
Continuous Software Engineering and Unit Testing:

From Theory to Practice

HADAS CHASSIDIM

Department of Software Engineering

SCE - Shamoon College of Engineering

Bialik/Basel Streets, Be’er Sheva 84100

 ISRAEL

DANI ALMOG

Department of Software Engineering

SCE - Shamoon College of Engineering

Bialik/Basel Streets, Be’er Sheva 84100

 ISRAEL

SHLOMO MARK

Department of Software Engineering

SCE - Shamoon College of Engineering

84 Jabotinsky St. Ashdod, 77245 Israel

ISRAEL

Abstract: - With the Agile development approach, the software industry has moved to a more flexible and

continuous Software Development Life Cycle (SDLC), which integrates the stages of development, delivery and

deployment. This trend has exposed a tendency of increasing reliance on both unit testing and test automation for

the fundamental quality-activities during the code development. To implement Continuous Software Engineering

(CSE), it is vital to assure that unit-testing activities are an integral and well-defined part of a continuous process.

This paper focuses on the initial role of actual testing –

viewing unit testing as a quality indicator during the

development life cycle. We review the definition of unit-testing from the CSE world, and describe a qualitative
study in which we examined implementation of unit testing in three software companies that recently migrated to
CSE methodology. The results from the qualitative study corroborate our argument that under the continues
approach, quality-based development practices such as unit testing are of increasing importance, lacking common
set of measurements and KPI's. A possible explanation to this may be the role of continuous practices as well as

unit testing in the software engineering curriculum.

Key-Words: - Unit testing, continuous practices, continuous testing, integration testing, CICD

Received: May 17, 2021. Revised: August 4, 2021. Accepted: August 16, 2021. Published: August 30,

2021

1 Introduction
From the Agile development approach to the

continuous approach, in order to achieve quality,

companies evolve their software development

practices over time. Typically, most companies

follow a particular pattern as their evolution path,

often referring to it as “the stairway to heaven” [1].

The pattern implies a dependency between

development stages and practices by presenting each

as a foundation for the next. Continuous Software

Engineering (CSE), also known as ‘continuous

practice’, has become widespread in many software

development organizations [2]. This trend enables

developers to provide continuous and earlier delivery

of adaptations and changes to the software product

[2] [3]. The transition to continuous methods has

been extensively researched in recent years and

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.14 Hadas Chassidim, Dani Almog, Shlomo Mark

E-ISSN: 2415-1521 113 Volume 9, 2021

requires the expansion of research related to CD / CI

formats and anti-patterns [4] [5]. Continuous

Integration (CI) is a practice in which members of a

team collaborate and integrate their work frequently.

CI development environments enable frequent

integration of new or revised code into the mainline

codebase [6], leading to multiple integrations per day

[7]. Each integration is verified by an automated

build, which includes testing to detect integration

errors as quickly as possible. Hence, many teams find

that the CI approach leads to significant reduction of

integration problems and allows more rapid

development of cohesive software [7]. Furthermore,

the CI approach can reduce the amount of rework that

is needed in later phases of development and can

speed up overall development time via automated

processes. Although it has received very limited

attention from the research community, continuous

integration, which includes compilation, building,

and testing of software, is emerging as one of the

success stories in automated software engineering [8]

[9]. Continuous Deployment (CD) takes the

continuous approach one step further by

automatically deploying software changes to

production [1]. The CD approach emphasizes build-

and-test automation [10] together with a much-

reduced scope for each release. Our interviews with

15 information and communications technology

companies revealed the benefits and obstacles to

continuous deployment [1]. Despite understanding

the benefits, none of the companies had adopted a

fully automatic deployment pipeline [11]. The study

also reveals that adopting continuous deployment

practices involves coordination from teams

throughout the organization and the domain in which

a company operates. The continuous approach

stresses the need to explore the impact of quality and

testing procedures on all dimensions of the

organization and the development process. These

begin with the role and responsibilities of “unit

testing” in the CSE world [12] [13], continue through

effective regression testing techniques [6], and end

with test automation, which is considered to be a

critical prerequisite for continuous development [14]

[10].

Software quality aspects, metrics and measurements

have become essential in the context of modern

software development processes. ISO 8042 [15]

defines quality as “the totality of characteristics of an

entity that bear on its ability to satisfy stated and

implied needs”. According to the Forrester report

[16], companies have shown interest in connecting an

“… organization’s business to its software delivery

capability” by gaining “…a view into planning,

health indicators, and analytics, helping them

collaborate more effectively to reduce waste and

focus on work that delivers value to the customer and

the business”. This may be considered too broad a

definition, as it relates to quality in general. In

software development, quality should be more

specifically defined by constructing measurements

and metrics that indicate or contain the properties to

be considered. The widely adopted ISO/IEC 25010

standard [17] determines which aspects are to be

taken into account when evaluating the quality of a

software product. In fact, an attempt to investigate

the Agile method’s critical quality factors and

measurements [18] fails to identify a single common

international standard adopted by the industry.

Therefore, addressing the full scale of software

quality issues in ASD requires a holistic approach for

providing connections among all software

development activities, including aspects such as

business and development (BizDev) and

development and operations (DevOps) as well as

integration.

ISO/IEC/IEEE 29119 addresses software testing for

quality in five realms: Concepts and Definitions, Test

Processes, Test Documentation, Test Techniques,

and Keyword-Driven Testing [19]. In the Agile

approach, which demands tight connections among

all software development activities to be done within

a ‘timebox’ cycle, it is difficult to differentiate

between the testing activities within the timebox

development cycle. Furthermore, testing activities in

Agile are done internally as part of the development

routine and by the same people, who are not

necessarily testers; which might be the reason for the

unclear division between testing levels [20]. Prechelt

et al., [21] in a case study, asked the question who

does perform the testing and who evaluates outcomes

in Agile environments. They found that developers

manage to fulfill the responsibilities of conventional

testers role by identifying which aspects can be

covered by automated testing; meanwhile

evaluations are done implicitly by end-users. Hence,

an important aspect of testing within the Agile cycle

is efficient implementation of test automation [14]

[10]. Indeed in the ‘DevOps’ software development

life cycle approach (a current form of Agile) the

continuous nature of the cycle is stressed: once

development is tied into the release process,

monitoring should come in the form of feedback

which initiates new planning actions for continuous

development [2] [22].

An attempt to model benchmark implementations for

continuous integration (CI) [1] concluded that there

was currently no consensus on CI as a single,

homogeneous practice. Simply stating that a study

uses CI is insufficient since it fails to define what

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.14 Hadas Chassidim, Dani Almog, Shlomo Mark

E-ISSN: 2415-1521 114 Volume 9, 2021

kind of CI is used. Considering the dramatic

differences in effects experienced [1], it is necessary

to determine the advantages and disadvantages of the

various aspects of CI. To that end, and based on the

findings in their study, the authors proposed a

descriptive model for better documentation of

continuous integration variants. Shahin et al. [2]

provided a systematic review of approaches, tools,

challenges, and methods identified in empirical

studies on continuous practices. Sixty-nine papers

were selected from 2004 to 2016 for data extraction,

of which 56.5% were published in the last three years,

only four of which addressed improvements in

software testing. However, 39% of the studies

mentioned that testing efforts and time are critical

factors. Not even a single study dealt with the effects

of transitioning to CI and the corresponding

implications for quality and testing. Nilsson et al.,

[23] focused on the question of visualizing end-to-

end testing activities in order to support the

transformation towards CI. By end-to-end testing,

they refer to all code, from code written by individual

engineers to product release. The aim of that research

was to gain insights into how to support the transition

towards continuous deployment in the software

development industry. Their case studies had some

challenging findings about change processes:

significant duplicated testing efforts, slow feedback

loops, late testing of quality attributes, no overview

of testing in commercial companies, ad-hoc testing or

tactical improvement efforts. These findings indicate

a lack of a holistic, end-to-end understanding of

testing activities and their periodicity. The product of

that research was the creation of the Continuous

Integration Visualization Technique (CIViT) and an

attempt to implement it for the case study companies.

Our work looks at this issue from the deeper

perspective of the testing activities themselves and

examines the impact made on the basic layer, namely,

unit testing and related activities. In software

development, unit testing is a crucial link in the chain

of quality activities which aim to improve an

organization’s outcomes by focusing on quality goals

and recruitment needs as early as the initial

programming stage. However, systematic guidelines

are not widespread, and an acceptable definition of

the term “unit testing” [12] is essential. Unit testing

is a term which describes the action of the

programmer when testing an isolated, atomic, and

code-related portion of software (a unit) [12]. The

motivation of this study was to examine whether the

transition to continuous methods changes the

perception about the necessity and importance of the

testing schemes in general and unit testing in

particular. In order to examine the implementation of

unit testing in the continuous practices of different

software industries, a case study of real-life

implementations of unit testing needed to be

conducted. The present work is an exploratory study

meant to identify the benefits of the continuous

approach with respect to unit testing and related

activities. Our findings describe actual practices and

generate hypotheses more than they confirm them.

Section 2 elaborates the concept of unit testing, its

role, and its common definition in the development

environment. Section 3 reports on a case study of

three participating software companies and their real-

world applications of unit testing in CSE. Our paper

concludes with a generalization of the results of all

the cases reported and a presentation of guidelines

and recommendations for the software industry.

2 Definitions for ‘unit test’

The definition of the key term “unit test” is neither

clear nor precise. Apparently, the term 'unit test' can

be interpreted and implemented in different ways for

different application domains. Furthermore, the term,

as reflected in the analysis of academic literature

[12], seems to suggest two definitions:

• The classic way (66%). – About two-thirds

of the examined academic literature refers to ‘unit-

tests’ as the testing action of the smallest, isolated,

atomic, unit of code. Such testing is done mainly by

the developer.

• The component way (24%). – The focus is on

a unit–of-functionality, whether or not it is seen as the

smallest, indivisible portion of the program. Here,

unit testing is administered mainly by testers.

Apart from the distinction between "unit” and

“component”, and who actually performs the tests,

and beyond the understanding that once defined it can

be detached from the code, a clear definition of the

specific usage of this terms is required. In fact, this

requires two more main distinctions to be made. First,

a distinction between the action which delineates the

content of the item to be tested and the process as an

execution effort, i.e. the actual application of the test.

And second, a distinction of levels of abstraction:

between actions relating to execution of testing for a

unit of code, and the more general description of

testing operations on a portion of the program, which

may be expressed in a functional or business

terminology.

In light of these needs and the growing importance of

the role of the level of unit testing, Chassidim et al.,

[12] recommend that the following categories of

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.14 Hadas Chassidim, Dani Almog, Shlomo Mark

E-ISSN: 2415-1521 115 Volume 9, 2021

testing be distinguished in the early stages of

software development:

• Unit test – refers to the structural (atomic, isolated

and code-related portion of the software) aspect of

the unit that passes the testing action - i.e. an action

which presents the content of the item to be tested.

Common practices include incremental writing of

unit tests using Test-driven development (TDD) or

Test-Driven Maintenance (TDM) methods [24].

• Unit testing – refers to the process of testing the

isolated, atomic, and code-related portion of the

software (a unit). I.e. the process as an execution

effort and refers to the use of xUnit testing, usually,

the developers perform this activity by themselves.

• Component testing – This is the testing of a

functional and larger portion of the program (a

component). Another set of skills and another kind of

knowledge are needed to perform this portion of the

work.

In fact, unit testing may form the basis for component

testing that can be considered a higher level of

testing. Unit testing should test individual behaviors.

However, most methods deal with many behaviors.

Therefore, a serious pitfall might be encountered

when developers test too large a unit or when they

consider a method within the software to be a unit.

This is particularly true in the case of inversion of

control, where unit testing typically turns into end-to-

end integration testing.

Component testing is sometimes known as module or

program testing. Component testing is done mostly

by a test engineer. It may be done in isolation from

the rest of the system depending on the model of life

cycle development chosen for that application. In

such cases, any missing software is replaced by

‘stubs’ and ‘drivers’ that simulate the interface

between the software components in a simple

manner.

A successfully passed test must continue to be

administrated as long as the codebase remains

constant. Fulfilling ideal code conditions for unit

testing includes isolation and atomic code [12] that

improves a programmer’s understanding of system

requirements. A properly written test can be executed

on an isolated section of the code and can pass even

if the developer did not understand the requirements

correctly. As a result, all the tests will pass even when

many of them did not actually validate the intended

functionality of the code. However, tests that rely on

an external application protocol interface (API),

network connections, user input, threading, or other

external dependencies, must be mocked. Mocking

has shown itself to be a proven and effective

technique and is a widely adopted practice [12]. For

example, if the network connection suddenly

becomes disconnected, the code will subsequently

fail. A well-established solution is to implement a

mock in place of the actual network connection, so

that the tests can continue passing. It is vital to

separate the two aspects and to allocate the best

resources for each assignment or, alternatively, to

train the developers to distinguish between a classical

definition of unit testing and a mixed one and to

provide them with new skills and knowledge, so that

they can perform these two categories of testing

separately in the early stages of software

development [12].

3 Implications on software engineers’

education

3.1 Testing topics in software engineering

curriculum

Theoretically, from the early days of testing,

practitioners distinguish between unit tests and

integration tests. However, practically software

engineering community rarely distinguishes between

these two strategies, mainly because it is not

straightforward to separate them in the code

repositories under study [25] .The source of the

problem may lie in the gap created in the qualification

process of the engineer. The Software Engineering

(SE) curriculum guideline (SE2014) is widely used

by the software engineering educator for the design

and modification of undergraduate software

engineering programs. An in-depth examination of

the common areas in the software engineering

education knowledge (SEEK) that are defined by

SE2014, refers to the QUA (software quality), only

2%. Furthermore, today less than 10% of the official

SEEK addresses quality and testing directly. The

relative share of unit testing and integration testing in

the certification process is difficult to diagnose [26]

[27] [28]. These findings reflect the

recommendations of the dedicated task force that

reviewed the curriculum guidelines for

undergraduate degree programs in software

engineering on 2014 [27]. No specific

recommendation were raised regarding needed

changes in the testing discipline. Another attempt to

evaluate the SE curriculum is the SWECOM, which

compares between SE2014 and employer’s need [29]

[30] [31]. SWECOM took a practitioner approach

and recommended competency of an entry-level

software engineer professional. SWECOM shows

that in the Software Testing skill area SE2014 is not

matching up to their requirements, especially the skill

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.14 Hadas Chassidim, Dani Almog, Shlomo Mark

E-ISSN: 2415-1521 116 Volume 9, 2021

set of software testing measurement and defect

tracking. The lack of proper attention to the

contemporary testing sub-topics might be a result of

the long and tedious process that accompanies the

modifications of the curriculum in an academic

setting [29]. However, when it comes to a dynamic

field like software engineering education the long

respond for updating might be critical to the

graduated student professionalism. The missing

testing skills might cause a discrepancy between the

skills learned from an SE university education and

those needed in SE employment.

3.2 Continuous testing in software

engineering curriculum

Continuous software engineering is an emerging area

in industry that incorporate testing as an essential

ingredient. In order to align with the industry needs,

it is important to train software engineers in the world

of CICD, including continuous testing. A recent

study performed a meta-analysis to provide a

consolidated view on how to align SE education with

industry needs, to identify the most important skills

and also existing knowledge gaps [32]. The majority

of the papers reported that testing is one of the most

important areas with the greatest knowledge gaps

between SE education and industry [32] [33]. In

addition, we are not aware of a concrete educational

program [34] that refers specifically to the world of

CICD as well as the continuous testing which is part

of it. The absence of the adaptation of common body

of knowledge (e.g., SWEBOK, SEEK, SWECOM) to

the continuous approach may imply future lack of

knowledge in the field.

4 Research methodology

4.1 Interviews
In order to explore the degree of the implementation

of a unit test within companies that have adopted the

continuous software engineering (CSE) approach,

and by assuming diversity of actual practices in the

companies, we chose to apply a qualitative

‘structured interviews’ format [35] [36].

The qualitative research we conducted had five

stages. Figure 1 presents the process of preparation

and implementation of the research.

Fig. 1. Preparations for the interview and

information collection process

Stage 1 (Fig. 1A). After identification of software

companies claiming to implement the continuous

approach, an application was made to the executive

managers to confirm their company’s participation in

the study. Once approved, we asked the executive

managers in charge of implementing the continuous

approach for referrals to relevant role-holders and to

ensure high diversity of participants in the interviews.

Questions were sent to the managers for internal

review and feedback to improve the quality of the

interviews. Based on their input we updated the

questions.

Stage 2 (Fig. 1B). After consultation and approval

from the management of each company, and before

conducting the interviews, in order to receive

spontaneous answers the interviewee was handed a

document with the high-level topics, and just after

that we conducted the interviews with the relevant

role holders.

Stage 3 (Fig. 1C, D). Before approval for publication,

management applied an internal audit of the answers,

including a full final transcript of the interviews and

supplemental materials to support the portrayal of

company processes.

 Stage 4 (Fig. 1E). To maintain authenticity, the

original terminologies and phrases were digitally

recorded and approved before publication.

In all the interviews we adhered to the following

principles:

1. Interviews were held with the declared support of

the companies' senior management.

2. Interviews were conducted by interviewer with

over 30 years of experience in software

management at a variety of international software

companies.

3. Interviews where held during working hours, and

in the meeting rooms on the company's site - a

closed and isolated room.

4. The interviews kept the principle of a

synchronous conversation with one participant at

a time [36].

5. The time allocated for each interview was up to

three hours, and for each day of interviews only

up to two interviewees were allotted.

6. Each interview was recorded and transcribed and

documented.

Further, the interviewer was free to ask ‘unstructured

questions’ - which requires the interviewer to have

complete command of the professional language and

the ability to direct and lead the conversation back to

points that interest us in the research.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.14 Hadas Chassidim, Dani Almog, Shlomo Mark

E-ISSN: 2415-1521 117 Volume 9, 2021

The interviewer began by introducing himself and his

experience in managing software companies. He

stated that the interview was being conducted as part

of a broader research project aimed at examining the

impact of the continuous process on various aspects

of development and especially on the unit-testing

phase.

The interviewee was then asked to tell about himself,

his professional experience, his role in the company,

and his general perception about the continuous

process. It was an unstructured conversation that

allowed the interviewer to learn and get to know the

interviewee better, with the interviewee also allowed

to ask questions.

For defining the research questions, we chose to

focus on three time phases: Prior to implementation

of continuous practices, current situation, and future

prediction.

When defining the questions and during the interview

we made sure to avoid biases originating from the

interviewee, the interviewer or the wording of the

questions. For example, we made sure not to present

our personal opinions or to indicate how important

the unit testing process is for quality. We made sure

not to ask questions worded negatively or vaguely,

and allowed the interviewee to answer that he does

not know.

From the questions above, we wanted to shed light on

the organizational culture, roles and perception of

importance, regarding unit test prior and after the

transition to continues methods. It was interesting to

examine whether the transition to continuous

methods caused changes in policies, perceptions,

scope, methodologies, practices or tools, in the

testing process in general and in the unit testing in

particular. And if so, we wanted to understand why

and how it was expressed. This qualitative research

is important for integrating current industry topics

into software engineering study programs, especially

in courses related to software quality assurance.

The following questions were presented to the

participants referring to these aspects:

Q1: Prior to the implementation of continuous

practices in your company, what was the company’s

approach toward unit tests?

Q2.1: What is the current approach towards unit

testing?

Q2.2: What tools and technologies are used for unit

testing?

Q2.3: What tools are used for unit testing

automation?

Q2.4: What are the other testing performed?

Q2.5: What are the measurements and KPIs used in

the organization and for unit testing and quality

validation?

Q3: How does the organization view unit testing in

the full context of the process and product quality?

4.2 Participants
Interviews were conducted at the sites of three

leading software development companies in Israel

and the USA (n=15). We selected participants on the

basis of availability and position in the company to

gain different perspectives (as shown in Table 1).

Company#1 Company#2 Company#3

Domain Financial

crime, risk,

and

compliance

solutions

Network

equipment
manufacturers

service

providers

provides

infrastructure
and

maintenance

services

Size Large size,

5K +

Employees

Mid-size,

100+
Large size,

250

Cycle time &

increments

time

3 weeks;

3 months
3 weeks;

not fixed

time

Not fixed

time

Top

Management

CQE,

Division

GP

CIO,

CTO CIO,

director of

IT

Process

Management

CICD PM

CICD PM

CICD PM

Technical

Level

2 TL,

SW

architect

TL,

SW architect Senior line

programmer

Table 1 Interviewee distribution

Companies were selected from varying domains and

business sizes to provide a rich characterization of

their implementation of unit continuous

development. Companies had previously reported

that they were already working in a continuous

environment.

4.3 Data analysis

In this study we adapted the relatively known method

of Critical Discourse Analysis (CDA) [37] [38] [39]

to analyze the data gathered during the interviews.

Discourse analysis is a collective name for a number

of scientific methodologies that analyze how

meaning is created and communicated though

written, vocal or sign language. Discourse analysis is

used in many disciplines, mainly in the social

sciences, to learn about contemporary processes of

social transformation. However in this study, CDA

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.14 Hadas Chassidim, Dani Almog, Shlomo Mark

E-ISSN: 2415-1521 118 Volume 9, 2021

was applied in a software development context to

analyze the discourse gathered during the interviews

descriptively approach. This method is more

exploratory and can help better understand the

changes and impact of CICD on unit testing, relying

on the knowledge and experience of interviewees

rather than determining in advance the ideal

approach. The analysis was adapted from

Fairclough’s transdisciplinary CDA [39] that referred

to two phases. The first phase deals with the selection

of the research topics, providing previous discourses.

In our case, we considered past findings about unit

test definitions [12] and connected them to the

practices of unit testing in the CICD world, since we

assume that the unit testing practices have changed.

The second phase continues with the selection and

the analysis of current text (i.e. transferred vocal to

text). Interviewees’ answers were compiled into

sections or groups of information, and categorized in

order to collect consistent phrases, expressions, and

ideas common to research participants [35] [40]. Data

from recorded interviews were then color-coded

according to the ideas raised without determining in

advance which is preferred. We are aware of the

limitation that interpretations are subject to a

researcher personal preferences. To minimize bias,

this evaluation was applied separately by two

researchers of the study and also by a representative

of each company.

5 Case study findings
This section summarizes the responses and relates the

insights derived from all the cases. The three selected

case studies are intentionally different to include a

diverse and broad picture. All three companies that

participated in this study reported that they had

already adopted unit testing as a vital part of their

development scheme. Moreover, the unit testing role

was augmented and the CICD project positioned unit

testing activities as central to all activities related to

quality (see appendix 1: A summary of replies from

three companies)

To summarize, companies adopt unit testing

automation as their main automation engine and

define it via the classical definition (see Section 2.2)

in which X-unit is their main unit testing tool and

environment. Test automation [14] is an important

factor when addressing testing during the CICD

project. Companies select their testing tools by

understanding their need for automation. They would

not use an X-unit tool that cannot provide a test

automation [14] infrastructure. However, since most

of them are aware of the need for component and

integration testing, they may look for additional

testing infrastructure to fulfill testing automation

requirements for the full CICD activities.

Two companies (1 and 2) have maintained additional

testing levels internal and external to the Agile

development cycle, although there is a general

tendency to assure their testing level coverage within

the Agile development cycle. This by itself illustrates

the preservation of expertise within the development

team.

All the companies identified measurements and

quality goals as their weak spots. They all felt the lack

of well-established criteria for evaluating and

planning their activities. The leading complaint

addresses the coverage issue – mostly what

percentage of the code should be covered during unit

testing.

While unit testing was found to be a prominent

quality component, other testing processes such as

integration testing, customer orientation and etc.,

were found to be less significant. A possible

explanation could be the ease and availability of

making changes and improvements according to the

ongoing approach.

Additional issues raised by the interviews

Outcomes reveal relatively mature, well-managed

processes among the three companies. Regardless of

the different solutions and implementation of CSE

projects, we may generalize our impressions as

follows. The transition to CI is a large organizational

project which requires management support.

Automation is a must; without it there is no way to

perform continuous development. Unit testing also

plays an important part in achieving the desired

quality and is becoming an activity done on a daily

basis by programmers.

Although the formation of the desired infrastructure

could be specified, hardly any single tool provides a

full solution. Each company selects and assembles its

own tools and integrates all of them. Another aspect

became evident in our study: the responsibility for

quality assurance is being transferred to development

teams. However, we did not find the measurements,

tools, and standards to be mature at this point.

Moreover, the economic benefits of the different

testing levels have yet to be formalized.

The distinction between unit testing and component

testing (as appears in Section 2.3) is supported by our

findings. Different people are assigned to design and

execute unit testing and component testing. The

former is developed and executed by developers,

while the latter is developed and executed by testers

and experts. A possible explanation for this is that

component testing is partially manual work and

requires different test automation tools [10]. .

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.14 Hadas Chassidim, Dani Almog, Shlomo Mark

E-ISSN: 2415-1521 119 Volume 9, 2021

6 Discussion and conclusions

Looking at CSE trends through these case studies

illustrates the importance of unit testing activities and

outcomes for modern software development. The

participating companies associated unit-testing

activity with the image of quality; thus intensive

execution of unit testing was perceived as a

prominent quality indicator. All of them regarded it

as an essential ingredient for assuring the quality of

their product. Therefore, the broad adaptation of unit

testing in the CSE may improve the quality and

reduce the development cost control. However, to

significantly contribute to quality management, the

testing processes throughout the pipeline require

adequate measurements and standards. Most of the

interviewees reported that measurements and specific

targets had yet to be implemented.

Further, while unit testing by itself is a key to achieve

quality improvements it does not address all the

complexities and the contributions of other testing

levels such as integration testing and non-functional

testing. The results of this study show that unit testing

“is done by the developers with the assistance of

testing experts within the agile development teams”.

On the one hand, having testers work together with

programmers improves the communication, shortens

the time to transfer information and can help with

locating the faulty code, since the team itself is

involved in the development of the code. On the other

hand, results indicate a possible blurring of

boundaries between the different levels and types of

tests. A possible explanation for this finding is that

CICD as a prominent CSE practice, forces a single

unit to perform all the related activities while

developers are familiar with the unit testing rather

than other testing levels. Training of team members

to have both unit testing proficiency and be able to

clearly distinguish between different testing activities

is thus essential.

Team members in modern software development

projects are required to perform new activities, which

were done previously by specialists. For example, a

key success factor is the ability to automate all

activities previously done manually, including many

types of testing: regression, performance, security,

privacy, adaptability, deployability. Another aspect,

although not previously discussed, is “exploratory

testing”, a means of improving quality that is not

considered in the new development cycles.

Programmers working in isolation often do not have

the expertise to practice this form of exploratory

testing or to use the technique to maximum effect.

That said, an experienced tester working with a

programmer in an Agile team can make very

effective use of this technique to the benefit of the

quality of the code produced. Based on our findings,

we are concerned that teams might not have the skills

or be ready to comprehend the new and complicated

needs which go beyond unit testing.

We suggest a further examination of the findings by

increasing the number and the diversity of the

participated companies around the globe.

Additionally, a deep understanding of the long term

planning, training, and organizational implications of

these changes is an essential element for CSE

migration. It is possible that some testing and quality

expertise might decrease when professionally-

oriented team-members are re-allocated within the

new structure of an organization. Organizations

should strive to preserve the continuity of knowledge

and expertise during the move to CSE.

Based on the common knowledge foundation for

software engineering education and practices, we

found that there is a significance difference in the

way SWEBOK and SEEK treat unit testing and

integration testing. While SWEBOK distinguish

between unit and integration testing and refers to both

of them, there is a clear bias toward unit testing. Unit

testing is mentioned in SWEBOK twice as much as

integration testing. However, SEEK assigns only a

slight part of the topics for quality, and does not

differentiate between unit and integration testing.

Our findings point to the need to evaluate and update

the SE education program and to strengthen testing

knowledge and skills. Particularly, we recommend to

update the academic curriculum with integration

testing topics. We, (as educators) imprint our newly

born software engineers so they may influence CICD

projects. The outcome of this research may lead to

transition to a new SE teaching curriculum,

empathizing the additional testing aspects supporting

CICD.

References:

[1] H. H. Olsson, H. Alahyari and J. Bosch,

"Climbing the" Stairway to Heaven"--A

Mulitiple-Case Study Exploring Barriers in

the Transition from Agile Development

towards Continuous Deployment of

Software." in 38th euromicro conference on

software engineering and advanced

applications, 2012.

[2] M. Shahin, L. Zhu and M. A. Babar,

"Continuous integration, delivery and

deployment: a systematic review on

approaches, tools, challenges and

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.14 Hadas Chassidim, Dani Almog, Shlomo Mark

E-ISSN: 2415-1521 120 Volume 9, 2021

practices." IEEE Access, vol. 5, pp. 3909-

3943, 2017.

[3] D. Ståhl and J. Bosch, "Modeling continuous

integration practice differences in industry

software development" Journal of Systems

and Software, vol. 87, pp. 48-59, 2014.

[4] M. Hilton, N. Nelson, T. Tunnell and D.

Marinov, "Trade-offs in continuous

integration: assurance, security, and

flexibility.” Proceedings of the 2017 11th

Joint Meeting on Foundations of Software

Engineering, pp. 197-207, August 2017.

[5] F. Zampetti, C. Vassallo, S. Panichella, G.

Canfora, H. Gall and M. Di Penta, "An

empirical characterization of bad practices

in continuous integration." Empirical

Software Engineering, vol. 25, no. 2, pp.

1095-1135, 2020.

[6] S. Elbaum, G. Rothermel and J. Penix,

"Techniques for improving regression

testing in continuous integration

development environments" in the 22nd

ACM SIGSOFT International Symposium

on Foundations of Software Engineering,

2014.

[7] M. Fowler and M. Foemmel, "Continuous

integration. Thought-Works." 16 May 2018.

[Online]. Available: http://www.

Martinfowler.com/.

[8] M. Hilton, "Understanding and improving

continuous integration." in 24th ACM

SIGSOFT International Symposium on

Foundations of Software Engineering, 2016.

[9] M. Hilton, N. Nelson, T. Tunnell and D.

Marinov, "Trade-offs in continuous

integration: assurance, security, and

flexibility." in 11th Joint Meeting on

Foundations of Software Engineering, 2017.

[10] J. Kasurinen, O. Taipale and K.

Smolander, "Software test automation in

practice: empirical observations" Advances

in Software Engineering, 2010.

[11] M. Leppänen, S. Mäkinen, M.

Pagels, V. Eloranta, J. Itkonen, M. V.

Mäntylä and T. Männistö, "The highways

and country roads to continuous

deployment." IEEE software, vol. 32, no. 2,

pp. 64-72, 2015.

[12] H. Chasidim, D. Almog, D. B.

Sohacheski, M. L. Gillenson, R. S. Poston

and S. Mark, "The Unit Test: Facing CICD-

Are They Elusive Definitions?" J. Inf.

Technol. Manag., vol. 29, no. 2, pp. 40-54,

2018.

[13] K. Naik and P. Tripathy, Software

testing and quality assurance: theory and

practice. John Wiley & Sons. 2011.

[14] K. Wiklund, S. Eldh, D. Sundmark

and K. Lundqvist, "Impediments for software

test automation: A systematic literature

review" Software Testing, Verification and

Reliability, vol. 27, no. 8, 2017.

[15] ISO, "ISO 8402 for quality

management and quality assurance–

Vocabulary." Standard, ISO. 1994.

[16] S. Martínez-Fernández, A. M.

Vollmer, A. Jedlitschka and et. al.,

"Continuously assessing and improving

software quality with software analytics

tools: a case study" IEEE access, vol. 7, pp.

68219-68239, 2019.

[17] ISO/IEC, "ISO/IEC 25010:2011 -

Systems and software engineering —

Systems and software Quality Requirements

and Evaluation (SQuaRE) — System and

software quality models.," Standard ISO,

2011.

[18] G. Arcos-Medina and D. Mauricio,

"Aspects of software quality applied to the

process of agile software development: a

systematic literature review." International

Journal of System Assurance Engineering

and Management, vol. 10, no. 5, pp. 867-897,

2019.

[19] H. Alaqail and S. Ahmed, "Overview

of software testing standard ISO/IEC/IEEE

29119.” International Journal of Computer

Science and Network Security (IJCSNS),

vol. 18, no. 2, pp. 112-116, 2018.

[20] R. Black, "Certified Tester

Foundation Level Extension Syllabus Agile

Tester," 2014.

[21] [21] L. Prechelt, H. Schmeisky

and F. Zieris, "Quality experience: a

grounded theory of successful agile projects

without dedicated testers." in 2016

IEEE/ACM 38th International Conference

on Software Engineering (ICSE), 2016.

[22] R. Pietrantuono, A. Bertolino, G. De

Angelis, B. Miranda and S. Russo, "Towards

continuous software reliability testing in

DevOps." in 2019 IEEE/ACM 14th

International Workshop on Automation of

Software Test (AST), 2019.

[23] A. Nilsson, J. Bosch and C. Berger,

"Visualizing testing activities to support

continuous integration: A multiple case

study" in International Conference on Agile

Software Development, 2014.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.14 Hadas Chassidim, Dani Almog, Shlomo Mark

E-ISSN: 2415-1521 121 Volume 9, 2021

[24] E. Shihab, Z. M. Jiang, B. Adams, A.

E. Hassan and R. Bowerman, "Prioritizing

the creation of unit tests in legacy software

systems.” Software: Practice and

Experience, vol. 41, no. 10, pp. 1027-1048,

2011.

[25] G. Orellana, G. Laghari, G. Murgia

and O. Demeyer, "On the differences

between unit and integration testing in the

travistorrent dataset." In 2017 IEEE/ACM

14th International Conference on Mining

Software Repositories (MSR), 2017.

[26] M. Ardis, D. Budgen, G. W. Hislop,

J. Offutt, M. Sebern and W. Visser, "SE

2014: Curriculum guidelines for

undergraduate degree programs in software

engineering." Computer, vol. 48, no. 11, pp.

106-109, 2015.

[27] D. Budgen, "Applying the SE2014

Curriculum Model" in 2015 IEEE 28th

Conference on Software Engineering

Education and Training, 2015.

[28] H. Chassidim, D. Almog and S.

Mark, "Quality Development (QDev) Unit in

Software Engineering School." World

Transactions on Engineering and

Technology Education (WTETE), vol. 16,

no. 3, pp. 249-253, 2018.

[29] M. Towhidnejad, O. Ochoa and A.

Kiselev, “An Analysis of the Software

Engineering Curriculum Using the

Guideline Models.” 2020.

[30] R.E. Fairley, A Software

Engineering Competency Model

(SWECOM). IEEE Computer Society, 2014.

[31] M. Towhidnejad and M. Al

Balooshi, "Determining Degree of

Alignment of Undergraduate Software

Engineering Program with SWECOM." in

Proceedings of the International Conference

on Software Engineering Research and

Practice (SERP), 2017.

[32] V. Garousi, G. Giray, E. Tüzün , C.

Catal and M. Felderer, "Aligning software

engineering education with industrial needs:

a meta-analysis. " Journal of Systems and

Software, vol. 156, pp. 65-83, 2019.

[33] V. Garousi, G. Giray, E. Tuzun, C.

Catal and M. Felderer, "Closing the gap

between software engineering education and

industrial needs." IEEE Software, vol. 37,

no. 2, pp. 68-77.

[34] P. Bourque and R. E. Fairley,

SWEBOK v3.0: Guide to the Software

Engineering Body of Knowledge, IEEE

Press, 2014.

[35] D. W. Turner III, "Qualitative

interview design: A practical guide for

novice investigators." The qualitative report,

vol. 15, no. 3, p. 754, 2010.

[36] P. Ralph, S. Baltes, D. Bianculli, Y.

Dittrich and et. al., "empirical standards."

ACM SIGSOFT, 2020.

[37] R. Wodak, "Critical discourse

analysis at the end of the 20th century."

Research on Language & Social Interaction,

vol. 32, no. 1-2, pp. 185-193, 1999.

[38] D. Schiffrin, D. Tannen and H. E.

Hamilton, "Introduction to the first edition

The handbook of discourse analysis," pp. 1-

7, 2015.

[39] N. Fairclough, “Critical discourse

analysis: The critical study of language.”

Routledge., 2013.

[40] S. Kvale and S. Brinkmann,

“Interviews: Learning the craft of qualitative

research interviewing.” SAGE, 2009.

[41] G. Orellana, G. Laghari, A. Murgia

and S. Demeyer, "On the differences

between unit and integration testing in the

travistorrent dataset," 2017 IEEE/ACM 14th

International Conference on Mining

Software Repositories (MSR) , pp. 451-454,

2017.

Appendix 1: A summary of replies from three

companies

Q1: Prior to CI CD project, what was the companies

approach to unit testing?

Company 1:

 Unit testing was implemented differently on

each team

 Each product line started the project from a

different starting point

Company 2:

 Unit testing culture and tradition was already

present in all software development teams;

actual implementation was left to individual

developers and team leaders.

 Having unit testing of Legacy code vital

Company 3:

 The company had adapted unit testing.

 Unit testing was part of a transition to more rapid

development

 There was variance between the different lines

of business.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.14 Hadas Chassidim, Dani Almog, Shlomo Mark

E-ISSN: 2415-1521 122 Volume 9, 2021

 Large legacy software was not tested in unit

testing.

Summary:

Overall, unit testing has been implemented prior to

the moving to CICD. However, the implementation

is varied.

Q2.1: What is the current approach towards unit

testing?

Company 1:

There is no clear approach towards the definition of

the unit test – most testing should be done by the

developers, but since adopting it all testing is part of

the agile cycle. They include integration testing as

part of the testing and are not clearly differentiating

between the various testing activities.

Company 2:

Unit tests remain as major testing instrument. It is

done by the developers with the assistance of testing

experts within the agile development teams.

Company 3:

Unit test is a mandatory part of a developer’s daily

work. But unit test infrastructure is not yet

internalized and implemented. The unit test

adaptation level is determined locally by the

development leaders. Unit test coverage is less than

40%.

Summary:

Unit testing is a major component in the SDLC. In

most cases, the developers are responsible for it. In

one case, it was reported to include integration

testing.

Q2.2: What tools are used for unit testing?

Company 1:

All unit testing is done using X-unit testing tools, the

company is using different development languages

and environment therefore the implementation of

repeatable (automated) unit tests is not uniform.

Company 2:

X-unit tools are the major part of the testing. Since a

large portion of the software is both cloud oriented or

connects directly to hardware, Mocks and other

STABs are being extensively used.

Company 3:

Only recently is the company attempting to enforce a

specific tools at the different development teams. The

common suggested tools are the unit test

infrastructure already inherited within the software

language – X-unit.

Summary:

X- unit is the common testing environment. In one

case, it was mentioned that mocks + stabs were used,

which indicates a higher level of testing that includes

integration

Q2.3: What tools are they using for unit test

automation?

Company 1:

Each environment (Java, C, C#) creates its own test

automation infrastructure. So one of the CI CD

project team goals is to integrate it all in the

implementation train.

Company 2:

Since the developed unit test will be used later on as

part of regression testing it is important to have a

stable test automation infrastructure. The project has

developed a maturity model for automated test

stability (unstable/stable test flow).

Company 3:

Test automation mainly consists of repeated

executions of unit tests, without strategic planning.

Summary:

Automation includes unit tests without strategic

planning, and in one case it is considered as

regression testing.

Q2.4: What other testing levels are they following?

Company 1:
Apart from unit testing, the Agile team is in charge

of other testing activities – integration and system

testing. The company maintains external testing

activities such as performance and security which are

mostly done as part of later stages on the Agile

deployment train.

Company 2:

Unit tests and integration tests are done mostly by

quality experts within the Agile team. Other testing

levels are being executed – performance, special

customer oriented testing etc.

Company 3:

Company #3 does not (officially) have other testing

levels. “…We may add another ad-hoc test level

which is done when a problem or a challenge is being

suspected…” A direct question in regard to

performance testing was answered by: it is always a

decision between the practical immediate need and

quality – and most of the time the practical need wins.

Summary:

Two of the three companies reported about

integration testing, which is performed later in the

train, usually by an external team. In one case the

decision about other testing levels is done on ad-hoc

basis.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.14 Hadas Chassidim, Dani Almog, Shlomo Mark

E-ISSN: 2415-1521 123 Volume 9, 2021

Q2.5: What measurements and target (if at all) have

they for unit test and quality validation?

Company 1:

Measurement and standards are not yet determined

by the company. One of project teams has the current

task of formalizing measurements, standards and all

needed reporting tools for all levels.

Company 2:

Measurements and standards are being debated

during the implementation of CI /CD project. Due to

the diversity of development languages and

infrastructure, the company needs to decide what

measurement and reporting will they use

Company 3:

It is following SAFe maturity level measurements,

and has targets, timeframes and goals for achieving

levels dictated by management

Summary:
In two cases, measurements are not yet determined.

In the third case, the company aims to work

according to SAFe principles and measurements. No

specific targets were mentioned.

Q3: How does the organization sees unit test action

at the full context of quality of the process and

product?

Company 1:

• Unit testing is mandatory and the most

significant act of quality assurance

• There are other important testing activities like

integration and system testing.

• Unit testing makes up the largest portion of their

test regression packages.

• Other professional expertise is maintained and

operates as a central service units.

Company 2:

• The company treats unit testing as important test

level

• A contributor to quality and definitely not the

only one.

Company 3:

• Unit test and ATD automation coverage are the

sole quality concern.

• Quality issue could be solved by the next

development cycle.

Summary:

Unit testing was considered as the major contributor

of quality. Additional testing levels are conducted by

different professional’s expertise other than the

developer.

Contribution of individual authors to

the creation of a scientific article

(ghostwriting policy)
Haddas Chassidim, Dani Almog and Shlomo Mark

carried out together the entire research.

Haddas Chassidim carried out the Critical Discourse

Analysis (CDA)

The interviews were conducted by Dani Almog.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.14 Hadas Chassidim, Dani Almog, Shlomo Mark

E-ISSN: 2415-1521 124 Volume 9, 2021

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

