1.60(-5)   1.45(-6)       

______________________________________ 

 

TABLE  3. Comparison of Root mean square errors 
in solution of Example 2 
______________________________________ 
ε /N     32         42             52            62         72                        
______________________________________ 
R.K. Mohanty, Urvashi Arora method [10] 
 

32−  3.31(-4)   2.18(-3)   1.55(-4)   1.09(-4)  7.68(-5)     
42− 7.42(-4)   5.30(-4)    3.71(-4)   2.60(-4)  1.83(-4)     
52− 1.22(-3)   8.28(-4)    5.71(-4)   4.01(-4)  2.82(-4)                        
72− 1.95(-3)   1.22(-3)    8.33(-4)   5.84(-4)  4.11(-4)       
102−  2.43(-3) 1.44(-3)    9.66(-4)   6.77(-4)  4.77(-4)     

   
 Proposed method 

32−  6.48(-4)   4.73(-5)   3.39(-6)   2.39(-7)  1.67(-8)       
42−  8.22(-4)   6.42(-5)   4.84(-6)   3.56(-7)  2.56(-8)       
52−  1.10(-3)  9.19(-5)    7.34(-6)   5.62(-7)  4.18(-8)                         
72− 1.40(-3)   1.88(-4)    1.79(-5)   1.52(-6)  1.20(-7)       
102− 1.40(-3) 2.88(-4)    5.53(-5)    6.50(-6)  6.00(-7)       

________________________________________ 
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