
INDUSTRY 4.0’s smart industry uses information
and communication technology to improve produc-

tivity [1]. One of them is the Internet of Things (IoT)
system, which allows monitoring and control in various
areas due to advances in hardware and low-power com-
munication technology [2]. Industrial IoT (IIoT) is a sig-
nificant study [3, 4]. IIoT uses a variety of sensors to
monitor the performance of the production process [5].
High-performance cloud computing (CC) is attracting
attention to processing and analyzing much of IIoT’s
data. CC’s flexibility and scalability of its resources have
made its technology a huge success. However, CC’s speed
and latency do not meet service quality requirements [6],
but edge computing (EC) is close to IIoT and can meet
the requirements for speed and latency [7]. EC provides
computing, storage, and network resources in close prox-
imity to IoT devices. The distance between Edge and IoT
is close, so the delay time is reduced and the transmission
time is shorter than that of CC [8].

But we can’t handle everything with EC in the im-
mediate area. It is true that EC is inferior to CC in per-
formance to CC. And there may be latency and latency
because you need to connect to the server to save it in
DB. Distributed processing is also difficult in terms of
management due to increased management points. Con-
versely, from a centralized point of view, there are few
points of management that make it easier to manage.

Therefore, you need to define an advantageous role in
Edge to maximize the benefits of distributed process-
ing and ensure smooth production at the manufacturing
site. In addition, a study was conducted that as net-
work technology develops through distributed process-
ing through the edge of the network, the use of the edge
has advantages due to pretreatment of the network [9].
Through this study, it was designed to reduce the load
of the server by pre-processing manufacturing data and
parsing and pre-processing IoT data and manufacturing
data by adopting the distributed processing method of
the edge. There was a study of deep learning (DL) and
machine learning (ML) at the edge [10]. There are various
characteristics of data in manufacturing. ML is a simple
analysis of one layer, so it is sufficiently possible in EC,
but DL is an analysis of several layers, so it is necessary
to distinguish the areas that can be done. So, we ana-
lyzed the small-scale and pre-trained DL and designed it
to be able to respond to the facility immediately.

In our study, IoT Edge was designed using the devel-
opment of EC technology in order to process the large
number of data at the manufacturing site in real time.
IoT Edge was used to allow distributed processing, away
from the existing centralized processing method on the
server. There are three types of distributed treatment.
First, to prevent the number of network connections from
increasing by connecting directly to the facilities from the
server, we decided to make a hub-type connection using
IoT Edge. Second, data from the facility was distributed
across each node of the IoT Edge to reduce the load on
the server. Third, Anomaly Detection was designed using
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Autoencoder (AE) and Generative Adversarial Networks
(GAN). The IoT Edge processes the pre-trained model
on the server so that it can respond to the facility in real
time. These three objectives are designed to ensure real-
time performance, which is the most important factor in
the manufacturing field. The final experimental results
of Figure 1 show that the average time of the analysis
model using AE-TadGAN is 33.1% faster to transmit on
IoT Edge than on Cloud.

Fig. 1: Comparison of Processing Time vetween IoT Edge
(Left) and Cloud (Right)

This study consists of: Section II. describes the rel-
evant operation. Section III. describes an architecture
using IoT Edge. Section IV. confirms the results of the
analysis on IoT Edge through experiments. Finally, Sec-
tion V. discusses conclusions and future research plans.

The concept of IoT first appeared in ”The Road
Ahead,” published in 1995. [11, 12] However, it was not
noticed due to problems with communication, hardware,
and sensor technology. With the recent rapid develop-
ment of RFID technology, the technology of IoT is draw-
ing attention. This is because IoT is a promising tech-
nology because it can build an industrial system by in-
creasing utilization through the development of commu-
nication, hardware, and sensors [13]. IoT technology is
a technology that allows real-time operation by connect-
ing physical and virtual objects, and it is an applica-
tion that can be used in various fields other than man-
ufacturing [14, 15]. EC is being studied a lot to han-
dle computational intensive tasks of IIoT. In EC sce-
narios, dynamic computational offloading techniques are
proposed for use with IIoT as a technique that mini-
mizes energy consumption [16]. Supports detachable de-
lay and accuracy-aware video analysis in the cloud edge
IoT framework [17], and EC shares pipelines to reduce
unnecessary resource costs between edges.

The anomaly detection method has received a lot of
attention over the past few years. Typically, you can
classify them into statistical methods, neighborhood-
based methods, and dimension-reduction-based meth-
ods. AE is an unsupervised critical feedforward artifi-
cial neural network architecture (NN) and is a data-

dimensional reduction technology consisting of encoders
and decoders[18, 19] With the improvement of artificial
intelligence, we overcome the shortcomings of intelligent
diagnostic methods such as NN and Support Vector Ma-
chine (SVM), which require manual design, many pre-
analysis, and comparison processes[20]. AE provides an
effective way to learn representative features. Sakurada
proposed AE-based anomaly detection method [21]. AE
is highly detectable because it can capture nonlinear
correlation as well as linear correlation. However, the
use of AE for image anomaly detection does not always
show good results. This is because a single AE does not
fully capture the correlation between features in a high-
dimensional dataset, resulting in poor detection accu-
racy. That’s how an ensemble-based AE was born [22].

Generative Adversarial Networks can successfully
perform many image-related tasks, including image gen-
eration [23], image translation [24], video prediction [25],
and researchers have demonstrated the effectiveness of
GAN for anomaly detection in recent images [26, 27].
Previous GAN-related operations contained little time
series data. This is because complex time correlations
within this type of data pose significant challenges to
generative modeling. Three works released in 2019 are
drawing attention. First, Li et al. to use GAN for
anomaly detection in time series. [28] suggests using the
vanilla GAN model to capture the distribution of multi-
variate time series and to use Critical to detect anoma-
lies. Another approach to this line is BeatGAN [29], an
encoder and decoder GAN architecture that can use re-
construction errors to detect abnormalities in heartbeat
signals. More recently, Yun et al. [30]We propose a time
series GAN that adopts the same idea but introduces
time embeddings to support network training. However,
their work is designed to learn time series representa-
tion instead of anomaly detection.We present TadGAN,
a new framework that allows time series reconstruction
and effective anomaly detection, to show how GAN can
be effectively used for anomaly detection in time series
data [31].

In our study, IoT Edge using Edge was designed for
real-time data processing in manufacturing sites where a
lot of data is generated.

Figure 2 is the architecture we studied. The focus
of this architecture is the introduction of IoT Edge on
shopfloor to reduce the load on servers in centralized
MES. It is designed to allow small-scale AI analysis with
analysis models such as AE-TadGAN and distributed
processing in IoT Edge with enhanced hardware perfor-
mance. IoT Edges and Assets, except MES server, have
Assets on the shop floor. In addition, the IoT Edge we
designed will exist as much as we can process Asset’s
data in real time on a Node-by-Node basis. Therefore,
as the number of Asset increases or the amount of data
increases, the number of nodes in IoT Edges increases.

2. Related Work 
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Fig. 2: Small Scale Analysis Model for IoT Edge Using
AE-TadGAN

The asset creates data for the shop floor’s digitized
facilities. Data from Asset will be sent to IoT Edge for
collection. The collected data will be preprocessed. The
reason for preprocessing is that when the original data
is put into the server, the data parsing operation is cen-
tralized on the server. In order to reduce the load on
the server, it is handled by nodes of each connected IoT
Edge as a concept of distributed processing in IoT Edge.
In addition, data on facilities that require data analysis
can be preprocessed to enable the analysis process to run
immediately.

In data analysis, ML or pre-training small-scale AI
analysis is possible. The reason why this analysis is pos-
sible in real time is that the development of hardware
has improved the performance of PCs. In this study, we
predict defects with the pre-trained models of AE and
TadGAN in MES Server. If raw data measured by a vi-
bration sensor is used as it is, it is difficult to analyze
in the form of frequency, and there is a high possibil-
ity of false alarm. Therefore, it is important to improve
the quality of input data through frequency conversion of

CPU RAM GPU

IoT Edge
AMD Ryzen 5 3600
6-Core Processor

3.60GHz
16.0 GB

NVIDIA GeForce
GTX 1660 SUPER

Cloud
Intel Xeon E5-2686 v4

vCPU 8 2.30GHz
61.0 GB NVIDIA Tesla V100

Table 1: Test Environment

raw data. Among the various frequency conversion meth-
ods, DWT (discrete wavelet transform) with high time
resolution in high frequency areas and high frequency
resolution in low frequency areas was used. The above
features are important because the fast-changing high
frequency has a more important time resolution to de-
termine the position of the point of change, and the fre-
quency resolution to determine the period of change at
the slow-changing low frequency. In the case of AGM
Framework, among the various types of detection algo-
rithms, models based on AE (Autoencoder) and Gen-
erative Adversarial Networks (GANs) were used. In our
work, we use the Timeseries Anomaly Detection GAN
(TadGAN), a GAN model optimized for time-series data
anomaly detection. TadGAN performs better than other
anomaly detection models and is recognized in various
fields.

Data that has been analyzed is controlled by send-
ing a signal to the asset if a defect is predicted. It is
possible to simply do a line stop, and it is possible
to perform feedback control to change the recipe by
checking whether there is a problem with the recipe.
It is an architecture that can reduce the load of MES
Server and increase real-time performance through dis-
tributed processing through IoT Edgs. In addition, the
analyzed results are transmitted to the MES server to
store the results and processing status on the server.
Control through small-scale analysis, facility configura-
tion changes due to operator, and IoT Edge configura-
tion changes are transmitted from MES server to IoT
Edge and processed. Asset control is enabled only on
IoT Edge and does not communicate directly with MES
server. The connection between MES Server and Asset
reduces the number of connections by connecting to the
IoT Edge, a recruitment group of Asset, because the con-
nection pool increases.

We experimented with an architecture designed in
Figure 2. The experimental environment is the same as
Table 1. In order to pre-training analysis models using
AE-TadGAN and check the real-time speed difference
between IoT Edge and server, AWS Cloud was used as
the role of the server, and PC with improved hardware
performance was used. The data transfer from the asset
to the IoT Edge used commercialized OPC-UA.

The main purpose of this experiment is to measure
and compare the time when sensor data is transmitted in
real time and Anomaly Detection is performed through
analysis on IoT Edge and servers, respectively, to the
workplace.

4. Experiment and Results 
4.1 Experiment Environments 
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For anomaly detection, the ”PHM IEEE 2012 Data
Challenge” dataset, which is a dataset for vibration val-
ues of rotating bearings, was used. The dataset consists
of 7172877 vibration values collected from rotating bear-
ings in an environment of 1800 rpm and 4000 N. The
sampling frequency is 25.6 kHz, and data is recorded ev-
ery 1/10 second the bearing rotates.

The results of pretreatment using DWT showing ex-
cellent performance at high and low frequencies are
shown in Figure 3.

Fig. 3: Bearing Vibration Data after DWT Conversion

AE-based anomaly detection uses reconstruction er-
rors that occur in the process of compressing and restor-
ing data to perform anomaly detection. Anomaly score is
a score that indicates how close each input data point is
to an outlier, and reconstruction error is used as anomaly
score. After the process of selecting the optimal threshold
based on the derived anomaly score, points with scores
higher than the threshold are judged as abnormal values.
The threshold is selected by considering the reference val-
ues of the fault frequency of ISO-10816, abnormalities
at the site, and failure experience values. This experi-
ment used USAD (Unsupervised Anomaly Detection on
Multivariable Time Series), a model that performs an
anonymous detection task with unsupervised setting in
multivariate time series. The anomaly score measured in
the process of compressing and restoring data converted
through DWT using USAD is the same as the top of
Figure 4. After setting the threshold based on the mea-
sured anomaly score, the section in which the red line
rises at the bottom of Figure 4 is determined to be an
abnormal value as a result of anomaly detection based
on this value.

Fig. 4: Anomaly Detection Using USAD

Anomaly detection using GANs is not much different
from AE-based anomaly detection, but there is a differ-
ence in obtaining an anomaly score by using the output
of the dispenser together with the restore error of the
generator. The result value of the TadGAN model for
the data converted through DWT is the same as the blue
color of Figure 5. The result of anomaly detection based
on the result value of the TadaGAN model is judged to
be an outlier from the point that occurs in the red normal
value guideline in Figure 5.

Fig. 5: Anomaly Detection Using TadGAN

To compare processing time on IoT Edge with pro-
cessing time on server, DWT Transformation and AE
and GAN-based anomaly detection were measured on
server and processing time on IoT Edge, respectively.
The expression of each processing time in time series is
as shown in Figure 6.

Fig. 6: Required Processing Time to Process Real-time
Data in IoT Edge (Below) and Cloud (Above)

At this time, the average processing time required for
DWT Transformation and AE and GAN-based anomaly
detection was similar in the two environments of IoT
Edge and server. This is because the analysis of the
small-scale data used in the experiment does not require
much computing power, so there is no difference in the
processing speed between the PC-class IoT Edge and the
server. However, in the case of servers, it takes addi-
tional transmission time to upload data from IoT Edge to
the server and download analysis results, which increases
processing time compared to IoT Edge Computing. From
the results of this experiment, it is more efficient in terms
of real-time performance to process analysis tasks for
small-scale data on IoT Edge. This takes additional time
to upload and download data to the cloud, so analysis of
small-scale data is recommended for IoT Edge. In addi-
tion, when data resources (the physical number of assets
and objects) increase, the use of IoT Edge is more im-
portant for distributed processing to increase real-time,
as network resources and server throughput increase due
to upload/download to the server.

In this paper, we conducted an experiment that dis-
tributed processing using IoT Edge can improve real-
time performance rather than centralized processing that
adds load to servers due to the development of EC. IoT

4.2 Data Preprocessing 

4.2 Results 

5. Conclusions 
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Edge designed a simple transmission program that was
only sent to the server for distributed processing, and
IoT Edge handled the pre-processing process that was
loaded on the server to reduce the load on the server,
and the small AI analysis model was tested on IoT Edge.
Therefore, the server load is increasing day by day due to
big data analysis, so we distributed the analysis on the
server to IoT Edge in order to fill resources or reduce
the impact on other functions of the server. This reduces
the load and has less impact on real-time processing, and
it can be determined and controlled immediately by IoT
Edge near the shop floor to ensure real-time performance
as much as the data transmission time. In real life, un-
like experiments, there are many assets, so centralized
network traffic and centralized delays in processing will
be a problem as more IoT data is collected in the future.
The solution is to design distributed processing using IoT
Edge.

In this study, small-scale AI analysis was selected as
AE-TadGAN, but it was not possible to measure how
large an analysis would be possible from Edge comput-
ing. More experiments are needed and research is needed
on how to calculate AI analysis that can be analyzed on
IoT Edge. You also need to study how much you can
connect to Asset. We will focus on research on the avail-
ability of IoT Edge. And to reduce the load on MES, we
also need to conduct research on distributed processing
on servers.
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