

How the Brain might use Division

KIERAN GREER,

Distributed Computing Systems, Belfast, UK.

http://distributedcomputingsystems.co.uk

Abstract – One of the most fundamental questions in Biology or Artificial Intelligence is how the human brain

performs mathematical functions. How does a neural architecture that may organise itself mostly through

statistics, know what to do? One possibility is to extract the problem to something more abstract. This becomes

clear when thinking about how the brain handles large numbers, for example to the power of something, when

simply summing to an answer is not feasible. In this paper, the author suggests that the maths question can be

answered more easily if the problem is changed into one of symbol manipulation and not just number counting.

If symbols can be compared and manipulated, maybe without understanding completely what they are, then the

mathematical operations become relative and some of them might even be rote learned. The proposed system

may also be suggested as an alternative to the traditional computer binary system. Any of the actual maths still

breaks down into binary operations, while a more symbolic level above that can manipulate the numbers and

reduce the problem size, thus making the binary operations simpler. An interesting result of looking at this is the

possibility of a new fractal equation resulting from division, that can be used as a measure of good fit and would

help the brain decide how to solve something through self-replacement and a comparison with this good fit.

Key-Words: artificial intelligence, symbolic, number system, fractals, computer system.

Received: September 2, 2020. Revised: December 23, 2021. Accepted: December 28, 2021. Published:

December 31, 2020.

1 Introduction
One of the most fundamental questions in

Biology or Artificial Intelligence is how the human

brain performs mathematical functions. How does a

neural architecture that may organise itself mostly

through statistics, know what to do? There is

increasing understanding about the analogue

properties of neurons [2][16][17]. That is, they can

send a variety of signals and not just the traditional

on-off model. While that is the case, computers still

use the binary system because it is reliable and more

easily understood. Therefore, when solving the

mathematical problem, the binary system still has to

be considered as the main player and so the decimal

system, for example, has to be translated over to it.

How a neural system would do this is still not

very well understood. Then when it goes to

processing the numbers, the system would need to

understand quite complex operations that are exact

and iterative. One possibility therefore, is to extract

the problem to something more abstract. This

becomes clear when thinking about how the brain

handles large numbers, for example to the power of

something, when simply summing to an answer is

not feasible. A computer can perform this maths

with logic gates and so the question is, can the brain

components do the same thing? Missing from this

argument is the fact that the neurons are expected to

perform in a completely blind manner, when in fact,

the human body provides senses and a nervous

system to give some type of guidance. Therefore, to

start with, images of the number system can give

some sort of base to work from.

In this paper, the author suggests that the maths

question can be answered more easily if the problem

is changed into one of symbol manipulation and not

just number counting. If symbols can be compared

and manipulated, maybe without understanding

completely what they are, then the mathematical

operations become relative and some of them might

even be rote learned. To anchor the solution

therefore, the brain can use images of the number

system that would be learned before the maths itself.

For the decimal number system, for example, the

brain learns the symbols ‘0’ to ‘9’ first. Everything

after that is the manipulation of these symbols. The

system to be proposed in this paper may also be a

suggestion for an alternative to the traditional

computer binary system. Any of the actual maths

still breaks down into binary operations, while a

more symbolic level above that can manipulate the

numbers and reduce the problem size, thus making

the binary operations smaller in magnitude.

Essentially, the higher level breaks the problem

down into smaller chunks that is understood to

certain orders of magnitude. The binary maths is

then performed only on what is left. This paper

therefore proposes a theory for how mathematics can

be carried out through the manipulation of grids

and/or arrays of these symbols, in a system that may

be closer to what the human brain uses. While the

theory has arisen by thinking about the human brain,

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.16 Kieran Greer

ISSN: 2415-1521 126 Volume 8, 2020

it will simply be called a system in the rest of the

paper and a reference will not be made to the human

brain each time. An interesting result of looking at

this is the possibility of a new fractal equation

resulting from division, that can be used as a

measure of good fit and would help the brain decide

how to solve something through self-replacement

and a comparison with this good fit.

The rest of the paper is organised as follows:

Section 2 describes the theory of the mathematical

process. Section 3 gives an algorithm for each

mathematical operation – add, subtract, multiply and

divide. Section 4 discusses a new equation of good

fit that may be a fractal and also results from the

number system. Section 5 describes some related

work, while section 6 gives some conclusions on the

work.

2 Theory
The theory starts with the assertion that all

numbers are combinations of the base number set.

To solve the problem therefore, you need to break it

down into problems over this base number set that

are either very small or are easier to process.

Therefore, instead of solving a small set of large

number problems, it gets broken down into a large

set of smaller number problems with some automatic

transpositions. These smaller problems map more

closely to the symbol set that the system

understands, even to the point where some small

operations are simply rote learned. The binary array

is replaced by a grid or table format for this solution,

with each column representing a different decimal

digit. A second higher level then converts what

would be iterative counts into more singular

transposition operations that require some

understanding at the symbolic level.

2.1 Bitwise Grid
The first part of the system is the bitwise grid that

represents the number system itself, shown in Figure

1. The grid is the size of the number set horizontally,

and then vertically it represents orders of magnitude

over the base value. For the decimal number system

therefore, the unit numbers 0 to 9 are at the bottom

level, then the 10’s from 10 to 90 at the second level,

the 100’s are at the third level and so on, to as far as

is required.

OM 1 2 3 4 5 6 7 8 9 10

7 0 1 2 3 4 5 6 7 8 9

6 0 1 2 3 4 5 6 7 8 9

5 0 1 2 3 4 5 6 7 8 9

4 0 1 2 3 4 5 6 7 8 9

3 0 1 2 3 4 5 6 7 8 9

2 0 1 2 3 4 5 6 7 8 9

1 0 1 2 3 4 5 6 7 8 9

Units 0 1 2 3 4 5 6 7 8 9

Figure 1. Bitwise Grid. Moving vertically changes the order by the number system base,

horizontally changes the number by a unit at that level.

The mathematical process then requires that

numbers are broken down into whole base parts and

remainders, where whole base parts can be subject

to transpositions and most of the actual maths takes

place over the remainder parts. Breaking the

numbers down means that the process is now

distributed and different areas of the table would be

used for the single operation. The number parts may

also be indexed so that they can be consistently

updated and re-joined at the end. The transpositions

can require a number to move to a neighbouring cell

in any of the 4 directions, or moving up/down a level

if it moves off the right/left edges of the table. After

each phase, cells on the same level are added

together and if any phase produces new numbers,

then they can be similarly broken down and the

process repeated. After the maths is completed, the

result is then to re-join these indexed parts. This is

the symbolic replacement of zeros in the result by

non-zeros from any other part of the number, as

described in the following sections. When using this

table, rows are counted from the bottom-up and

columns from left to right. So, for example, Units

would be in row 1, and the cell (row, column) [3, 5]

would represent the number 4000.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.16 Kieran Greer

ISSN: 2415-1521 127 Volume 8, 2020

2.2 Separate a Number into Parts
A lot of the usefulness of this system is the ability

to recognise the orders of magnitude and therefore

remove that from the calculation. The maths then

takes place over sets of smaller numbers only. To do

this, any larger number needs to be split-up into

parts, which represent each order of magnitude that

it has. This is very easily done simply by creating a

new number for every non-zero digit and replacing

any removed digits with 0. For example, the number

12045 would produce the number parts: 10000,

2000, 40 and 5. This should be done both for the

number being operated on and the operand.

2.3 Orders of Magnitude
The system only performs maths over small

whole numbers, apart from the division operation. If

the number is large, then it is represented by a higher

level in the table. For example, if the number is

10000, then in Figure 1, it is placed in the cell at row

5 and column 2, cell [4, 2]. Division and subtraction

can lead to negative results and so each number,

represented by a cell in the grid, can store a negative

sign as well. In division, for example, the positive

order of magnitude may relate to the size of what the

whole integer part would be and the negative order

of magnitude would relate to how many orders the

fractional part needs to be moved to be that whole

number. For example, if the number is 10000.2, then

it would be assigned to the cells [5, 2] (instead of [4,

2]) and also [0, 2] (for the 2 units). A negative order

of magnitude of 1 is then stored with the first

(highest order) cell. Maths would be carried out on

this as normal, but at the end, the negative order of

magnitude will move the decimal point to the left

again, by that number of places.

2.4 Base Number Transpositions
The second part of the system is to use the table

of Figure 1 to do a transposition. A number is

changed, either by a unit value, or an order of

magnitude of the number base, depending on the

mathematical operator.

• To transpose by an order of magnitude requires

that it is wholly divisible by the base number, in

this case, wholly divisible by 10.

• To transpose by a unit requires that the numbers

are at the same level, or on the same row in the

table.

• The maths for any transposition makes use of the

non-zero digits, represented by the cell value

and always located on the left-hand side of any

number.

Then the transposition is automatic. Considering

the mathematical operators of add, subtract, multiply

and divide therefore, the table of Figure 1 would be

used as follows:

• Add: to add a unit number at the same level of

the table row, move the number to the right. For

example, adding 3 to 5, moves the number to

cell with the value 8 at the Units level, cell [0,

9]. Adding 100 to 200, moves the number to cell

with the value 3 at the 100’s level, cell [2, 4].

• Subtract: similarly, to subtract a unit number at

the same level of the table row, move the

number to the left.

• Multiply: to multiply by the base number, move

the number vertically upwards in the table. So,

to multiply 10 by 100, moves the 10 cell up two

levels in the table, as indicated by 2 zeros in the

multiplication number.

• Divide: similarly, to divide by the base number,

move it down levels in the table.

As the mathematics takes place at the left-hand

side of the number, a note of the number of zeros can

be made, for example, and then any sum or product

result can replace the LHS non-zero part, while the

zero digits remain the same. The level therefore

defines the number of zeros and the maths takes

place over the non-zero digits only.

The system is ideally setup for whole number

operations in the positive integer range, but fractions

and negative numbers have to be accommodated.

This would typically require manipulation using

negative orders of magnitude instead of positive

ones.

3 Mathematical Operators
This section lists some algorithms that each of the

four mathematical operations might use. They are

not definitive and could be changed, so this is only

an example. The maths occurs across each row in the

table separately, with the most complicated

operations moving cells off the side of a row to a

new row above or below the current one. Division is

the only problem and it can require larger

calculations. The actual maths is then switched over

to a binary and traditional format, with the result

being switched back again. The numbers in each row

are then re-joined together to give a final total. If the

process leads to intermediate results, then those

numbers can replace the original set and be split

again, before repeating the process. When re-joining

and summing, it is simply a matter of placing the

non-zero digits from each result part in the final

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.16 Kieran Greer

ISSN: 2415-1521 128 Volume 8, 2020

number at the appropriate place. Appendix A traces

through some examples of using these algorithms.

3.1 Sums Over Numbers with Negative

Orders of Magnitude
If doing sums over numbers with negative orders

of magnitude, then the orders need to be made the

same first, which would be the largest negative order

value. Any numbers with a smaller order are filled

out with zeros on their right-hand side. For example,

consider the sum 0.7 + 0.05. This would be

represented in the system as 7 (-1) and 5 (-2), where

the brackets are the negative orders of magnitude,

but these numbers are currently incompatible and

would need to be re-written as 70 (-2) + 5 (-2) = 75

(-2) = 0.75.

3.2 Addition
With addition, the sum can result in numbers

larger than the row level the maths is performed on.

When this happens, the number needs to be split

again into a wholly divisible part for the next level

up and one for the current level. These two levels

then need to be re-calculated with the split number

and any other number at the level above. The

following algorithm can perform the addition

operation:

1) Split the number Xi and place the parts at each

level in the table.

2) Split the addend Aj and place the parts at each

level in the table.

3) While any table level (row) has more than 1 cell

entry:

a) From the lowest order of magnitude to the

highest, find the next table level L with more

than 1 cell entry:

i) Add the digits of cells with entries at level

L together.

ii) If the new number has more than 1 digit,

then it can be split again.

(1) The split produces new numbers for 2

table levels – the current level L and the

level immediately above (L+1), and so

these levels need to be re-calculated.

(2) Place the numbers for those levels into

the appropriate cells again.

4) Re-join all of the cell numbers to create the

number result.

3.3 Subtraction
With subtraction, the sum can result in negative

numbers and this is usually managed by borrowing

a digit from the next order above. With the table

format, this is quite easily realised by changing two

cell numbers and adding new entries in some other

cells. When this happens, there may need to be more

calculations over the new cell entries, but it is largely

still just binary cell processing without too much

additional calculation. Subtraction can also give a

final result that is negative, or an intermediate result

that requires a positive number to be added to a

larger negative one. When this happens, it is easier

to switch the signs of the level cells involved, for the

calculation, and then switch the result sign back

again. To keep track of the signs the number parts

may need to be indexed. It is noted that these

algorithms may appear to be quite complicated and

traditional binary mathematics can do this operation

simply by reversing the sign of the subtrahend and

then adding the two numbers. While this algorithm

is more involved, the question would be if it can still

be mostly automated, as each individual step is

relatively simplistic. The following algorithm can

perform the subtraction operation:

1) Split the minuend Xi and place the parts at each

level in the table.

2) Split the subtrahend Sj and place the parts at each

level in the table.

3) While any table level has more than 1 cell entry:

a) From the highest order of magnitude to the

lowest, find the next table level L with more

than 1 cell entry:

i) Check if the minuend cell digit Cxil is

smaller than the subtrahend cell digit Csjl.

ii) If the cell digit is smaller, a digit needs to

be borrowed from a higher level.

(1) If a higher level has a minuend cell:

(a) Move to the next level with a

minuend cell Cxil2.

(b) Add the digit 1 in-front of the

current cell digit Cxil and move the

minuend cell Cxil2 one place to the

left.

(c) For each level between the two

levels L and L2, add a new entry in

the ‘9’ digit cell, column 10.

(d) This should in fact be the only

minuend entry at those levels, but

the subtrahend may also have an

entry.

(2) If a higher level does not have a

minuend cell, then store the negative

calculation as the result.

iii) For the current level L, subtract the

subtrahend cell Csjl digit from the minuend

cell Cxil digit(s) and store the result. The

result will be a single digit.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.16 Kieran Greer

ISSN: 2415-1521 129 Volume 8, 2020

4) While there are both negative and positive signed

digits:

a) From the highest order of magnitude to the

lowest, find the next two consecutive table

levels with a cell sign change.

b) This should be a higher level L2 with the

negative sign and a lower level L with the

positive sign.

c) Index these cell numbers and reverse their

signs.

d) Perform a subtraction over these two levels

only. That will require a borrow operation to

create a maximum valued minuend at level L,

with a negative sign, and move the existing

digits one cell left.

e) The subtraction then takes place over the new

minuend value and the subtrahend value at

level L.

f) Switch the cell signs back again. This should

make them both negative.

5) Re-join all of the cell numbers to create the

number result.

3.4 Multiplication
Multiplication uses a bitwise operation of

moving the number cells up levels depending on the

order of magnitude of the multiplier. It is then

required to perform a product sum of the non-zero

digits in the multiplicand and multiplier, and replace

the non-zero digits in the result part with these:

1) Split the multiplier M into parts.

2) From the highest order of magnitude to the

lowest for each multiplier part Mj:

a) Split the multiplicand X into parts.

b) From the highest order of magnitude to the

lowest for each multiplicand part Xi:

c) Place multiplier part Mj in the appropriate

table cell Cmj.

d) Place multiplicand part Xi in the appropriate

table cell Cxi.

i) Move the multiplicand cell Cxi vertically

upwards, relative to the order of magnitude

of the multiplier cell Cmj.

ii) Multiply the cell digits in the multiplicand

and multiplier together and replace the

multiplicand digit Cxi by them.

iii) If the cell number Cxi has more than 1 digit,

then it can be split again.

(1) The split produces new numbers for 2

table levels – the current level L and the

level immediately above (L+1), and so

these levels need to be re-calculated.

(2) If there is now more than 1

multiplicand cell at a level, then this

requires an Addition operation at that

level, which may move the cell digits

again.

(3) After these operations, the process can

continue to the next multiplicand level.

e) Save the set of cell values for the multiplier

part Mj.

3) Add all of the saved cell values for each

multiplier part and perform an addition on them

at each level.

4) Re-join all of the cell numbers to create the

number result.

3.5 Division
As should be expected, division is the most

difficult operation. Division uses a bitwise operation

of moving the number cells down levels depending

on the order of the multiplier. It is then required to

perform a division sum of the non-zero digits in the

dividend and divisor, and replace the non-zero digits

in the result with these. The number parts are then

re-joined to give the result. With division however,

it is not possible to split the divisor into parts, but it

is still possible to split the dividend into parts and

partially reduce the number of calculations as

follows:

1) While there is a dividend number to process:

a) Split the dividend D into parts.

b) The divisor has to be considered as a whole

number, so place it in the cell with exactly that

value or the next cell immediately above the

value, for comparison purposes.

c) From the highest order of magnitude to the

lowest for each dividend part Di:

i) Move the dividend part Di vertically

downwards, until it is at a cell immediately

above the divisor cell.

ii) Do the division of the divisor on the

moved dividend part (using binary

computations).

(1) The result of the calculation is the

division number plus the order of

magnitude that was removed. Store

both for the result.

(2) If the division produced a remainder,

then store that with its correct order of

magnitude.

d) After dividing all of the dividend parts by the

divisor, add their division results together,

including the orders of magnitude, for a

division total.

e) Add all of the remainder values together,

including the orders of magnitude, and set this

to be the new dividend value.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.16 Kieran Greer

ISSN: 2415-1521 130 Volume 8, 2020

f) Repeat the whole process while the divided is

larger than the divisor.

2) Any value that is left is the remainder of the

division.

4 Division as a Fractal
Division might be looked at as a measure of fit.

How well does the divisor fit into the dividend? If

considering it this way, then there might not be a

precise numerical measurement, but judgement

about a goodness of fit can be made on what could

be more abstract types of object. What would this

judgement be for? If there is some amount of a

resource, energy or ensemble for example, then it

would be helpful to know how best to use it. If it is

used-up by a single entity, other entities would be

left out and so it can provide a measure of constraint

over how best to fit the available entities into the

available resource. The division problem of this

paper would work best if the divisor could also be

split up into parts. Unfortunately, there are problems

when trying to do that, which is especially true when

thinking about prime numbers. For example, the

problem of 425 / 23 = 18.48 has a prime number as

the divisor. The dividend can be split into 400, 20

and 5, but the divisor has to stay as it is, as described

in section 3.5. Considering splitting the divisor

however has led to a type of chain equation, where

the result of one part is the dividend to be measured

by the next part. The chain equation does involve

splitting the divisor up into parts, but there is a catch

to it that is described shortly.

So firstly, what values would the divisor value of

23 be split into? In fact, it can be split into anything,

so long as the parts sum up to the original total of 23.

In Equation 1 for example, the divisor is split into

the values 13 and 10. The following chain equation

can then be used to perform the division:

1.1. 425 / 13 = 32.69

1.2. 32.69 * (10 / 23) = 14.21

1.3. 32.69 – 14.21 = 18.48

Equation 1. Chain equation for Division with 2

divisor parts.

If the divisor is split into 3 parts, say 12, 9 and 2,

then Equation 2 gives the chain equation that will

produce the same result. But the catch in the problem

is now clear – the whole divisor number is required

at the second division stage each time and so it

cannot be got rid of completely. But because the

original divisor is part of the chain equation, it would

be possible to replace it again with a version of the

chain equation. If you do that using exactly the same

numbers, then they cancel each other out and leave

only the whole divisor, but the number sequences

could also be different each time and the process of

replacement with something self-similar looks a bit

like a fractal equation [4], shown in Equation 3.

2.1. 425 / 12 = 35.416

2.2. 35.416 * (9 / 23) = 13.858

2.3. 13.858 * (2 / 9) = 3.079

2.4. 35.416 – 13.858 – 3.079 = 18.48

Equation 2. Chain equation for Division with 3

divisor parts.

Dividend / d1 = r1

r1 * d2 / Divisor = r2

r2 * d3 / d2 = r3

r3 * d4 / d3 = r4

...

where

d1 + d2 + d3 + d4 … = Divisor

and

r1 - r2 - r3 - r4 ... = Result.

Equation 3. Chain equation for Division in a

general sense.

So how might the equation be used in practice?

What if the original quantity is unknown and cannot

be properly measured, but divisor parts can be

measured. If the chain equation is calculated and

gives some result plus the original unmeasured part,

then maybe the chain result can be compared with

the original problem for similarity. If they are still

similar, then the chain equation has not altered the

original problem and it is a good fit or solution for

it. This could be especially true with something like

the brain, where patterns cycle in sequences and so

the fit is not just once, but over many iterations.

5 Related Work
Symbolic computing was recognised early on as

important to Artificial Intelligence, where a recent

review is given in [9]. Some of the following text is

taken from [8], Chapter 2: John McCarthy tried to

introduce learning into a computer program, to allow

it to reason like a human. His ultimate objective was

to write a program that learned from experience as

well as a human does. Along with Marvin Minsky

they tried to design a system based on the principle

that it has common sense if it can deduce for itself

consequences from what it is told and what it already

knows. They chose to base the system on a logic-

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.16 Kieran Greer

ISSN: 2415-1521 131 Volume 8, 2020

based language called Lisp [11]. This is a high-level

language of functions and nested functions over

symbolic expressions. Some type of hierarchical

structure in AI is assumed and it would be interesting

if this paper extends that symbolic processing down

into low-level binary functions. Newell and Simon

[12] also supported a symbolic approach. With their

‘Physical Symbol System Hypothesis’ they noted

that:

 ‘Symbols lie at the root of intelligent action,

which is, of course, the primary topic of Artificial

Intelligence. For that matter, it is a primary question

for all of Computer Science. For all information is

processed by computers in the service of ends, and

we measure the intelligence of a system by its ability

to achieve stated ends in the face of variations,

difficulties and complexities posed by the task

environment.’

They therefore stated the need for a symbolic

representation of the environment, so that a

computer can understand it, and this requires some

sort of formal specification or logic. However, a

universal machine that can create, understand and

use these symbols remains a problem to be solved.

The earlier part of this paper has suggested how

symbols might be converted across into computer

hardware [3]. Specifically, that would be the Central

Processing Unit (CPU) and the Arithmetic and Logic

Unit (ALU) that performs the mathematical

calculations. The binary system is used in computers

because it works very well and is easier to

implement. The simple 2-value system is not prone

to error. Logic gates can produce these on-off values

very easily and while a ternary gate with 3 states has

been suggested [1][13][14], it has never been

implemented because of the complexity with

analogue output values. In fact, it is still considered

to be unworkable and some research suggests using

it for special purposes only. The symbolic

representation of this paper however can probably be

realised in a binary system and the actual maths can

also be performed using the binary number system.

While there is another level of complexity, it can

probably be broken down into binary operations as

well. The main question would be if the new level of

complexity would require too many additional

operations to be economical.

It is interesting that fractals [10][4] have been

written about earlier [7] in terms of natural systems

relating to the human brain, and the research of this

paper has resulted in a similar type of argument.

There are two transitions that could be measured.

One is for the divisor part (d1, d2, … in Equation 3),

moving from one value to the next and the other is

for the result part (r1, r2, … in Equation 3) of each

calculation. This has been taken to a whole new level

in [15] that describes all sorts of fractal properties in

biology. Interesting might be the emergence of a

binary code from more complicated data and also the

use of the Fibonacci series. The new fractal has the

characteristic of a Fibonacci series.

There is lots of evidence from earlier work that

smooth transitions are more desirable in terms of

energy consumption and entropy, or disruption

[6][7]. The system prefers to work in a less

disruptive state, but the disruption can become

significant and may even help to define separate

stages. It is the case that fractals in nature start with

a larger value and transition smoothly to smaller and

smaller variations. This would be useful for

cognitive processes, where the first task would

receive the largest signal but also be the most

important, leading to further tasks maybe even

further in time being represented by smaller signals.

If there is a jump to a larger signal again, then maybe

that is a milestone that should be achieved, before

working out what to do from there on. The idea

therefore, is that measuring the transition amounts

can provide some level of guidance, and summing to

the original energy total is a constraint for how sub-

patterns should organise themselves. A sequence of

patterns is just that – a line of patterns where the first

one should be the strongest and the final one the

weakest. The idea of a chain equation, but more

probably a number series is also used in [5] with

relation to evaluating behaviours, and therefore it is

a similar but slightly different equation.

6 Conclusions
This paper has made suggestions as to how the

brain can be helped to perform fundamental maths

through the use of symbols. It is not unreasonable to

include sensory input, because otherwise the brain is

blind. The system would not just count numbers in a

traditional sense, but manipulate symbols as well. A

key result of this is that the more difficult maths is

restricted to relatively small operations, while the

larger calculations are replaced by symbolic

transpositions. If this works for the decimal number

system, then it should probably work for any number

system and because it is still essentially a bitwise

process, algorithms that a CPU might use, for

example, have been described. The difficulty with

the ternary system is a well-researched area, but the

logic of this paper is very easy to understand.

Perhaps the ternary systems still process a single

signal stream and therefore have to use an analogue

signal to represent the 3 values, and this gives

problems with logic gates and such things. The

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.16 Kieran Greer

ISSN: 2415-1521 132 Volume 8, 2020

bitwise table of Figure 1 shows that the problem can

be extended horizontally and therefore keep it as

essentially a binary problem. Each number ‘part’ can

be a symbol that is on or off, for example. It is more

likely that the swapping between binary and the base

number system will cause problems. Appendix A,

Figure 6, for example, shows the number 14 in a cell.

The new architecture might use another level to store

a binary representation of the cell value, or an extra

bit, and so this would at least be another level of

complexity. But it is part of the architecture that the

base numbers should extend into other symbols at

possible higher levels of the CPU.

Then a new equation has been realised that looks

like it could be a fractal. The equation could help

with measuring an unknown quantity by comparing

it with similar known quantities. It is suggested that

this type of comparison can be a guidance to how the

brain may link-up and fire patterns. It is obvious that

the brain cannot consume more energy than is put

into it, but the equation may help to establish a more

measured approach as to how that energy gets used.

Any set of sub-components must equate to the

enclosing parent component in terms of some

resource and so this is a constraint on how the sub-

components can organise themselves and fire

together.

References:

[1] Ahmad, S. and Alam, M. (2014). Balanced-

ternary logic for improved and advanced

computing. Int J Comput Sci Inf Technol, Vol.

5, No. 4, pp. 5157 - 5160.

[2] Chen, S., Cai, D., Pearce, K., Sun, P.Y-W,

Roberts, A.C. and Glanzman, D.L. (2014).

Reinstatement of long-term memory following

erasure of its behavioral and synaptic expression

in Aplysia, eLife, Vol. 3, pp. 1 - 21. DOI:

10.7554/eLife.03896.

[3] Clements A. (1989). The Principles of

Computer Hardware, Oxford Science

Publications, Oxford University Press.

[4] Fractal Foundation, http://fractalfoundation.org/

. (last accessed 10/9/20).

[5] Greer, K. (2018). New Ideas for Brain

Modelling 4, BRAIN. Broad Research in

Artificial Intelligence and Neuroscience, Vol. 9,

No. 2, pp. 155-167. ISSN 2067-3957.

[6] Greer, K. (2014). New Ideas for Brain

Modelling 2, in: K. Arai et al. (eds.), Intelligent

Systems in Science and Information 2014,

Studies in Computational Intelligence, Vol. 591,

pp. 23 - 39, Springer International Publishing

Switzerland, 2015, DOI 10.1007/978-3-319-

14654-6_2. Extended version of the SAI'14

paper, Arguments for Nested Patterns in Neural

Ensembles.

[7] Greer, K. (2014). Concept Trees: Building

Dynamic Concepts from Semi-Structured Data

using Nature-Inspired Methods, in: Q. Zhu, A.T

Azar (eds.), Complex system modelling and

control through intelligent soft computations,

Studies in Fuzziness and Soft Computing,

Springer-Verlag, Germany, Vol. 319, pp. 221 -

252, 2014.

[8] Greer, K. (2008). Thinking Networks - the Large

and Small of it: Autonomic and Reasoning

Processes for Information Networks, LuLu.com.

ISBN: 1440433275.

[9] Lamb, L.C., d’Avila Garcez, A., Gori, M.,

Prates, M.O.R., Avelar, P.H.C., Vardi, M.Y.

(2020). Graph Neural Networks Meet Neural-

Symbolic Computing: A Survey and

Perspective, arXiv preprint, arXiv:2003.00330

v4 [cs.AI].

[10] Mandelbrot, B.B. The fractal geometry of

nature, Macmillan, 1983.

[11] McCarthy, J. (1960). Recursive functions of

symbolic expressions and their computation by

machine, Part I, Communications of the ACM,

Vol. 3, No. 4, pp. 184 - 195.

[12] Newell, A. and Simon, H.A. (1976).

Computer science as empirical inquiry: symbols

and search, Communications of the ACM, Vol.

19, No. 3, pp. 113 - 126.

[13] Obiniyi, A.A., Absalom, E.E. and Adako,

K. (2011). Arithmetic logic design with color-

coded ternary for ternary computing. Int. J.

Comput. Appl, Vol. 26, No. 11, pp. 31 - 37.

[14] Parhami, B. and McKeown, M. (2013).

Arithmetic with binary-encoded balanced

ternary numbers. In 2013 Asilomar Conference

on Signals, Systems and Computers, pp. 1130-

1133. IEEE.

[15] Perez, J.C. (2018). Six Fractal Codes of

Biological Life:perspectives in Exobiology,

Cancers Basic Research and Artificial

Intelligence Biomimetism Decisions Making.

Preprints 2018, 2018090139 (doi:

10.20944/preprints201809.0139.v1).

[16] Sardi, S., Vardi, R., Sheinin, A., Goldental,

A. and Kanter, I. (2017). New Types of

Experiments Reveal that a Neuron Functions as

Multiple Independent Threshold Units, Nature

Scientific Reports, 7:18036, DOI:10.1038/

s41598-017-18363-1.

[17] Tdtechnosys.com. (2015).

http://tdtechnosys.com/boldial/the-synapse-

memory-doctrine-threatened/.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.16 Kieran Greer

ISSN: 2415-1521 133 Volume 8, 2020

Appendix A – Some Examples
This appendix gives some worked examples

of how a computer system might use the

number table to perform fundamental

mathematical operations.

1. Addition Example: 55 + 150 = 205

This is the fairly simple addition of two

numbers. The numbers have been split into their

orders of magnitude parts and added to the grid,

shown below in Figure 2. Note that the cell [2,

6] has 2 entries, one for the number and one for

the addendum. The Maths takes place over cell

[2, 6]. This leads to a value of 10 for that cell.

As the value 10 is 2 digits, it moves that cell up

to the next level, to the 1 digit or cell [3, 2]

position, as shown in Figure 3.

That leads to cell [3, 2] having 2 entries,

when another addition operation is required to

add them together. This leads to a value of 2 for

that cell, moving it one position to the right, as

shown in Figure 4.

There is no more maths to perform, so it is a

matter of dropping the cell values down into

their correct positions, which leads to the result

of 205.

 1 2 3 4 5 6 7 8 9 10

8 10000000’s 0 1 2 3 4 5 6 7 8 9

7 1000000’s 0 1 2 3 4 5 6 7 8 9

6 100000’s 0 1 2 3 4 5 6 7 8 9

5 10000’s 0 1 2 3 4 5 6 7 8 9

4 1000’s 0 1 2 3 4 5 6 7 8 9

3 100’s 0 1 2 3 4 5 6 7 8 9

2 10’s 0 1 2 3 4 5 6 7 8 9

1 Units 0 1 2 3 4 5 6 7 8 9

Figure 2. Cells for the addition sum. Note that cell [2, 6] has 2 entries.

 1 2 3 4 5 6 7 8 9 10

8 10000000’s 0 1 2 3 4 5 6 7 8 9

7 1000000’s 0 1 2 3 4 5 6 7 8 9

6 100000’s 0 1 2 3 4 5 6 7 8 9

5 10000’s 0 1 2 3 4 5 6 7 8 9

4 1000’s 0 1 2 3 4 5 6 7 8 9

3 100’s 0 1 2 3 4 5 6 7 8 9

2 10’s 0 1 2 3 4 5 6 7 8 9

1 Units 0 1 2 3 4 5 6 7 8 9

Figure 3. Occupied cells after adding the 50 cells together. Note that cell [3, 2] has 2 entries.

 1 2 3 4 5 6 7 8 9 10

8 10000000’s 0 1 2 3 4 5 6 7 8 9

7 1000000’s 0 1 2 3 4 5 6 7 8 9

6 100000’s 0 1 2 3 4 5 6 7 8 9

5 10000’s 0 1 2 3 4 5 6 7 8 9

4 1000’s 0 1 2 3 4 5 6 7 8 9

3 100’s 0 1 2 3 4 5 6 7 8 9

2 10’s 0 1 2 3 4 5 6 7 8 9

1 Units 0 1 2 3 4 5 6 7 8 9

Figure 4. Occupied cells after adding the 100 cells together.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.16 Kieran Greer

ISSN: 2415-1521 134 Volume 8, 2020

2. Subtraction Example: 10450 – 555 =

9895

This example subtracts 555 from 10450. The

numbers have been split into their orders of

magnitude parts and added to the grid, shown

below in Figure 5. Note that the cell [2, 6] again

has 2 entries, one for the minuend and one for

the subtrahend. The maths takes place over the

rows 2 and 3 in this case. Moving from the

higher orders of magnitude to the lower ones,

the first row to be processed is row 3, but this

requires the number 5 to be subtracted from the

number 4.

Because the minuend is in a lower cell, it

needs to borrow a value from a higher cell. It

can borrow from the level 5 cell, and then add a

new entry at each 9-digit cell for the level in-

between, as shown in Figure 6.

 1 2 3 4 5 6 7 8 9 10

8 10000000’s 0 1 2 3 4 5 6 7 8 9

7 1000000’s 0 1 2 3 4 5 6 7 8 9

6 100000’s 0 1 2 3 4 5 6 7 8 9

5 10000’s 0 1 2 3 4 5 6 7 8 9

4 1000’s 0 1 2 3 4 5 6 7 8 9

3 100’s 0 1 2 3 4 5 6 7 8 9

2 10’s 0 1 2 3 4 5 6 7 8 9

1 Units 0 1 2 3 4 5 6 7 8 9

Figure 5. Cells for the subtraction sum. Note that cell [2, 6] has 2 entries.

 1 2 3 4 5 6 7 8 9 10

8 10000000’s 0 1 2 3 4 5 6 7 8 9

7 1000000’s 0 1 2 3 4 5 6 7 8 9

6 100000’s 0 1 2 3 4 5 6 7 8 9

5 10000’s 0 1 2 3 4 5 6 7 8 9

4 1000’s 0 1 2 3 4 5 6 7 8 9

3 100’s 0 1 2 3 14 5 6 7 8 9

2 10’s 0 1 2 3 4 5 6 7 8 9

1 Units 0 1 2 3 4 5 6 7 8 9

Figure 6. Occupied cells after borrowing a 100’s unit from the 10000’s level.

The maths can then be carried out at level 3,

which leads to a total value of 9 there. At level

2 the maths cancels the two digits out, leading

to a total value of zero, as shown in Figure 7.

There is still a value of 5 to subtract at the

units level. There is no minuend at this level and

so the minuend needs to borrow a value from a

higher level, which is level 3 in this case. That

moves the level 3 cell one place to the left and

adds a new cell at digit 9 in level 2. The units

level now contains 10 – 5, in terms of cell

placings it could also be worked out, but the

result is the cell digit 5. This final result is

shown in Figure 8.

There is no more maths to perform, so it is a

matter of dropping the cell values down into

their correct positions, which leads to the result

of 9895.

 1 2 3 4 5 6 7 8 9 10

8 10000000’s 0 1 2 3 4 5 6 7 8 9

7 1000000’s 0 1 2 3 4 5 6 7 8 9

6 100000’s 0 1 2 3 4 5 6 7 8 9

5 10000’s 0 1 2 3 4 5 6 7 8 9

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.16 Kieran Greer

ISSN: 2415-1521 135 Volume 8, 2020

4 1000’s 0 1 2 3 4 5 6 7 8 9

3 100’s 0 1 2 3 4 5 6 7 8 9

2 10’s 0 1 2 3 4 5 6 7 8 9

1 Units 0 1 2 3 4 5 6 7 8 9

Figure 7. Occupied cells after subtractions at levels 3 and 2.

 1 2 3 4 5 6 7 8 9 10

8 10000000’s 0 1 2 3 4 5 6 7 8 9

7 1000000’s 0 1 2 3 4 5 6 7 8 9

6 100000’s 0 1 2 3 4 5 6 7 8 9

5 10000’s 0 1 2 3 4 5 6 7 8 9

4 1000’s 0 1 2 3 4 5 6 7 8 9

3 100’s 0 1 2 3 4 5 6 7 8 9

2 10’s 0 1 2 3 4 5 6 7 8 9

1 Units 0 1 2 3 4 5 6 7 8 9

Figure 8. Occupied cells after subtractions at levels 1.

3. Multiplication Example: 40 x 50 = 2000

This is a multiplication example of 40 times

50: These numbers are 4 and 5 at the ten’s level,

as indicated by having only 1 zero in each

number. It is therefore noted that to multiply by

50 means to multiply by the base operator 10,

as indicated by the single zero and also by the

unit operator 5. The base operation would move

the number to be multiplied up 1 level in the

table, when the 4 in the 10’s level moves to the

4 in the 100’s level. The problem in terms of

maths is now reduced to ‘4 times 5’. This gives

the value 20 and that ‘symbol’ should replace

the ‘symbol’ 4 in the current number 400,

leading to a result value of 2000.

4. Multiplication Example: 2507 x 852 =

2135964

This is a much more complicated

multiplication example that would use different

parts of the table and so number parts would

need to be indexed as well. The base orders can

be recognised by the number of digits in the

number and any digit that is not zero has to be

separated into a distinct part. Therefore, the first

step is to break these two numbers down into:

(2000, 500 and 7) × (800, 50 and 2), leading

to the following equation:

(2000 × 800) + (2000 × 50) + (2000 × 2) +

(500 × 800) + (500 × 50) + (500 × 2) + (7 ×

800) + (7 × 50) + (7 × 2).

Rather like a matrix, all parts of the

multiplicand are multiplied by the multiplier.

The larger numbers are further broken down

into orders of magnitude and the remainders,

represented by the non-zero digit and order of

magnitude d(m), leading to the following

equation:

(2(3) × 8(2)) + (2(3) × 5(1)) + (2(3) × 2) +

(5(2) × 8(2)) + (5(2) × 5(1)) + (5(2) × 2) + (7

× 8(2)) + (7 × 5(1)) + (7 × 2).

These could be placed in the appropriate

cells and multiplied and added as the algorithm

of section 3.4 indicates, but it leads to the

following equation:

16(5) + 10(4) + 4(3) + 40(4) + 25(3) + 10(2)

+ 56(2) + 35(1) + 14.

As all multiplications are at the unit level,

they have to be carried out as whole operations,

but they then replace the ‘symbol’ in the

number that is the multiplicand. This leads to

the following equation:

(16)00000 + (10)0000 + (4)000 + (40)0000

+ (25)000 + (10)00 + (56)00 + (35)0 + (14).

This would be broken down into parts again

and multiple cells at a level added together,

before new additions are repeated. Simply

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.16 Kieran Greer

ISSN: 2415-1521 136 Volume 8, 2020

placing these values in the number leads to a

final result of 2135964.

5. Division Example: 2075 / 25 = 83

This is a division example of 275 divided by

25. The divisor of 25 cannot be broken down

into 20 and 5 and so it is only possible to break

the dividend down into 2000, 70 and 5. Then it

is a matter of dividing each of these by 25.

• The number 2000 can be moved down a

level to 200 and still stay above the divisor

value of 25. So the division maths is done

over these two numbers, leading to a result

of 8(1).

• The number 70 cannot be moved down a

level and so it must be divided directly

leading to a result of 2 remainder 20.

• The number 5 cannot be divided by 25 and

leads to a remainder of 5.

After this phase, there is a result value of

8(1) and 2, plus a remainder value of 20 and 5.

Adding the remainders together means that they

can maybe be divided again, leading to: 20 + 5

= 25 / 25 = 1 with no remainder. The 2 and the

1 in the Units row would then be added

together, to give a total of 3.

This gives the final result parts of 80 and 3,

leading to a final result of 83.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2020.8.16 Kieran Greer

ISSN: 2415-1521 137 Volume 8, 2020

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

