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Abstract: - This research endeavor is focused on establishing explicit formulas for the computation of the 

average run length (ARL) within the context of a moving average process characterized by exogenous 

variables, denoted as MAX(q,r), and subjected to exponential white noise. Additionally, we aim to conduct a 

comparative analysis of their performance against the exponentially weighted moving average (EWMA) and 

the modified exponentially weighted moving average (modified EWMA) methodologies. The evaluation of 

their performance will be based on metrics such as the absolute percentage relative error (APRE) and the 

relative mean index (RMI). Furthermore, we undertake a rigorous assessment of the accuracy of these explicit 

formulas in relation to ARL by considering CPU time, utilizing the numerical integral equation (NIE) method 

derived through the application of the Gauss-Legendre quadrature rule. This comparative evaluation is carried 

out for both control chart methodologies. To ascertain the efficacy of our explicit formulas approach, we apply 

it to two distinct datasets. The first dataset pertains to the closing price of natural gas, with the crude oil WTI 

price serving as the exogenous variable. The second dataset encompasses the closing stock price of KTB Public 

Company Limited, with daily foreign exchange rates for USD/JPY and EUR/USD as the exogenous variables. 

The results of applying the ARL based on the explicit formulas to these two datasets demonstrate that, under 

these conditions, the modified EWMA control chart outperforms the EWMA control chart. 

 

Key-Words: - Average Run Length, Moving Average Process, Explanatory Variable, Explicit Formulas, 

Modified Exponentially Weighted Moving Average. 
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1 Introduction 
Currently, Statistical Process Control (SPC) stands 

as a vital methodology employed to monitor and 

control process variations, ensuring that various 

industries such as manufacturing, healthcare, 

medical sciences, finance analysis, and others 

operate at their maximum potential to produce 

conforming products. In particular, researchers 

have conducted reviews on the advantages and 

limitations of SPC in the context of quality 

improvement, which has implications for financial 

systems, healthcare, and the manufacturing 

industry, [1], [2]. The foundational work in this 

field began with, [3], who introduced the first 

control chart, widely used for monitoring and 

detecting significant process changes, especially 

when observations follow a normal distribution. 

The study, [4], subsequently proposed the 

Cumulative Sum (CUSUM) control chart, while, 

[5], presented the Exponentially Weighted Moving 

Average (EWMA) control chart, which is 

particularly adept at detecting subtle shifts in the 

process means. The benefits of employing the 

EWMA control chart have been extensively 

documented. Building on this foundation, [6], 

introduced the modified EWMA control chart, a 

highly effective tool for detecting small, sudden 

shifts in the process mean. Subsequently, [7], 

further developed the Modified EWMA control 

chart by introducing an additional constant factor, 
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denoted as 'k,' and incorporating an exponential 

smoothing limiting factor. This modified approach 

outperforms both existing EWMA control charts in 

terms of Average Run Length (ARL). 

The ARL is a measurement method utilized in 

control charts to assess performance, and it can be 

categorized into two components. Firstly, ARL0, 

also known as in-control ARL, represents the 

average number of data points before an out-of-

control condition is detected. Simultaneously, 

ARL1, which pertains to out-of-control situations, 

denotes the average number of data points that fall 

outside control limits before the process is 

recognized as out-of-control. The objective is to 

keep ARL1 as small as possible. Various methods 

can be employed to evaluate ARL, such as explicit 

formulas, the Markov chain approach (MCA), or 

numerical integral equations (NIE). Researchers 

commonly employ these methods to determine 

ARL in a variety of contexts. For instance, [8], 

utilized the martingale approach to derive explicit 

formulas for ARL and average delay time. They 

compared these results to performance metrics 

under the Exponentially Weighted Moving Average 

(EWMA) and other measures in the exponential 

distribution. The study, [9], employed Fredholm's 

second-kind integral equations method to resolve 

ARL in the context of the EWMA procedure for 

AR(1) processes. The study, [10], considered the 

numerical integral equation (NIE) method, 

employing Gauss-Legendre quadrature rules, to 

analyze the modified exponentially weighted 

moving average (Modified EWMA) control chart 

for MA(1) processes with exponential white noise. 

The study, [11], derived approaches involving 

Markov chains and integral equations to evaluate 

ARL in the context of CUSUM and EWMA control 

charts. The study, [12], employed the Fredholm 

integral equation approach to establish an explicit 

formula for calculating the ARL in CUSUM 

control charts based on the SAR(P)L with a trend 

process. Furthermore, researcher conducted a 

comparative analysis with the NIE approach. 

Building on this work, [13], derived an explicit 

formula and extended the NIE method for ARL 

calculations in CUSUM charts when dealing with 

observations that follow seasonal autoregressive 

models with exogenous variables, specifically 

SARX(P,r)L with exponential white noise. In 

another research endeavor, [14] introduced a novel 

explicit formula for ARL in EWMA control charts, 

focusing on stationary moving average processes 

with exogenous variables represented as MAX(q,r). 

Their approach made innovative use of the 

Fredholm integral equation technique. The study, 

[15], conducted an explicit formula was developed 

for ARL in CUSUM control charts, considering a 

seasonal autoregressive model with one exogenous 

variable (SARX(1,1)L). They also compared their 

results to those obtained through NIE, employing 

various numerical integration techniques such as 

the Gaussian rule, the Midpoint rule, and the 

Trapezoidal rule. Furthermore, [16], introduced a 

new solution for calculating ARL within the 

context of the EWMA control chart, specifically 

when the process adheres to the SMAX(Q,r)L 

model. This explicit ARL solution for the 

SMAX(Q,r)L process is analyzed using the 

Fredholm integral equation method. 

The observers typically encounter situations 

governed by Stochastic processes, which involve 

accidental time-space or time-series dynamics. 

Moreover, these processes often originate from 

econometric models, specifically the autoregressive 

(AR) model and moving average (MA) model. 

However, these situations tend to exhibit 

unpredictability in their movement patterns, and the 

error factors from discrepancies between actual 

values and predictions. Consequently, they evolve 

into seasonal moving average (SMA) models. 

Subsequently, in cases where the time-series errors 

follow a white noise pattern and there is auto-

correlated due to seasonal factors, it is referred to 

as exponential white noise, [17], [18], [19]. 

Exogenous variables are defined as those not 

directly influenced by other variables, and they find 

frequent application in econometric models. 

Furthermore, processes that incorporate exogenous 

variables, especially multiple exogenous variables 

simultaneously, often yield enhanced performance. 

Consequently, the components of the AR, MA, 

SAR, or SMA models incorporating exogenous 

variables are designated as ARX, MAX, SARX, 

and SMAX, respectively. The Numerical Integral 

Equation (NIE) method is widely adopted for 

explaining continuous distributions. Additionally, 

researchers who explore these methods often make 

comparisons with explicit formulas while assessing 

the performance of a modified EWMA control 

chart, [14], [15], [16], [20], [21], [22]. 

The preceding research underscores the 

utilization of the Numerical Integral Equation 

(NIE) method to conduct a comparative analysis of 

explicit Average Run Length (ARL) formulas in 

various control chart contexts, encompassing 

CUSUM, EWMA, and modified EWMA control 

charts, across different models such as AR(1), 

MA(1), AR(p), and ARX(p,r). Notably, there has 

been a gap in the exploration of the modified 

EWMA control chart applied to the MAX(q,r) 
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process with exponential white noise. 

Consequently, our primary objective revolves 

around deriving explicit formulas and conducting 

ARL comparisons using the NIE method. The 

outcomes of this study reveal that explicit formulas 

enable more rapid evaluation, particularly when 

employing the Gauss-Legendre quadrature rule, for 

a MAX(q,r) process with exponential white noise 

when implemented within a modified EWMA 

control chart. To provide empirical validation, real 

data were employed in the observational process, 

involving two distinct datasets. The first dataset 

pertains to the closing price of natural gas, with the 

crude oil WTI price serving as the exogenous 

variable, covering the period from July 1st to 

August 31, 2022. The second dataset involves the 

closing stock price of KTB Public Company 

Limited, with daily foreign exchange rates for 

USD/JPY and EUR/USD as exogenous variables, 

spanning from August 1st to September 15, 2022. 

Furthermore, this study encompasses a comparative 

analysis of the performance of the modified and 

EWMA control charts based on metrics such as the 

Absolute Percentage Relative Error (APRE) and 

the Relative Mean Index (RMI). 

 

 

2 Materials and Methods 
The EWMA control chart used to monitor and 

detect small changes in the process mean, [3], can 

be derived by using the recursive equation. 

1(1 )t ttE E Y    , 1, 2, 3,...t    (1) 

where Et  is the EWMA statistic, 0 1   is an 

exponential smoothing parameter, and Yt  is the 

sequence of the MAX(q,r) process with exponential 

white noise. The mean and variance of the EWMA 

control chart are   0E Et   and 

2Var( ) ( ),
2

tE








respectively. Therefore, the 

general upper control limit (UCL) and lower 

control limit (LCL) to detect the sequence are 

respectively given by 

0 1
2

UCL L


 


 


           (2) 

0 1
2

LCL L


 


 


          (3) 

where 0  is the target mean,   is the process 

standard deviation, and 
1L  is an appropriate control 

width limit.  

The stopping time for the one-sided EWMA 

control chart is given by  

inf{ 0: }th
t E h               (4) 

The study, [7], proposed a new structure for the 

control statistics of the modified EWMA control 

chart by using the following recursive equation: 

1 1
(1 ) ( )t t tt tZ Z Y k Y Y 

 
             (5) 

where 0 1   is an exponential smoothing 

parameter and k  is a constant. The mean  

and variance of the modified EWMA control  

chart is   0E Zt   and  
2

2 2 2
( ),

2
t

k k
Var Z

 




 



 

respectively. Therefore, the general UCL and LCL 

to detect the sequence are respectively given by 

2

0 2

2 2

2

k k
UCL L

 
 


 

 


  (6) 

2

0 2

2 2

2

k k
LCL L

 
 


 

 


  (7) 

where 0  is the target mean,   is the process 

standard deviation, 
2L  is an appropriate control 

width limit, tY  is the sequence of observations, 

0Z u  and 0Y v  are the initial values, and 

0 1   is an exponential smoothing parameter. 

The stopping time for the one-sided modified 

EWMA control chart is given by 

inf{ 0: }t Z ltb     (8) 

where b  is the stopping time, a  is the LCL, and  

l  is the UCL. 

 

 

3 The ARL of Modified EWMA 

Control Chart 
 

3.1 The Exact Solution of ARL the modified 

EWMA Control Chart for MAX(q,r) 

process with Exponential White Noise 
A MAX (q,r) process with exponential white noise 

can be derived as 
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tY 1 1 2 2 ...t q t qt t              
1

r

i it
i

x


   (9) 

where   is a constant, t  is the white noise 

process ~ ( )t Exp  ,   is the MA coefficient with 

an initial value of 0 s  , tX  is an exogenous 

variable, and   is the coefficient of tX . Therefore, 

modified EWMA statistics  tZ  can be written as 

   

 

1 1

1 1
1

1

...

t tt t

r

q t q i itt
i

Z Z k kY

k X

  

      

 




 
 
 

    

     
 

If tY  signals the out-of-control state for 1Z  when 

0Z u , then 

   

 

1 1 0

1 0
1

1

...
r

q t q i it
i

Z u k kY

k X

  

      


 
 
 

    

     
 

If 1  is the in-control limit for 1Z , then 1 .0 lZ 

Consider the following function: 

1 1 1( ) 1 ( ) ( ) ( )F u F Z f d                    (10) 

which is a Fredholm integral equation of the second 

kind, [23]. Moreover, ( )F u can be rewritten as 

             1

0

1 1
l

tF u F u kY k y        

                

  1 1
1

...
r

q t q i itt
i

k X      


 
 



       

            f y dy  

Let    11 tw u kY k y       

      1 1 ... p t ptk Y Y              

          1 1
1

...
r

q t q i itt
i

X    






     

By changing the integral variable, we can obtain 

the following integral equation: 

    
  1

0

11
1

l

t
w u kY

F u F w f
k k k



  







 
  

    

     1 1
1

...
r

q t q i itt
i

X dw     


 
  

 

     .  (11) 

If  ~tY Exp   and  
1

y

f y e 





 ; 0y  , then 

   

  1

1 1

1

0

1

1 ...

1 1
1

t

t
r

q t q i it
i

l

w u kY

k k

X

F u F w e dw
k



 
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
  

 

 
 
 
   
  
  
  
  
   








 


 
 


 

 




    

(12) 

Let  

 
 

1
1 1

1

1 1
...

r
t

q t q i itt
i

u kY
X

k
M u e


     

 

 
 
 
 
 






 
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



, 

then we obtain 

 
 

 
 

 

0

1      ; 0
l

w

kM u
F u F w e dw u l

k

 

 




   

  . 

Let    

0

l
w

k
g F w e dw

 




  , then 

 
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 
1 .

M u
g

k
F u

 
  


 Consequently, we obtain  

 

 
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1 1
1

1

...
1 1

1
( ) 1

t
rt

q t q i it
i

u kY

xk

F u e g
k

  


   

 





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 
 
 
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 

 
 


 

  



  

(13) 

By solving for constant g , we obtain 

g    

0

l
w

k
F w e dw

 




   

   
 

   

0

1

l
w

kg
M w e dw

k

 

 



 
  

  
  
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 
 

 

 

1
1 1

1
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1 1
...

r
t

q t q i itt
il l

u kY
xw k

k

w

k

ge
e dw

k

e dw
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 
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   
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1 1

t
rt

q t q i it
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 
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

.          

(14) 

By substituting constant g  Eq. (14) into Eq. (13), 

we arrive at 

 

 
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1
1 1
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1 1
...
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r
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k
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k


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 
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
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

 

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   
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
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 
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


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


 



 
  
    
  

  
 
  
   
  

  



.      (15) 

Using the Fredholm integral equation of the 

second kind, the explicit one-sided formulations for 

the ARL of a MAX(q,r) process operating on a 

modified EWMA control chart can be derived. 

Fredholm integral equations are encountered in 

various fields because they are essential for 

analyzing and solving problems that involve 

functions and integrals. They offer a robust 

mathematical framework that facilitates the 

modeling and comprehension of complex 

phenomena. When the process is in a state of 

control with exponential parameters 0  , we 

obtain the following explicit solution for 0ARL : 
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(16) 

Similarly, the explicit solution for can be 

expressed as when the process is in the out-of-

control state with an exponential parameter 1  . 
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

.  

(17) 

 The Existence and Uniqueness of the Explicit 

Formulas. Here, we show the existence and 

uniqueness of the solution to the integral equation 

in Eq. (12). First, we define 

 

 
   

1

1 1
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1
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1 1
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





(18) 

 

Theorem 1.  

Banach’s fixed-point theorem, [24]. 

Let [0, ]N l  be a set of all of the continuous  

functions on complete metric  , ,X d  and assume 

that :T X X  is a contraction mapping with 

contraction constant 0 1s  ; i.e., 1 2( ) ( )T F T F

1 2 1 2 ,s F F F F X    . Subsequently, (.)F X  is 

unique at ( ( ))T F u  ( )F u ; i.e., it has a unique fixed 

point in .X  

Proof: To show that T  defined in (13) is a  

contraction mapping for 
1 2, [0, ]F F C l , we use the 

inequality 1 2 1 2 1( ) ( )  ,T F T F s F F F   
2 (0, )F N l  

with 0 1s  . Consider Eq.(8) and Eq.(13), then 

1 2( ) ( )T F T F


  
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where 
 

[0, ]

1 sup ( )

l

k

u l

s e M u
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
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


; 0 1.s   

The solution exists and is unique, as 

demonstrated by the application of Banach's fixed-

point theorem. 

 

3.2 The NIE for the ARL of an MAX(q,r) 

Process on a Modified EWMA Control 

Chart 
The NIE approach is widely used for evaluating the 

ARL. It can be based on one of several quadrature 

rules (midpoint, trapezoidal, Simpson’s rule, and 

Gauss-Legendre), all of which give ARLs that are 

very close to each other, [25]. In the present study, 

we use the Gauss-Legendre rule to evaluate the 

ARL. An integral equation of the second kind for 

the ARL on the modified EWMA control chart for 

the MAX(q, r) process in (15) can be approximated 

by using the quadrature formula. The Gauss-

Legendre quadrature rule is applied as follows: 

Given that  

 
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 (18) 

The approximation for the integral is in the form 

     
10

l m

j j
j

F w f w dw w f a


           (19) 

where 
1

2
j

b
a j

m

 
  

 
 and ; 1, 2,...,j

b
w j m

m
  . 

Using the Gauss-Legendre quadrature formula, 

numerical approximation ( )F u  for the integral 

equations can be found as the solution to the 

following linear equations: 
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This set of m  equations with m  unknowns can be 

rewritten in matrix form. The column vector  

of  iF a  is       1 1 2, ,...,m mF a F a F a

L . Since 

1 (1,1,...,1)m
1  is a column vector of ones and 

m mR  

is a matrix, we can define m to the mth element of 

matrix R  as follows: 
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

 

and  1,1,...,1m diagI as a unit matrix of order m . 

If  
1

I R  exists, the numerical approximation for 

the integral equation in terms of the matrix can be 

written as  
1

1 1m m m m m



   G I R 1 . Finally, by 

substituting 
ia  with u  in  iF a , the numerical 

integration equation for function  F u  can be 

derived as 
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 
 .   (20) 

Here, we compare the results for ARL0 and 

ARL1 derived by using explicit formulas and the 

NIE method for a MAX(q,r) process with 

exponential white noise running on a modified 

EWMA chart. The numerical results were 

computed by using MATHEMATICA with the 

number of division points set as 1,000. The 

performances are reported as the absolute 

percentage relative error, which is derived as 
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(%) 100
Explicit Formula NIE

Explicit Formula

ARL ARL
APRE

ARL


   

For comparison, the performance measure for 

the ARL of a MAX(q,r) process with exponential 

white noise on the EWMA and modified EWMA 

control chart is the RMI, which is computed as 

, ,

1 ,

[ ]1

[ ]

n
shift i shift i

i shift i

ARL Min ARL
RMI

n Min ARL

 
  

 
 

  

where ,shift iARL  is the ARL of the control chart 

when a shift in the process mean is detected and 

,[ ]shift iMin ARL  is the minimum value of the ARL at 

the same level.  

 

 

4 Numerical Results 

The results from Table 1 (Appendix) and Table 2 

(Appendix) allocated for upper control limit (l) 

which is related to the implementation process 

running on modified EWMA control charts as 

reported for MAX(2,1) and MAX(3,2) respectively, 

also compare both Table 1 (Appendix) and Table 2 

(Appendix) reveal different results of 
i . The 

outcomes for the one-sided ARL when using the 

explicit formulas and the NIE method to verify 

Table 3 (Appendix) and Table 4 (Appendix) define 

ARL0 = 370, and  = 0.05, 0.10, 0.15, and 0.20 

described in  

Table 3 (Appendix) was 
1 =2.5 and Table 4 

(Appendix) was 
1 =1 and

2 =3 are especially in 

conditions that reveal different results i . 

Moreover, the CPU time for the explicit formulas 

was minuscule spending less than 1 second while 

that for the NIE method was around 9 seconds, and 

the central processing unit (CPU) time (System: 

AMD Ryzen 7 5700U with Radeon 

Graphics@1.8GHz. Processor, 16GB RAM. 64-bit 

Operating System). 

According to a comparison of the ARL values 

between EWMA and modified EWMA control 

charts processes for a MAX(2,3) wherever ARL0 = 

370, 
1 1   , 

2 2  , 
3 3  , 

1 2 3 1X X X   , 1

=0.10, and 2 =0.20 found that 0.05   the 

accomplishment of EWMA control chart it’s better 

than modified EWMA control chart for k=0.5 when 

shift size more than or equal to initiative 0.3 

Furthermore, k=1, k=5 and k=10 found that 

performance of EWMA greater than modified 

EWMA at shift size was 0.4. For 0.10   modified 

EWMA reveal that performance was better than 

EWMA in all of the shift size from Table 5 

(Appendix). According to the data presented in 

Figure 1, the investigation of ARL values for 

EWMA and modified EWMA control charts shows 

that the modified EWMA performs more efficiently 

than the standard EWMA as the parameter k 

increases. 
 
 

Application: Example 1 
At this moment, we allocated the closing price of 

natural gas with the crude oil WTI price as the 

exogenous variable from 1 July to 31 August 2022, 

as summarized in Table 6 (Appendix). The 

performance of the modified EWMA was better 

than that of the EWMA control chart except for 

shift size = 0.4 for all k. Moreover, the results show 

that the modified EWMA control chart less than 

RMI values was under the EWMA control chart. 

From Figure 2, the ARL of the EWMA and 

modified EWMA control charts observation 

research found that the efficiency of modified 

EWMA was better than EWMA when k increased. 

Finally, the ARL and the RMI values trended to 

decrease when k increases from Figure 3.  

 

   
Fig. 1: The ARL of the EWMA and modified EWMA control charts simulation data for (a) 0.05   

and (b) 0.10   
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Fig. 2: The ARL of the EWMA and modified EWMA control charts for example 1  

when (a) 0.05  and (b) 0.10   

  
(a)   (b) 

Fig. 3: The RMI values of the EWMA and modified EWMA control charts for example 1  

when (a) 0.05   and (b) 0.10   

 

 

   
(a)   (b) 

Fig. 4: The RMI values of the EWMA and modified EWMA control charts for example 2 

when (a) 0.05   and (b) 0.10   

 

 

Application: Example 2 
At this time, we spend the closing stock price for 

KTB Public Company Limited with the USD/JPY 

and EUR/USD are daily foreign exchange rates as 

the exogenous variable from 1 August to 15 

September 2022, as performed in Table 7 

(Appendix). The accomplishment  
 

of the EWMA was better than that of the modified 

EWMA control chart for all shift sizes except for  

k= 4
 . Furthermore, the results show that the 

modified EWMA control chart revealed RMI larger 

values than the EWMA control chart except result 

for    k= 4
  from Figure 4. 

 

5 Conclusion 
The Explicit formulas were verified for the ARL of 

a MAX(q,r) process with exponential white noise 

running on a modified EWMA control chart. The 

results from notifying the upper control limit which 

is related to implementing process running on 

modified EWMA control charts as performed for a 

MAX(q,r). The precision of the proposed explicit 

formulas was suggested as the absolute in terms of 

percentage difference deviation when compared 

with the NIE method. Acknowledgeable, they were 

using code and fasting to calculate the way the 

CPU time to point out was less than the NIE 

method. The practical applies to real data for the 

MAX(q,r) process which results show that a 
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modified EWMA control chart is good for notating 

small shifts in the process mean. Particularly, in 

some cases could be chosen some specific k= 4
  

for modified EWMA control chart performed 

outcomes greater than the EWMA control chart. 

 In this specific study, we chose k values of 0.5, 

1, 5, and 10. It is clear that higher values of k result 

in improved detection performance. However, in 

real-world data applications, certain lower k values, 

especially k=1, demonstrate efficiency comparable 

to their larger counterparts. Furthermore, even 

when   values vary for different shift sizes, the 

ARL remains consistent. 
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APPENDIX 

 
Table 1. Upper control limit values (l) for a MAX(2,1) process running on modified EWMA control charts 

when  ARL0 = 370, 
1 =2.5 and X =1 

Parameter   
Modified EWMA 

k = 0.5 k = 1  k = 5 k = 10 

1 = 0.30 0.05 0.24913371 0.500416482 2.50745388 5.0162278 

2 = 0.50 0.10 0.25503099 0.507821090 2.53911469 5.0799058 

 0.15 0.26185780 0.515851454 2.57146878 5.1452603 

 0.20 0.26942969 0.524444580 2.60454198 5.2123718 

1 = 0.30 0.05 0.09084219 0.182566560 0.91485655 1.8301810 

     
2 = -0.50 0.10 0.09245095 0.183978770 0.91910885 1.8385789 

 0.15 0.09441432 0.185652263 0.92341818 1.8470413 

 0.20 0.09665296 0.187550392 0.92778394 1.8555688 

1 = 0.20 0.05 0.18389680 0.36945555 1.8512819 3.7035240 

2 = 0.30 0.10 0.18779194 0.37383657 1.8685122 3.7380478 

 0.15 0.19238343 0.37869642 1.8860113 3.7731850 

 0.20 0.19752500 0.38397799 1.9037848 3.8089550 

1 = -0.20 0.05 0.12284740 0.24685785 1.2370013 2.4746377 

2 = 0.30 0.10 0.12516834 0.24911515 1.2447209 2.4899964 

 0.15 0.12796327 0.25171206 1.2525365 2.5055183 

 0.20 0.13112825 0.25460318 1.2604481 2.5212067 

 

 

Table 2. Upper control limit values (l) for a MAX(3,2) process running on modified EWMA control charts 

when  ARL0 = 370, 
1 =1, 

2 =3, 1X =1 and 2X =1 

Parameter   
Modified EWMA 

k = 0.5 k = 1  k = 5 k = 10 

1 = 0.10 0.05 0.05498546 0.11052074 0.55384312 1.10796860 

2 = 0.20 0.10 0.05588707 0.11120248 0.55543597 1.11105809 

3 = 0.50 0.15 0.05700636 0.11205043 0.55706280 1.11416699 

 0.20 0.05829371 0.11304018 0.55872267 1.11729532 

1 = -0.10 0.05 0.011073177 0.022261258 0.11156007 0.22317691 

    
2 = -0.20 0.10 0.011237178 0.022356223 0.11164074 0.22331113 

3 = -0.50 0.15 0.011445845 0.022486974 0.11173058 0.22344968 

 0.20 0.011688782 0.022648007 0.11182928 0.22359248 

1 = 0.70 0.05 0.1110828 0.22322707 1.11859545 2.23776429 

2 = 0.30 0.10 0.1131330 0.22515245 1.12491999 2.25031930 

3 = 0.50 0.15 0.1156136 0.22738921 1.13132329 2.26299299 

 0.20 0.1184295 0.22989500 1.13780499 2.27578710 

1 = -0.70 0.05 0.00549699 0.011051296 0.055382745 0.11079367 

     
2 = -0.30 0.10 0.00557731 0.011095784 0.055407725 0.11082969 

3 = -0.50 0.15 0.00567985 0.011158195 0.055437504 0.11086808 

 0.20 0.00579944 0.011235759 0.055471902 0.11090879 
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Table 3. The one-sided ARL for a MAX(2,1) process running on the modified EWMA chart when ARL0 = 370,  

1 =2.5, X =1, and k =1 

    ARL 
NIE 

(time: s.) 
APRE  

  l 
i  

Shift 

size 

Explicit 

(time: <0.001) 
NIE 

0.05 0.500416482 𝜃1=0.30 0.00 370.00004 370.00003 (9.109) 0.00000138 

  𝜃2=0.50 0.001 279.55999 279.55998 (9.141) 0.00000127 

   0.003 187.77302 187.77302 (9.125) 0.00000116 

   0.005 141.36583 141.36583 (9.266) 0.00000110 

   0.007 113.35555 113.35555 (9.141) 0.00000106 

   0.01 87.38934 87.38934 (9.187) 0.00000102 

   0.03 34.61916 34.61916 (9.297) 0.00000090 

   0.05 21.62573 21.62573 (9.203) 0.00000084 

   0.07 15.75544 15.75544 (9.125) 0.00000079 

   0.10 11.23569 11.23569 (9.187) 0.00000072 

   0.30 4.08730 4.08730 (9.297) 0.00000043 

   0.50 2.70231 2.70231 (9.016) 0.00000027 

   0.70 2.13800 2.13800 (9.140) 0.00000017 

   1.00 1.73869 1.73869 (9.313) 0.00000010 

0.10 0.18397877 𝜃1= 0.30 0.00 370.00001 370.00001 (9.226) 0.00000032 

  𝜃2= –0.50 0.001 248.30778 248.30778 (9.047) 0.00000025 

   0.003 149.78596 149.78596 (9.094) 0.00000020 

   0.005 107.24114 107.24114 (9.141) 0.00000017 

   0.007 83.52199 83.52199 (9.234) 0.00000016 

   0.01 62.71985 62.71985 (9.046) 0.00000015 

   0.03 23.61055 23.61055 (9.079) 0.00000012 

   0.05 14.58250 14.58250 (9.203) 0.00000011 

   0.07 10.58087 10.58087 (9.312) 0.00000010 

   0.10 7.53611 7.53611 (9.063) 0.00000009 

   0.30 2.82179 2.82179 (9.109) 0.00000004 

   0.50 1.94746 1.94746 (9.406) 0.00000002 

   0.70 1.60449 1.60449 (9.203) 0.00000001 

   1.00 1.37145 1.37145 (9.203) 0.00000001 

0.15 0.37869642 𝜃1= 0.20 0.00 370.00003 370.00157 (8.907) 0.00041399 

  𝜃2= 0.30 0.001 259.39509 259.39584 (9.219) 0.00029015 

   0.003 162.38681 162.38710 (9.046) 0.00018153 

   0.005 118.22208 118.22224 (9.109) 0.00013208 

   0.007 92.96597 92.96607 (9.141) 0.00010380 

   0.01 70.42923 70.42928 (9.188) 0.00007856 

   0.03 27.04125 27.04126 (9.328) 0.00002997 

   0.05 16.82440 16.82440 (9.093) 0.00001851 

   0.07 12.26643 12.26643 (9.094) 0.00001340 

   0.10 8.78158 8.78158 (9.125) 0.00000947 

   0.30 3.31637 3.31637 (9.250) 0.00000321 

   0.50 2.26670 2.26670 (9.219) 0.00000193 

   0.70 1.84116 1.84116 (9.047) 0.00000136 

   1.00 1.54163 1.54163 (9.282) 0.00000093 

0.20 0.2546031792 𝜃1= –0.20 0.00 370.00004 370.00003 (9.110) 0.00000173 

  𝜃2= 0.30 0.001 242.53585 242.53584 (9.093) 0.00000119 

   0.003 143.66407 143.66407 (9.141) 0.00000078 

   0.005 102.10439 102.10439 (9.250) 0.00000060 

   0.007 79.22260 79.22260 (9.140) 0.00000050 

   0.01 59.32160 59.32160 (9.094) 0.00000042 

   0.03 22.31806 22.31806 (9.203) 0.00000025 

   0.05 13.84747 13.84747 (9.234) 0.00000020 

   0.07 10.09879 10.09879 (9.109) 0.00000018 

   0.10 7.24638 7.24638 (9.360) 0.00000015 

   0.30 2.80812 2.80812 (9.125) 0.00000007 

   0.50 1.96840 1.96840 (9.062) 0.00000004 

   0.70 1.63237 1.63237 (9.156) 0.00000002 

   1.00 1.39916 1.39916 (9.282) 0.00000001 
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Table 4. The one-sided ARL for a MAX(3,2) process running on the modified EWMA chart  

when ARL0 = 370, 
1 1  , 

2 3  , 1 1X  , 
2 1X    and  

    ARL 
NIE 

(time: s.) 

 

  l 
i  

Shift  

size 

Explicit 

(time: <0.001 s.) 
NIE APRE  

0.05 0.11052074 𝜃1=0.10 0.00 370.00018 370.00018 (9.141) 0.000000064 

  𝜃2=0.20 0.001 244.71619 244.71619 (9.125) 0.000000058 

  𝜃3=0.50 0.003 145.86586 145.86586 (9.250) 0.000000053 

   0.005 103.87154 103.87154 (9.421) 0.000000050 

   0.007 80.63748 80.63748 (9.156) 0.000000049 

   0.01 60.36506 60.36506 (9.250) 0.000000047 

   0.03 22.51801 22.51801 (9.219) 0.000000043 

   0.05 13.83562 13.83562 (9.172) 0.000000039 

   0.07 9.99715 9.99715 (9.171) 0.000000037 

   0.10 7.08390 7.08390 (9.281) 0.000000032 

   0.30 2.61368 2.61368 (9.125) 0.000000019 

   0.50 1.80732 1.80732 (9.141) 0.000000006 

   0.70 1.49929 1.49929 (9.250) 0.000000007 

   1.00 1.29579 1.29579 (9.328) 0.000000000 

0.10 0.022356223 𝜃1= –0.10 0.00 370.00055 370.00055 (8.969) 0.000000005 

  𝜃2= –0.20 0.001 204.74900 204.74900 (9.141) 0.000000003 

  𝜃3= –0.50 0.003 108.12396 108.12396 (9.094) 0.000000002 

   0.005 73.44573 73.44573 (9.110) 0.000000002 

   0.007 55.60454 55.60454 (9.250) 0.000000002 

   0.01 40.75057 40.75057 (9.281) 0.000000002 

   0.03 14.65928 14.65928 (9.109) 0.000000002 

   0.05 8.96310 8.96310 (9.110) 0.000000001 

   0.07 6.48300 6.48300 (9.156) 0.000000000 

   0.10 4.62131 4.62131 (9.250) 0.000000002 

   0.30 1.84333 1.84333 (9.156) 0.000000000 

   0.50 1.37951 1.37951 (9.125) 0.000000000 

   0.70 1.21500 1.21500 (9.141) 0.000000000 

   1.00 1.11464 1.11464 (9.219) 0.000000000 

0.15 0.22738921 𝜃1=0.7 0.00 370.00029 370.00028 (9.078) 0.000000862 

  𝜃2=0.3 0.001 246.28581 246.28581 (9.219) 0.000000626 

  𝜃3=0.5 0.003 147.62694 147.62694 (9.203) 0.000000437 

   0.005 105.43034 105.43034 (9.140) 0.000000355 

   0.007 82.01068 82.01068 (9.219) 0.000000309 

   0.01 61.53276 61.53276 (9.016) 0.000000269 

   0.03 23.18543 23.18543 (9.172) 0.000000185 

   0.05 14.35886 14.35886 (9.265) 0.000000159 

   0.07 10.44791 10.44791 (9.266) 0.000000143 

   0.10 7.47111 7.47111 (9.109) 0.000000126 

   0.30 2.84641 2.84641 (9.172) 0.000000063 

   0.50 1.97790 1.97790 (9.219) 0.000000035 

   0.70 1.63298 1.63298 (9.219) 0.000000024 

   1.00 1.39553 1.39553 (9.093) 0.000000014 

0.20 0.0112357586 𝜃1= –0.7 0.00 370.00057 370.00057 (8.953) 0.000000003 

  𝜃2= –0.3 0.001 177.84872 177.84872 (9.204) 0.000000002 

  𝜃3= –0.5 0.003 87.28694 87.28694 (9.187) 0.000000001 

   0.005 57.86667 57.86667 (9.156) 0.000000001 

   0.007 43.29746 43.29746 (9.125) 0.000000001 

   0.01 31.44761 31.44761 (9.156) 0.000000000 

   0.03 11.22574 11.22574 (9.047) 0.000000000 

   0.05 6.91007 6.91007 (9.141) 0.000000000 

   0.07 5.04318 5.04318 (9.187) 0.000000000 

   0.10 3.64789 3.64789 (9.250) 0.000000000 

   0.30 1.58725 1.58725 (9.047) 0.000000000 

   0.50 1.25331 1.25331 (9.141) 0.000000000 

   0.70 1.13841 1.13841 (9.125) 0.000000000 

   1.00 1.07063 1.07063 (9.266) 0.000000000 

 
 
 

1k 
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Table 5. Comparison of the ARL values for a MAX(2,3) process running on EWMA and  
modified EWMA control 

 

Shift 

size 

EWMA 
Modified EWMA 

k=0.5 k=1 k=5 k=10 

h=2.55571 × 10−9 l =0.033308641 l =0.0669569 l =0.335539028 l =0.671248923 

0.05 0.00 370 370 370 370 370 

 
0.01 292.80788 101.16734 54.32554 29.66845 27.35029 

 
0.02 232.80528 57.67087 29.25695 15.75359 14.52804 

 
0.03 185.94795 39.90579 20.00313 10.86156 10.04007 

 
0.04 149.19079 30.27319 15.19340 8.36644 7.75483 

 
0.05 120.23014 24.24248 12.25001 6.85416 6.37090 

 
0.1 43.59987 11.68273 6.25939 3.80200 3.57955 

 
0.2 7.99463 5.38844 3.28070 2.27957 2.18619 

 
0.3 2.50677 3.44416 2.33687 1.78539 1.73250 

 
0.4 1.40197 2.56320 1.89449 1.54697 1.51283 

 
0.5 1.12728 2.08603 1.64657 1.40944 1.38565 

RMI 8.422293 1.886133 0.662234 0.081343 0.028025 

 

Shift 

size 
h=0.0001077388 l =0.033828632 l =0.067306441 l =0.336146642 l =0.672394345 

0.10 0.00 370 370 370 370 370 

 
0.01 322.51351 84.86241 50.19911 29.35727 27.24036 

 
0.02 281.89360 47.30034 26.92598 15.58778 14.46976 

 
0.03 247.04728 32.50870 18.40651 10.74975 10.00081 

 
0.04 217.06999 24.61424 13.99326 8.28274 7.72544 

 
0.05 191.21124 19.71478 11.29728 6.78767 6.34754 

 
0.1 105.07854 9.60684 5.81994 3.77059 3.56846 

 
0.2 37.13064 4.57126 3.09828 2.26568 2.18124 

 
0.3 15.69653 3.00955 2.23433 1.77710 1.72953 

 
0.4 7.76816 2.29701 1.82841 1.54134 1.51079 

 
0.5 4.44225 1.90831 1.60038 1.40531 1.38414 

RMI 15.285597 1.395811 0.531361 0.048156 0.000000 

 

 

Table 6. Comparison of the ARL values for a MAX(2,1) process running on EWMA and modified EWMA 

control charts when ARL0 = 370, 1 0.097  , 
1 1X  , 1 = –1.223 and 2 = –0.699 

 Shift size 
EWMA 

Modified EWMA 

k=0.5 k=1 k=5 k=10 

h=0.000001869 l=0.000928768 l =0.005070046 l =0.0300315284 l =0.06096242 

0.05 0.00 370 370 370 370 370 

 
0.01 196.318682 9.879934 7.893869 6.525167 6.367563 

 
0.02 111.368549 5.156209 4.258706 3.635864 3.563844 

 
0.03 66.583664 3.580090 3.045727 2.671272 2.627740 

 
0.04 41.597636 2.803836 2.446131 2.192959 2.163366 

 
0.05 27.011222 2.348224 2.092422 1.909602 1.888120 

 
0.10 12.631543 1.847012 1.700065 1.593096 1.580402 

 
0.20 5.120406 1.498224 1.422805 1.366535 1.359769 

 
0.30 1.334549 1.158702 1.143858 1.132074 1.130610 

 
0.40 1.063653 1.077259 1.073194 1.069828 1.069400 

 
0.50 1.019385 1.046045 1.045018 1.044139 1.044025 

RMI 8.992296 0.162988 0.074903 0.012883 0.005645 

 Shift size h=0.000014193 l =0.001181441 l =0.0046159374 l =0.0292793555 l =0.0601950977 

0.10 0.00 370 370 370 370 370 

 
0.01 55.41693832 8.767793 7.475860 10.501405 8.069057 

 
0.02 24.81047391 4.621807 4.053835 5.469681 4.351070 

 
0.03 14.16833753 3.241983 2.913299 3.787001 3.109271 

 
0.04 9.131643368 2.563354 2.349964 2.956700 2.494832 

 
0.05 6.367520148 2.165516 2.017906 2.468416 2.131976 

 
0.10 3.654008003 1.728601 1.650002 1.929678 1.728795 

 
0.20 2.124412983 1.425515 1.390603 1.552740 1.442986 

 
0.30 1.153776272 1.132785 1.131058 1.181233 1.153324 

 
0.40 1.042066983 1.063647 1.065998 1.090083 1.078967 

 
0.50 1.016593125 1.037492 1.040280 1.054521 1.049006 

RMI 1.585831 0.052834 0.006216 0.143323 0.040219 

 








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Table 7. Comparison of the ARL values for a MAX(2,2) process running on EWMA and modified EWMA 

control charts when ARL0 = 370, 1 0.078  , 2 5.663   
1 35X  , 

2 1X  , 1 = –0.831 and 2 = –0.837 

 

Shift 

size 

EWMA 
Modified EWMA 

4k    k=0.5 k=1 k=5 k=10 

h = 

1.395702×10-12 

l = 

8.28088×10-14 

l = 

1.55245×10-8 

l = 

4.12034×10-8 

l = 

2.64061×10-7 

l = 

5.45583×10-7 

0.05 0.000 370 370 370 370 370 370 

 
0.0001 55.918932 53.406181 67.259655 68.038452 68.740983 68.833544 

 
0.0002 30.439245 28.922156 37.217006 37.689487 38.116837 38.173492 

 
0.0003 21.007965 19.919012 25.833354 26.171546 26.477718 26.518395 

 
0.0004 16.090669 15.264063 19.844924 20.108433 20.347094 20.378836 

 
0.0005 13.075530 12.391242 16.151187 16.367230 16.562943 16.588986 

 
0.0010 6.892126 6.522190 8.527914 8.642525 8.746367 8.760201 

 
0.0020 3.732005 3.532678 4.599306 4.659564 4.714135 4.721406 

 
0.0030 2.677330 2.537740 3.277312 3.318731 3.356223 3.361219 

 
0.0040 2.155613 2.047267 2.617535 2.649298 2.678041 2.681870 

 
0.0050 1.847935 1.759412 2.224267 2.250101 2.273474 2.276588 

RMI 0.048731 0.001852 0.262755 0.277648 0.291120 0.292905 

 

Shift 

size 

h= 

2.79206×10-12 

l = 

1.65666×10-13 

l = 

9.51527×10-9 

l = 

3.10497×10-8 

l = 

2.47686×10-7 

l = 

5.28124×10-7 

0.10 0.000 370 370 370 370 370 370 

 0.0001 52.47239 48.914789 65.291415 66.884843 68.478415 68.702274 

 
0.0002 28.45630 26.394065 36.031611 36.992373 37.956722 38.092651 

 
0.0003 19.62371 18.191344 24.988924 25.674280 26.363133 26.460350 

 
0.0004 15.03460 13.935765 19.189626 19.722242 20.257953 20.333604 

 
0.0005 12.22358 11.324846 15.615910 16.051605 16.490011 16.551944 

 
0.0010 6.47125 6.002218 8.248586 8.477580 8.708160 8.740756 

 
0.0020 3.53672 3.293741 4.456621 4.575165 4.694545 4.711425 

 
0.0030 2.55796 2.393403 3.181705 3.262097 3.343061 3.354509 

 
0.0040 2.07385 1.949563 2.545875 2.606789 2.668148 2.676826 

 
0.0050 1.78832 1.689018 2.167173 2.216185 2.265572 2.272558 

RMI 0.066618 0.000442 0.315924 0.347874 0.380027 0.384565 
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