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Abstract: - Phishing websites have grown more recently than ever, and they become more intelligent, even 

against well-designed phishing detection techniques. Formerly, we have proposed in the literature a state-of-

the-art URL-exclusive phishing detection solution based on Convolutional Neural Network (CNN) model, 

which we referred as PUCNN model. Phishing detection is adversarial as the phisher may attempt to avoid the 

detection. This adversarial nature makes standard evaluations less useful in predicting model performance in 

such adversarial situations. We aim to improve PUCNN by addressing the adversarial nature of phishing 

detection with a restricted adversarial scenario, as PUCNN has shown that an unrestricted attacker dominates. 

To evaluate this adversarial scenario, we present a parameterized text-based mutation strategy used for 

generating adversarial samples. These parameters tune the attacker’s restrictions. We have focused on text-

based mutation due to our focus on URL-exclusive models. The PUCNN model generally showed robustness 

and performed well when the parameters were low, which indicates a more restricted attacker. 
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1 Introduction 
Phishing is defined as "a scalable act of deception 

whereby impersonation is used to obtain 

information from a target" [1]. Phishing can be 

performed through various means such as SMS, 

phone calls, emails, and websites. We are explicitly 

considering phishing websites. Phishing websites 

are attempts to impersonate other websites or 

entities for various reasons, such as convincing 

users to enter their personal information. Phishing 

websites can be dangerous, especially for amateur 

users. 

There are various approaches in the literature 

for protecting against phishing websites. One of 

which is employing machine learning for the 

automatic detection of phishing websites. However, 

we note that phishing detection is adversarial in 

nature, unlike many machine-learning tasks. In 

some situations, the attacker can attempt to avoid 

detection by mutating an existing phishing instance 

or creating a new phishing instance. Famous 

machine learning evaluation metrics do not show 

how the models would perform in these adversarial 

situations. 

In this paper, we are interested in evaluations 

under adversarial situations. For the evaluations, we 

propose the following simple adversarial scenario. 

We assume the targets of phishing are in protected 

networks, which may block the attacker or issue a 

special warning if there are many detected phishing 

attempts. This scenario effectively gives the attacker 

a limited number of attempts. We assume that the 

attacker wants to use an already existing phishing 

instance and wants to make a small change in the 

phishing instance automatically to bypass the 

detection. The attacker’s motivation is that the 

modified phishing instance should be very close to 

the existing phishing instance so that the user can 

still fall for it. We choose this adversarial scenario 

because it restricts the attacker, not necessarily 

reflecting a common situation in practice. In less 

restricted adversarial scenarios, it is easy for the 

attacker to bypass detection, as seen in section 2. 

Fig.1 illustrates the proposed adversarial scenario. 

Additionally, we are specifically interested in 

URL-exclusive models which depend on the URL 

characters only. These models do not depend on any 

third-party service or network connectivity. This 

independence is useful in various situations, such as 

with firewalls, which may have limited storage, 

restricted connectivity, and need for high 

throughput, which may make more complex 

approaches unfeasible. We note that URLs that are 

textual in nature bring new challenges to simulating 
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the adversarial scenario in comparison to numerical 

features and other simpler features. In section 2, we 

will discuss a simulating strategy which is not 

applicable to textual features. 

 

 
 

Fig. 1: Illustration of our Adversarial Scenario 

 

To simulate the adversarial scenario, we 

propose a mutation strategy that works on the URL 

text with two parameters to simulate the attacker's 

adversarial behavior. These parameters tune the 

attacker's restrictions. Whereas smaller parameters 

indicate a more restricted attacker. We use the 

mutation strategy to evaluate PUCNN [2]. 

PUCNN is a state-of-the-art URL-only phishing 

detection model based on a character level 

Convolutional Neural Network (CNN) [3]. We 

applied the proposed mutation strategy to the 

phishing instances in the testing dataset from [2]. 

Finally, we report the relevant performance metric, 

recall (2). 

 

 

2 Related Work 
We mainly focus on discussing and evaluating 

works that consider adversarial settings. In addition, 

we discuss relevant CNN models which are 

applicable to the problem of phishing URLs 

detection. 

Biggioa et al. [4] discussed three attacker goals 

in adversarial machine learning. They are security 

violation, attack specificity, and error specificity. In 

the security violation, the attacker’s goal is to 

compromise security metrics such as availability, 

privacy, and integrity. To compromise the 

availability, the attacker may use denial of service 

attacks. The attacker may seek to obtain sensitive 

information from the model by reverse engineering, 

thus compromising privacy. The attacker may seek 

to compromise integrity, for example, by 

compromising the accuracy of the model. For the 

attack specificity, the attacker seeks for the model to 

misclassify specific types of instances (such as 

phishing). In the error specificity, the attacker seeks 

to increase a specific type of error. All these goals 

also can apply to phishing detection. In this paper, 

we are mainly interested in goals that affect the 

accuracy of the model, such as attack specificity and 

error specificity. 

Adebowale et al. [5] used two combined deep-

learning techniques, convolutional neural network 

(CNN) and long short-term memory (LSTM) to 

build a hybrid classification model named 

Intelligent Phishing Detection System (IPDS). The 

model targeted URLs and websites content such as 

images, text, and frames, unlike our URL-based 

model. The CNN+LSTM classifier was trained by 

using one million phishing and legitimate URLs and 

over 10,000 images. The proposed IPDS achieved a 

classification accuracy of 93.28%. They concluded 

that combining CNN with LSTM led CNN 

architecture to better result in terms of accuracy and 

shorter training time. 

Shirazi et al. [6] investigated the robustness of 

machine learning-based phishing detection solutions 

in adversarial settings. In the investigations, they 

concluded that machine learning phishing detection 

is susceptible to adversarial learning techniques, on 

which attackers attempt to fool the classifier through 

manipulated input. They proposed simulating 

attacks by generating adversarial samples using 

direct feature manipulation on phishing instances. 

The authors managed to drop the recall of well-

known classifiers to 70% by manipulating a single 

feature. Furthermore, by manipulating the four 

features, they have managed to drop the recall to 

0%. 

To perform the experiments, Shirazi et al. had to 

specify their threat model. In their threat model, 

they assumed that the attacker’s goal is to attack the 

recall of the machine learning model by getting the 

adversarial samples classified as legitimate. They 

have assumed the attacker knows the model type 

and the feature set but does not know the model, its 

training parameters, and the datasets used. 

Additionally, they have assumed that the attacker 

has unlimited access to the model’s prediction 

function, meaning that the attacker can generate 

many adversarial samples testing them against the 

model. Furthermore, they have ruled out poisoning 

attacks, where the attacker can add malicious 

samples to the training dataset. 

Additionally, they have assumed that the 

attacker has full control of the URL and the page 

content, except that the attacker cannot change the 

domain in the URL. Excluding the domain make 

domain-exclusive models unaffected by the 

adversarial simulating. In this paper, we will 
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investigate the usage of the domain-exclusive 

model. For generating an adversarial sample, a 

phishing instance’s values can be modified to any 

value that has already appeared in another phishing 

instance. This approach is not applicable to textual 

features such as the URL. For phishing instances 

that are correctly classified, all possible adversarial 

samples are generated. The authors computed the 

adversary cost with a tuple of two values: the 

number of features modified and the Euclidean 

distance between the phishing instance and the 

adversarial sample. 

The experiments by Shirazi et al. were on four 

published phishing datasets. The first dataset 

includes 1000 legitimate websites instances from 

Alexa [7] and 1200 phishing instances from 

PhishTank [8]. The dataset contained eight features 

which are: domain length, presence of a non-

alphabetic character in the domain name, the ratio of 

hyperlinks referring to the domain name, the 

presence of HTTPS protocol, matching domain 

name with copyright logo, and matching domain 

name with the page title. The second dataset is by 

Rami et al. [9]. The dataset includes 4898 legitimate 

instances from Alexa and 6158 phishing instances 

from PhishTank. The dataset includes 30 features, 

which are from five categories: URL-based, 

abnormal-based, HTML-based, JavaScript-based, 

and domain-based features. The third dataset is by 

Abdelhamid et al. [10], which contains 1350 

instances and 16 features. The fourth dataset is by 

Tan et al. [11], which had 5000 instances for 

legitimate and phishing, collected from Alexa and 

PhishTank. The dataset included 48 features that 

were extracted from the URL and HTML. 

In our previous publication [2], we have 

proposed PUCNN, a URL-only phishing model that 

is based on a character level CNN model. For 

training and evaluation, we have collected and 

preprocessed MUPD (Massive URL Phishing 

Detection) dataset which contained 1,167,201 

phishing URLs and 1,140,599 legitimate URLs. The 

source of phishing URLs was PhishTank, whereas 

the legitimate URLs were collected from DomCop 

top 10 million domains [12]. We have split MUPD 

dataset into training, validation, and testing datasets 

of the following proportions: 0.6, 0.2, and 0.2. 

PUCNN achieved 95.78% accuracy in the testing 

dataset. PUCNN outperformed RandomForestNLP 

[13], a state-of-art URL-only model, in their 

published dataset. 

Wang et al. [14] proposed PDRCNN, a URL-

only phishing detection model which is also based 

on a character level CNN. They trained and 

evaluated their model on a dataset they collected 

245,385 phishing URLs from PhishTank and 

245,023 legitimate URLs from Alexa top 1 million. 

Their model achieves 95.61% accuracy using 10-

fold cross-validation. However, the authors used 

only CANTINA+ [15] as their only benchmark. The 

main problem is that CANTINA+ is not a state-of-

art model. Additionally, CANTINA+ is a non-URL 

exclusive model. Although, the authors retrieved old 

phishing pages to train and evaluate CANTINA+, 

we believe that it is likely that many of these pages 

no longer represent the phishing pages as they were 

reported a long time before collection, which makes 

the benchmark less useful. PDRCNN is similarly a 

textual URL model and can be evaluated under the 

proposed adversarial scenario. 

Furthermore, there exist many character-level 

CNN architectures in the literature, such as those in 

[16] and [17]. These CNN models have already 

achieved excellent results in various text 

classification and language modeling tasks. 

Similarly, these CNN models can be applied to the 

problem of phishing URL detection, and it is 

possible to evaluate them under the proposed 

adversarial scenario. 

 

 

3 Methodology 
In this section, we discuss the threat model and how 

we simulate the attacker’s behavior by adversarial 

sampling. 

 

3.1 Threat Model 
In this subsection, we discuss the attacker’s goal, 

knowledge, influence, control, and constraints. It is 

important to specify the threat model, as we attempt 

to simulate it. Additionally, we show how and why 

our threat model differs from the threat model used 

by Shirazi et al. [6], which we discussed in related 

work. Table 1 provides a comparison summary. Our 

main motivation for having a different threat model 

is that the attacker in Shirazi et al. threat model is 

powerful, which can be seen from the results where 

they found that they can reduce the recall to 0 by 

controlling only four attributes. This threat model 

reflects the adversarial scenario we discussed in 

section 1. 

 

3.1.1 Attacker’s Goal 

In our threat model, we assume that the attacker 

wants to attack the recall of the model. The attacker 

seeks the generated adversarial samples to pass as 

legitimate while they are phishing. In practice, 

achieving this goal means that the attacker manages 

to send the phishing website to the user, avoiding 
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the model’s detection. This goal can also be 

formulated as an error specificity goal, where the 

attacker wants to decrease the true positive rate. 

This goal is the same as Shirazi et al. attacker’s 

goal. 

 

3.1.2 Attacker’s Knowledge 

Like Shirazi et al., we assume that the attacker 

knows about the selected features. In contrast, we 

assume that the attacker does not know about the 

model and does not care about it because we do not 

want the attacker to utilize any properties of the 

model, which may complicate our analysis. 

 

3.1.3 Attacker’s Influence 

We assume that the attacker does not have access to 

the training phase, which rules out poisoning 

attacks. However, the attacker can manipulate the 

features of phishing websites to avoid them being 

labeled as phishing. We assume that the attacker has 

a fixed number of usages of the predict function. 

Unlike Shirazi et al., we had to limit the usage of the 

predict function, thus increasing the restrictions on 

the attacker because even with these restrictions, the 

attacker is powerful as can be seen from Shirazi et 

al.’s results. Besides, having unlimited access is 

troubling as the computational complexity is what 

limits the attacker. Nonetheless, a behavior of the 

attacker having limited access is quite common, for 

example, when an attacker attempts to phish 

employees in a company with a custom phishing 

detection model, the attacker may need to limit their 

attempts to avoid being detected. 

 

3.1.4 Attacker’s Control 

We assume that the attacker can control all features. 

In contrast, Shirazi et al. assumed that the domain is 

excluded from attacker change, which means that 

models that depend on the domain are not affected 

by the attacker at all. Accurate models that depend 

exclusively on the domain name are successful 

under Shirazi et al. evaluation. In fact, in subsection 

4.3, we show a very accurate model that depends on 

the domains only. 

 

3.1.5 Attacker’s Constraints 

To make our threat model more realistic, we also 

include the concept of the constraints that the 

attacker needs to uphold. Our primary constraint is 

that we assume that the attacker can only change the 

phishing instance slightly. This constraint is 

reflective of what happens in practice, although the 

attacker can change the phishing instances, he 

cannot perform all changes freely. For example, it 

would be very hard for an attacker to increase his 

phishing website’s ranking. Although changing the 

domain to any non-taken domain or changing the 

visuals displayed by the web page is accessible to 

the attacker, these changes affect how the victim 

perceives the website. Thus, the attacker may not 

consider them. Shirazi et al. do not directly mention 

the concept of constraints. However, in their 

mutation strategy, they specified that the attacker 

could only mutate to values that appeared to other 

phishing instances. 

 

Table 1. Threat Model Comparisons 

Attacker’s Our threat 

model 

Shirazi et al. 

threat model 

Goal Decrease recall 

of the model 

Decrease recall of 

the model 

Knowledge Selected 

features 

Selected features 

Model type 

Influence Manipulate 

features to 

avoid detection 

Manipulate 

features to avoid 

detection 

 Limited 

attempts 

Unlimited 

attempts 

Control All features All features 

except domain 

Constraints The attacker can 

only change the 

phishing 

instance slightly 

The attacker can 

only mutate to 

values that 

appeared in other 

phishing 

instances 

 

3.2 Adversarial Sampling for Phishing 
In this section, we describe how we attempt to 

simulate an attacker’s approach by mutating existing 

phishing URLs. This mutation strategy is applicable 

to textual features. The attacker is allowed a fixed 

number of attempts for each instance, where we call 

the number of allowed attempts generation number. 

If any of the attempts manage to fool the classifier, 

the instance is considered a false negative. Fig.2 

illustrates the generation number. We report the 

final recall, which shows how the model was 

affected. 
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Fig. 2: Illustration of Generation Number 

 

Mutations to the URLs have a cost that is hard 

to measure, which is how the target of the phishing 

attack would perceive the phishing URL after the 

mutation. Even a small change could make the 

target more suspicious. We need to measure such 

possible mutations. We propose the following 

conservative mutation strategy. We allow the 

attacker to perform only one of the following 

mutation types: inserting a letter, removing a letter, 

or swapping any two adjacent letters. The mutation 

is allowed only if the URL is parsed as a valid URL. 

To model the attacker’s behavior, we use a uniform 

distribution where we assume that the attacker 

uniformly chooses from the possible mutation types. 

The attacker also uniformly chooses the letter to 

insert, the letter to delete or the adjacent letters to 

swap. We assume that the attacker can repeatedly 

apply this mutation strategy, where we call the 

number of repetitions the mutations number. Fig.3 

illustrates our mutations strategy. It is also possible, 

although unlikely that such mutations will result in 

an already registered domain. However, we ignore 

this in our analysis. 

 

 
Fig. 3: Illustration of our Mutations Strategy 

and Mutations Number 

 

 

4 Experiments and Results 

4.1 Statistical Measures 
Four popular statistical measures for classification 

models are precision, recall, accuracy, and F-

measure [18]. They are calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                             (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                   (2) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
                       (3) 

 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
             (4) 

 

where TP, TN, FP, and FN are the occurrence 

number of the model prediction of true positives, 

true negatives, false positives, and false negatives, 

respectively. 

Table 2, which is called the confusion matrix, 

shows how TP, TN, FP, and FN relate to the 

prediction and the actual value. In this paper, we 

consider phishing as positive and legitimate as 

negative. 
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Table 2. Confusion Matrix 

 

We note that high precision is preferable in 

situations where false positives are not preferred, 

while a high recall is preferable when false 

negatives are not preferred. In the case of website 

phishing detection, high precision means a lower 

number of legitimate websites classified as phishing 

websites. In comparison, high recall means a lower 

number of phishing websites that were classified as 

legitimate. Both precision and recall are essential, 

depending on the usage scenario. For example, it 

may be preferable to have high precision on 

personal devices, while on the other hand, for some 

firewalls, it may be preferable to have a high recall. 

F-measure is the harmonic mean of precision and 

recall. Finally, we note that in our adversarial 

scenario, the goal of the attacker, as we will discuss 

later, is to decrease recall. This makes recall the 

main performance metric of this paper. However, 

we also use an accuracy metric for benchmarking 

the domain-exclusive model. 

 

4.2 Experiments Setup 
In this paper, we perform four experiments. In these 

experiments, we continue our previous work and 

utilize PUCNN. We also use the same training, 

validation, and testing datasets that were randomly 

split from the preprocessed MUPD dataset [2]. In 

the first experiment, we preprocessed each URL and 

converted it to its host string (Usually a domain or 

an IP). We report the accuracy of the testing dataset, 

and we compare it to the original URL-based 

PUCNN results. The goal of this experiment is to 

show how Shirazi et al. [6] threat model is not 

effective in this case as the model is based only on 

domains (or more accurately host  

strings). In Shirazi et al. threat model the attacker 

cannot modify the domain. Shirazi et al restriction 

may be useful in some cases as it can simplify the 

analysis. 

Next, we discuss experiments 2-4. In these 

experiments, we evaluated the original URL-based 

PUCNN from [2] against the phishing instances in 

the testing dataset after mutations. We note that we 

only consider classification correct if all instances 

generated from the same instance are classified 

correctly. We performed the proposed mutations 

strategy with all combinations of specific values of 

mutations number and generation number. Table 3 

lists the values we experimented with. However, 

because of the huge increase in the generation 

number, the number of instances increases. To do 

the test, we performed sampling based on the 

generation number instead. The sample size we used 

is the size of the test dataset divided by the 

generation number. 

 

Table 3. Experiments 2-4 Variables 

Mutations Number Generation Number 

1, 5, 10, 100 1, 10, 100, 1000 

 

The main difference among experiments 2-4 is 

the location of the mutations. In experiment 2, we 

only performed the mutations on the domain part of 

the URL. Whereas, in experiment 3, we performed 

the mutation in the non-domain part of the URL. 

Finally, in experiment 4, we performed the 

mutations on the whole URL. We implemented the 

whole URL mutations as a random uniform choice 

between non-domain and domain mutations. This 

means even if the non-domain part is long, and the 

domain part is short they are getting mutated at the 

same rate. Table 4 summarizes the experiments. 

Using these experiments, we can find how the 

evaluation is affected based on the mutation 

location. In addition, we note that non-domain 

mutations are cheaper for the attacker because the 

attacker can register only one domain. Whereas in 

the other cases, the attacker needs to register each 

uniquely generated domain. 

 

4.3 Results 
In this section, we first show benchmarks between 

the accuracies of URL-based PUCNN and domain-

based PUCNN. Then, we show how URL-based 

PUCNN performs under our adversarial sampling. 

Table 4. Setup of Experiments 2-4 

 

 Actual 

Positive 

Actual 

Negative 

Predicted 

Positive 

TP FP 

Predicted 

Negative 

FN TN 

Ex # Mutation Location 

2 Domain part 

3 Non-domain part 

4 Whole URL 
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Fig. 4: Accuracy of PUCNN 

 

From Fig.4 we note that PUCNN achieved 

better accuracy when using domains directly instead 

of URLs. 

We can see how PUCNN performed well under 

adversarial sampling in tables 5, 6, and 7. PUCNN 

had the best results when the mutations were 

exclusive to the domain. On the other hand, PUCNN 

had the worst results in the experiments when the 

mutations were allowed on the whole URL. 

In general, it can be seen from the results that 

PUCNN performed well when the mutations 

number and generation number are small. Small 

generation numbers are what we expect in practice. 

For example, a high generation number risks the 

attack discovery. While having high mutations 

number make the URL very different from what it 

was, which may make the user doubts the URL. 

These results imply that PUCNN is robust in this 

scenario. However, this does not cover scenarios 

where the attacker comes up with a new URL or 

uses a more complex mutation strategy. 

 

Table 5. Domain Mutations Recalls 

Mut # / Gen # 1 10 100 1000 

1 94.6352 89.1628 84.3554 82.6464 

5 93.4983 82.5548 73.0661 64.2082 

10 92.7078 79.4133 69.3391 58.7852 

100 89.7365 74.1940 63.1636 51.1931 

 

Table 6. Non-domain Mutations Recalls 

Mut # / Gen # 1 10 100 1000 

1 94.3376 87.8781 82.3619 80.6941 

5 91.9144 76.6.076 61.8202 52.0607 

10 89.9788 70.0559 53.7161 43.8178 

100 86.9918 60.4190 43.2069 35.1410 

 

Table 7. Whole URL Mutations Recalls 

Mut # / Gen # 1 10 100 1000 

1 94.3977 87.1544 79.5450 75.7050 

5 92.0442 73.9211 55.4496 38.8286 

10 89.3242 63.3829 38.8516 24.0781 

100 80.1047 29.5000 8.8841 3.9046 

 

 

5 Conclusion 
In this work, we presented a method for evaluating 

phishing detection models in adversarial situations 

by adversarial sampling attacks. We found some 

limitations such as the exclusion of domain 

modifications and non-applicability for models that 

utilize the URL directly. Additionally, all the 

studied models did not perform well in the 

evaluation. This may be because the attacker was 

unrestricted in the proposed threat model, as the 

attacker had unlimited access to the prediction 

function. To address these limitations, we proposed 

a more restricted adversarial scenario where the 

attacker has limited access to the prediction 

function. 

To evaluate the adversarial scenario, we 

proposed a text-based mutation strategy which we 

used to perform adversarial sampling attacks. This 

mutation strategy is applicable to models that utilize 

the URL directly. This mutation strategy is 

parameterized where the parameters tune the 

attacker restrictions. Finally, we evaluated PUCNN, 

our previous contribution, which is state-of-art 

model that utilizes the URL directly as it is based on 

a character level CNN. We have found that PUCNN 

performed well for low parameters which indicate a 

more restricted attacker. 
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