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Abstract: - Metaheuristics are essential when working with complex problems from different fields. However, a suitable 
tuning scheme for these parameters is necessary to facilitate the search for potential solutions. This tuning is a challenging 
task. This work aims to develop a tuning method for the BFOA algorithm regarding attraction and repulsion values. In 
some cases, the parameter values are taken from previous works, while in other cases, the parametrization scheme comes 
from an automated or dynamic process. This work explores the Bacterial Foraging Algorithm (BFOA) within its 
parameters related to attraction and repulsion among bacteria, using 18 well-known benchmark functions from the 
literature. For this purpose, multiple BFOA executions were made, and averages were calculated for each test with 
repetitions for 24k BFOA executions. The interest variables for contrasting performance were the number of evaluated 
functions (NFE), the required time for the execution (time), and the associated cost to the achieved solution by BFOA 
(cost). Results: BFOA produced a different performance corresponding to each benchmark function. From this, four tuning 
schemes are proposed and validated by repetition, also contrasted by t-test. The conclusions show that the BFOA 
algorithm is susceptible to tuning, and the attraction and repulsion parameters must be according to the optimization 
problem. In terms of execution time, scheme III showed remarkable results. Regarding the obtained solution cost, scheme 
II outperformed the other three schemes.  
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1  Introduction 
The parameter setting for nature-inspired algorithms 
is an open problem, [1]. The control parameters 
significantly influence the algorithm’s performance; 
their correct setting is crucial when obtaining 
optimal solutions. Setting them is difficult since 
their values are problem-dependent, [2]. In this 
work, we describe a method for exploring the 
Bacterial Foraging Algorithm in terms of 
performance based on benchmark functions in an 
extensive field of possible parameter values and 
then integrating a set of four schemas and a 
statistical validation. In this context, the benefit of 
this work is a novel tuning procedure based on 
attraction and repel (d_attr, h_rep, w_attr, and 

w_rep) BFOA parameters. The interest variables for 
comparison are the number of evaluated functions 
(NFE), the required time for execution (time), and 
the cost of the obtained solutions (cost). This BFOA 
paradigm has proven efficient as an optimization 
strategy in different areas, although it has the 
inconvenience of requiring several parameters 
tuning, [3]. This study explores the parametrization 

of the algorithm parting from the default considered 
values reported by, [4]. Figure 1 is a conceptual 
scheme of the process in this study. 
 

 
Fig. 1: Conceptual scheme of the process in the 
study. 
 
 
Next is a list of the steps taken in this work: 
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1. Establish a BFOA with default parameters 
2. Run BFOA on 18 benchmark functions 
3. From the results, define the range of 

parameters and run BFOA on each range 
value with repetitions. 

4. From the results, generate four fixed 
parameter schemes and run BFOA for 
further analysis. 

5. Validate results by t-test and generate the 
final tuning scheme regarding NFE, time, 
and cost variables. 

 

1.1   BFOA Background 
The Bacterial Foraging Optimization Algorithm 
(BFOA) proposed by, [5], is based on the natural 
movement of the Escherichia coli bacteria (E.coli), 
which, aided by its scourges, can use a translatory 
motion in pursuit of nutrients into the environment, 
or if needed to get out of the way of adverse factors. 
It is a unicellular organism that tends to form 
colonies in which the individuals are attracted to and 
repelled each other by chemical substances 
segregated in a mutual interaction with swarming 
characteristics. The scourges are an extension in the 
form of tentacles that can rotate in both ways, 
allowing the bacteria to move in the environment in 
two ways: a) swim and b) tumble. A description of 
the results of the translatory movement of the 
bacteria in the function of its scourges’ action and 
the environmental conditions can be found in the 
original Passino document.  

 
1.2   BFOA Usage Diversity 
The BFOA is a widely used tool in engineering and 
optimization areas. It helps to solve numerous 
problems, making it an essential part of these fields, 
for instance, In, [6], an application of the BFOA in 
turbine design. Alternatively, the one presented in, [7], 
where the author describes a BFOA application that 
solves vehicle routing problems. In, [8], BFOA was 
used as a strategy for designing active filters in 
electrical engineering and in, [9], for the power 
transference problem. In, [10], [11], it is applied to 
creating a PID controller in a DC-DC electric 
converter. 

Moreover, in, [12], the proposal regards an 
application for solving the problem of robotic 
movement planning. On the other hand, in ,[13], an 
application is used as a placement strategy in a laser 
radar. In, [14], the BFOA is used in the Hydro Power 
Dispatch problem. In, [15], The BFOA application 
optimizes picture recording on multi-core hardware 
processors. In, [16], there is an application for the 
pattern recognition problem. The Passino's algorithm 
has generated numerous proposals and adaptations in 

various contexts. Hereafter, they are classified and 
briefly described. Adaptations and improvements: For 
example, in, [17], the authors describe a modified 
version of the Bacterial Foraging Optimization 
Algorithm (BFOA) developed to expedite the 
convergence to the optimal solution. However, it has 
been observed that this algorithm sometimes keeps 
oscillating when it is close to the objective. To tackle 
this issue, the researchers have proposed an operator 
that dynamically adjusts the chemotaxis steps based on 
the fitness values obtained. In, [18], the reproduction 
phase of the BFOA is analyzed as decisive in the 
convergence through two differential equations and in 
two bacteria in a one-level environment. In, [19], a 
version of the BFOA is proposed, where the best 
bacteria remain intact (elitism) while the others, which 
are a few, reboot themselves. In, [20], a parallelization 
of the BFOA is applied to the task planning problem. 
Mathematical Models: In [3], [21], [22], a detailed 
description of the algorithm is made from the 
mathematical point of view. Performance 

Benchmarking: In, [12], [23], [24], [25], [26], a 
performance benchmarking of the BFOA is made, 
comparing it with other optimization algorithms and 
within different problem contexts. Hybridizations: In, 
[27], there is a hybridization description between PSO, 
BFOA, and Differential Evolution (DE). In, [13] the 
authors present a hybrid between BFOA and Firefly 
Optimization proposed for the vehicle routing 
problem. In, [28], BFOA and ant colony hybridization 
are described and applied to the labor programming 
problem. The work in, [29], is a hybrid between GA 
and BFOA applied to the manufacturing cells 
distribution problem. In, [30], another hybridization 
between BFOA and PSO was used for the global 
numeric optimization problem.  

 
1.3   Algorithm Tuning 
The BFOA algorithm has the characteristic of 
requiring precise tuning, and this may be a severe 
disadvantage. However, every metaheuristic 
algorithm requires a set of parameters tuning 
according to the problem in the case. In this area, the 
central part of the metaheuristic applications uses the 
default values proposed by the metaheuristic 
developer. In other cases, the parameters are adjusted 
based on different strategies, looking for better 
solutions in an intuitive or automated iteration 
process. 

For the BFOA algorithm, a case of auto-tuning is 
made on, [31], where the search process is made by 
enabling the bacterial foraging algorithm to adjust the 
run-length unit parameter dynamically during 
algorithm execution to balance the 
exploration/exploitation tradeoff. However, the 

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2024.12.5 Rios-Willars Ernesto, Reyes-Acosta Alfredo Valentin

E-ISSN: 2415-1521 63 Volume 12, 2024



authors point out that developing and experimenting 
with various methods and tuning them for each 
particular problem is necessary. Several procedures 
have been made to parametrize other algorithms, 
such as GRASP, genetic algorithms, and scatter 
search, [32], with significant findings in this context. 
However, tuning or performing a parametrization of a 
metaheuristic is still under experimentation, 
especially for relatively new metaheuristics such as 
BFOA. In this context, a proposed method is based 
on the “functions reuse” considering parameters 
standard to several metaheuristics, for example, the 
number of elements in the initial set or the number of 
cycles without improving the best solution in the end 
condition, [33]. In other cases, metaheuristics are 
built from blocks, taking from other algorithms those 
parts that might be useful in a particular problem, 
[34]. Optimizing a BFOA remains complex due to 
the varying types of problems it addresses. A 
contribution is generated in this field through a base 
model with an Adaptive Neuro-Fuzzy Inference 
System, [35]. Also, in the search for efficient 
parameter tuning, a computational tool has been 
developed. In this case, it implements the iterated 
racing procedure for automatic algorithm 
configuration, [36]. However, in some cases, it is 
feasible to adopt parameter values from prior 
research where they have been established based on 
the tuning conducted by others, which allows for the 
rapid development of new features and strategies, 
[37]. In this work, we explore an extensive area of 
possible parameter values, which allows us to 
contrast and choose the most adequate. 

 
Table 1 lists the most common practices for 

tuning a metaheuristic like BFOA. 
 

Table 1. Most common tuning strategies. 
Dynamic auto-
tuning and self-
adaptive process 

The BFOA can change its parameters 
along the execution based on rules 
relative to the optimization problem.  

Fuzzy Logic A series of fuzzy rules are associated 
with the BFOA to explore parameter 
values. 

Independent 
Computational tool 

A tool consists of three phases: sampling 
new parameter configurations with a 
specific distribution, selecting the most 
competitive configurations through 
racing, and then updating the sampling 
distribution to favor better 
configurations. 

Manual 
experimentation 

It consists of a manual trial and error 
process where the parameter values are 
explored first. 

Taken from others The parameter values are taken from 
other implementations where a tuning 
process is already made.  

 

2  Bacterial Foraging Algorithm 
The optimization in the BFOA algorithm is based on 
the chemotactic behavior of the Escherichia Coli 
Bacteria (E. Coli). Although using chemotaxis as a 
model for optimization was proposed first in, [38], 
Passino's work includes some modifications, such as 
agents' reproduction and dispersion. E. Coli is the 
best-understood microorganism, [5], since its 
behavior and genetic structure are well-studied. This 
unicellular organism consists of a capsule with its 
organs and scourges used for locomotion; it can 
reproduce by dividing itself and exchanging genetic 
information with its peers. In addition, it can detect 
food (nutrients) and avoid toxic substances, making 
a random search based on two locomotion states: the 
translation (swim) and the rotation (tumble). The 
decision to remain in one of these states depends on 
the nutrients or toxic substances concentration in the 
environment. This behavior is called chemotaxis. 

The following describes the optimization steps 
with the algorithm, [10]. Step 1: The inner cycle of 
the chemotaxis is illustrated in Figure 2. In this 
process, the E. coli movement is simulated. The 
move is made in two ways: lurching (tumbling) or 
swimming. One operation at a time. The value of 
the objective function is calculated. The bacteria 
change its position if the value of the modified 
objective function is worse than before. Once the 
chemotaxis is completed, the bacteria will circulate 
a new interest point in the search space.  

 

 
Fig. 2: Chemotaxis process in the BFOA algorithm, 
[5]. 

 
Step 2: In the reproduction process, the value of 

the objective function is calculated for each of the 
bacteria in the organized population. The worst half of 
the population is disregarded, and the best half is 
duplicated. The chemotaxis process starts and 
continues for this new bacteria generation according 
to the number of reproductive cycles. Step 3: In the 
elimination-dispersion cycle, some bacteria are 
eliminated with low probability and dispersed 
randomly. This process maintains the bacteria 
numbers constant. The entry parameter is the number 
of bacteria (Sb) Chemotaxis steps limit (Nc), Swim-steps 
limit (Ns), Reproductive cycles limit (Nre), bacteria 
number aimed to produce elimination-dispersion 
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cycle limit (Ned), step size (Ci), and elimination and 
dispersion probability (Ped). The cost of each bacteria 
is optimized by its interaction with other bacteria. The 
interaction function is calculated according to the 
expression g(). 

 
𝑔(𝑐𝑒𝑙𝑙𝑘)

=∑ [−𝑑𝑎𝑡𝑡𝑟 ∗ 𝑒
(−𝑤𝑎𝑡𝑡𝑟∗ ∑ (𝑐𝑒𝑙𝑙𝑚

𝑘 −𝑜𝑡ℎ𝑒𝑟𝑚
𝑖 )2𝑃

𝑚=1 )]
𝑆

𝑖=1
 

+  ∑ [ℎ𝑟𝑒𝑝𝑒𝑙
𝑆

𝑖=1

∗  𝑒(−𝑤𝑟𝑒𝑝𝑒𝑙∗ ∑ (𝑐𝑒𝑙𝑙𝑚
𝑘 −𝑜𝑡ℎ𝑒𝑟𝑚

𝑖𝑃
𝑚=1 )2]                 

 
Where the cell is the bacteria of the issue, and the 

other is a neighboring cell. dattr y wattr are attraction 
coefficients. hrepel and wrepel are repulsion coefficients. 
S is the number of bacteria in the population. P is the 
number of dimensions in the optimization problem, 
[4]. 
 

2.1  Bacterial Interaction Parameters 
These are significant since this interaction sustains 
the optimization process in the paradigm that states 
that bacterial colonies aim to move towards new 
positions where nutrients are in better availability. 
These parameters represent the attraction extent and 
depth between bacteria (d_attr y w_attr) and the 
repulsion extent and depth between bacteria (h_rep y 
w_rep). These four parameters are part of the tuning 
assembly of the BFOA. In this sense, [3], expresses 
that the BFOA has the disadvantage of requiring 
more parameters than other optimization algorithms, 
which makes it more complicated from this point of 
view. However, [11], points out that researchers use 
the BFOA because it does not require precise 
mathematical models for tuning. Notably, [5], points 
out that if the extent of the attraction signal is long 
and very deep, the cells will have a solid tendency to 
swarm. Moreover, in the opposite sense, each cell 
will look for the optimization independently. 
 
 
3  Methodology 
For the development of this project, two phases are 
established.  

1) First Phase:  
a) BFOA algorithm implantation in a set of 

18 benchmark functions and result 
evaluation. 

b) Algorithm sensibility exploration within 
the bacterial interaction parameters on a 
benchmark function.  

2) Second Phase: 

a) Algorithm Parameterization proposal 
from the sensibility exploration. 

b) Perform Results validations by repetition 
and t-test. 
 

3.1 Parameters and Resources 
The BFOA algorithm was developed in Ruby 
language with computer equipment, including an 
Intel Core i7 Processor, 10Gb in RAM Memory, and 
a Windows 7 operative system. The graphics were 
obtained from the Excel Microsoft Software and the 
Minitab Statistic Software. The BFOA parameters 
considered by default and reported by, [4], are 
described in Table 2.  
 
Table 2. Default parameters in the BFOA algorithm. 

Population size 50 
Step Size (Ss) 0.1 
Elimination – dispersion cycles (Ned) 1 
Reproductive cycles (Nre) 4 
Quimiotaxis cycles (Nc) 70 
Swim length (Ns) 4 
Elimination probability (Ped) 0.25 
Attraction depth (d_attr) 0.1 
Attraction wide (w_attr) 0.2 
Repeland depth (h_rep) d_attr 
Repeland wide (w_ewp) 10 

 

3.2   First Phase: Benchmark Functions 
To ensure evidence diversity, in this study, we use a 
group of 18 functions relative to known problems in 
the optimization area, [39], [40]. These are 
classified according to similarity and search space 
form, [41]. Moreover, some functions have multiple 
local minimums, others have a plane form, valley 
form, or bowl-like depth, and others are staggered 
and of various shapes. For this benchmark, all 
functions are two-dimensional (d=2) and carried out 
on 30 repetitions. 

Cross In Tray: Has multiple global minima. The 
function is commonly evaluated on the square xi ∈ 
[-10, 10] for all i = 1, 2, [42]. 

𝑓(𝒙) = −𝟎. 𝟎𝟎𝟎𝟏 

{
 
 

 
 

|
|𝒔𝒊𝒏𝒙𝟏 𝒔𝒊𝒏 𝒙𝟐 𝒆

(|𝟏𝟎𝟎−
√𝒙𝟏
𝟐+𝒙𝟐

𝟐

𝝅
|)

|
| + 𝟏

}
 
 

 
 
𝟎.𝟏

           

                        (2) 
Search Space: xi ∈ [-10, 10] 
Global Min: -2.06261 

Drop Wave: This is a multimodal test function. 
The given form of function has only two variables 
and the following definition. The test area is usually 
restricted to the square −5.12≤x1≤5.12,−5.12≤x2≤ 
5.12, [40]. 
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𝒇(𝒙) = −
𝟏+𝒄𝒐𝒔(𝟏𝟐√(𝒙𝟏

𝟐+𝒙𝟐
𝟐)

𝟎.𝟓(𝒙𝟏
𝟐+𝒙𝟐

𝟐)+𝟐
                        (3) 

Search Space: xi ∈ [-5.12, 5.12] 
Global Min: -1 
Holder Table: Is a Continuous, Differentiable, 

Separable, Non-Scalable, Multimodal function. The 
four global minima are at x∗=f(±9.646168, 

±9.646168), f(x∗)= −26.920336, [41]. 

𝒇(𝒙) = − |
|𝒔𝒊𝒏(𝒙𝟏) 𝒄𝒐𝒔 (𝒙𝟐 ) 𝒆

(|𝟏−
√𝒙𝟏
𝟐+𝒙𝟐

𝟐

𝝅
|)

|
|        (4) 

Search Space: xi ∈ [-10, 10] 
Global Min: -19.2085 
EggHolder: This has a deceptive landscape and 

is a challenging function to optimize because it is 
characterized by an uneven plane having several 
dozen local minimums that easily mislead the search 
agents. The function is usually evaluated on the 
square xi ∈ [-512, 512], for all i = 1, 2, [42]. 

𝒇(𝒙) = −(𝒙𝟐 + 𝟒𝟕) 𝒔𝒊𝒏 (√|𝒙𝟐 +
𝒙𝟏

𝟐⁄ + 𝟒𝟕|) −

𝒙𝟏 𝒔𝒊𝒏(√|𝒙𝟏 − (𝒙𝟐 + 𝟒𝟕)|)                 (5) 
Search Space: xi ∈ [-512, 512] 
Global Min: -959.6407 
Rastrigin: This is based on the function of De 

Jong with the addition of cosine modulation to 
produce frequent local minima. The test area is 
usually restricted to hypercube 
−5.12≤xi≤5.12,i=1,...,n. Its global minimum equal 
f(x)=0 is obtainable for xi=0,i=1,...,n., [40]. 
𝒇(𝒙) = 𝟏𝟎𝒅 + ∑ ⌈𝒙𝒊

𝟐 − 𝟏𝟎𝒄𝒐𝒔 𝟐𝝅𝒙𝒊⌉
𝒅
𝒊=𝟏          (6) 

Search Space: xi ∈ [-5.12, 5.12] 
Global Min: 0 
Schwefel: It is deceptive in that the global 

minimum is geometrically distant, over the 
parameter space, from the next best local minima. 
Therefore, the search algorithms are potentially 
prone to convergence in the wrong direction. The 
function has the following definition. The test area 
is usually restricted to a hypercube  

−500 ≤ xi ≤ 500, i=1,...,n. 

Its global minimum f(x)=−418.9829n is 
obtainable for xi=420.9687,i= 1,...,n., [43]. 
𝒇(𝒙) = 𝟒𝟏𝟖. 𝟗𝟖𝟐𝟗𝒅− ∑ 𝒙𝒊𝐬𝐢 𝐧(√|𝒙𝒊|)

𝒅
𝒊=𝟏        (7) 

Search Space: xi ∈ [-500, 500] 
Global Min: 0 
Schaffer2: The function is usually evaluated on 

the square xi ∈ [-100, 100], for all i = 1, 2, [41]. 

𝒇(𝒙) = 𝟎. 𝟓 +
𝒔𝒊𝒏𝟐(𝒙𝟏

𝟐−𝒙𝟐
𝟐)−𝟎.𝟓

⌈𝟏+𝟎.𝟎𝟎𝟏(𝒙𝟏
𝟐+𝒙𝟐

𝟐)⌉
𝟐             (8) 

Search Space: xi ∈ [-100, 100] 

Global Min: 0 
Ackley has a flat outer region and a large hole at 

the center. The function poses a risk for 
optimization algorithms, particularly hill climbing 
algorithms, to be trapped in one of its many local 
minima, [44]. 

𝒇(𝒙) = 𝜶𝒆
(−𝒃√

𝟏

𝒅
∑ 𝒙𝒊

𝟐𝒅
𝒊=𝟏 )

− 𝒆
(
𝟏

𝒅
∑ 𝒄𝒐𝒔(𝒄𝒙𝒊)
𝒅
𝒊=𝟏 )

+ 𝜶 +
𝒆𝟏               (9) 

Var: α=20, b=0.2, c=2π 
Search Space: xi ∈ [-32.768, 32.768] 
Global Min: 0 
Booth: Is usually evaluated on the square xi ∈ [-

10, 10], for all i = 1, 2, [41]. 
𝒇(𝒙) = (𝒙𝟏 + 𝟐𝒙𝟐 − 𝟕)

𝟐 + (𝟐𝒙𝟏 + 𝒙𝟐 − 𝟓)
𝟐  (10) 

Search Space: xi ∈ [-10, 10] 
Global Min: 0 
Matyas: Has no local minima except the global 

one. The function is usually evaluated on the square 
xi ∈ [-10, 10] for all i = 1, 2, [41]. 
𝒇(𝒙) = 𝟎. 𝟐𝟔(𝒙𝟏

𝟐 + 𝒙𝟐
𝟐) − 𝟎. 𝟒𝟖𝒙𝟏𝒙𝟐        (11) 

Search Space: xi ∈ [-10, 10] 
Global Min: 0 
Zakharov: Is continuous and unimodal. The 

suggested search area is the hypercube [−10, 10]D. 
The global minimum is f28(x*) = 0 at x* = {0, 0, 
…, 0}. The general formulation of the function is, 
[45]. 
𝒇(𝒙) = ∑ 𝒙𝒊

𝟐𝒅
𝒊=𝟏 + (∑ 𝟎. 𝟓𝒊𝒙𝒊

𝒅
𝒊=𝟏 )

𝟐
+

(∑ 𝟎. 𝟓𝒊𝒙𝒊
𝒅
𝒊=𝟏 )

𝟒
                                                     (12) 

Search Space: xi ∈ [-5, 10] 
Global Min: 0 
Sphere: Is continuous, convex, unimodal, 

differentiable, separable, highly symmetric, and 
rotationally invariant. The suggested search area is 
the hypercube [−100, 100]D. The global minimum 
is f01(x*) = 0 at x* = {0, 0, …, 0}, [45]. 
𝒇(𝒙) =  ∑ 𝒙𝒊

𝟐𝒅
𝒊=𝟏                (13) 

Search Space: xi ∈ [-5.12, 5.12] 
Global Min: 0 
Rosenbrok: This is often used as a test problem 

for optimization algorithms (where a variation with 
100 replaced by 105 is sometimes used. It has a 
global minimum of 0 at the point (1, 1), [46]. 
𝒇(𝒙) = ∑ ⌈𝟏𝟎𝟎(𝒙𝒊+𝟏 − 𝒙𝒊

𝟐)𝟐 + (𝒙𝒊 − 𝟏)
𝟐⌉𝒅−𝟏

𝒊=𝟏  (14) 
Search Space: xi ∈ [-5, 10] 
Global Min: 0 
Michaelwicz: Has d! local minima, and it is 

multimodal. The parameter m defines the steepness 
of the valleys and ridges; a larger m leads to a more 
complex search. The recommended value of m is m 

= 10, [41]. 
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𝒇(𝒙) = −∑ 𝒔𝒊𝒏(𝒙𝒊) 𝒔𝒊𝒏
𝟐𝒎 (

𝒊𝒙𝒊
𝟐

𝝅⁄ )𝒅
𝒊=𝟏           (15) 

Var: m=10 
Search Space: xi ∈ [0, π] 
Global Min: -1.8013 
Easom: This is an unimodal test function where 

the global minimum has a 
small area relative to the search space. The 

function was inverted for minimization, [40]. 
It has only two variables 

𝒇(𝒙) = −𝒄𝒐𝒔(𝒙𝟏) 𝒄𝒐𝒔(𝒙𝟐)𝒆
(−(𝒙𝟏−𝝅)

𝟐−(𝒙𝟐−𝝅)
𝟐) 

              (16) 
Search Space: xi ∈ [-100, 100] 
Global Min: 0 
Beale: is multimodal, with sharp peaks at the 

corners of the input domain. The function is usually 
evaluated on the square xi ∈ [-4.5, 4.5] for all i = 1, 

2, [41]. 
𝒇(𝒙) = (𝟏. 𝟓 − 𝒙𝟏 + 𝒙𝟏𝒙𝟐)

𝟐 + (𝟐. 𝟐𝟓 − 𝒙𝟏 +
𝒙𝟏𝒙𝟐

𝟐)𝟐 + (𝟐. 𝟔𝟐 − 𝒙𝟏 + 𝒙𝟏𝒙𝟐
𝟑)𝟐                 (17) 

Search Space: xi ∈ [-4.5, 4.5] 
Global Min: 0 
Styblinski-Tang: Has three local minimums in 

addition to its global minimum. The function is 
continuous, not convex, defined on n-dimensional 
space, and multimodal, [41]. 
𝒇(𝒙) =

𝟏

𝟐
∑ (𝒙𝒊

𝟒 − 𝟏𝟔𝒙𝒊
𝟐 + 𝟓𝒙𝒊)     

𝒅
𝒊=𝟏    (18) 

Search Space: xi ∈ [-5, 5] 
Global Min: -39.16599d 
 

3.2.1  Sensibility Analysis 

As pointed out before, the w_attr, h_rep, d_attr, and 

w_rep parameters represent the attraction extent and 
depth between bacteria (d_attr, w_attr) and the 
repulsion extent and depth between bacteria (h_rep, 

w_rep). In this section, we describe how parameter 
values are explored to observe the results for the 
benchmark function when running on each 
parameter setting.  

Consider the set 
{(w_attr, h_rep, d_attr, w_rep) | w_attr = i, 

h_rep = i, d_attr = i, w_rep = k} 
Where w_attr, h_rep, and d_attr take values from 
integer i {i | -999.9 ≤ i ≤ 1000.1} and w_rep take 
values from integer k in the established range {k | -

990 ≤ k ≤ 1010}. From the definition of (i,k) values, 
we run a "scenario", a BFOA algorithm running on 
the Michalewicz benchmark function for a 
workspace with multiple local minima and 
multimodal characteristics. 

The sensibility analysis consists of executing a 
set of BFOA algorithms n=8000 such that the 
values of the bacterial interaction parameters are 
different in each one. Establishing as a start the 

default values in, [4]. Then, gradual and unitary 
changes are made to each parameter (one at a time) 
incrementally in one case and decremental in the 
other, considering three repetitions for each 
experiment. See Figure 3 for a graphic description. 
From the repetitions, the averages are calculated.  

 

 
Fig. 3: Graphic description of the variation 
parameters in the BFOA sensibility analysis. 
 

This series of combinations produces 2000 
adjustments for each parameter, 1000 for the 
incremental variation case, and 1000 for the 
decremental variation. Each experiment had three 
repetitions. In sum, 24,000 BFOA algorithm 
executions. For this test, the interest variables to be 
measured in each run were the execution time (t), 
the number of evaluated functions (NFE), and the 
cost of the found solution by the algorithm (cost) to 
measure the algorithm’s efficiency and robustness, 
[47]. 

Figure 4 describes the workflow used for this 
exploration. 
 
3.3   Second Phase 
From the results graphic in the sensibility 
exploration, we selected the regions where the 
algorithm has a noticeable performance regarding 
the interest variables. (NFE, t, cost). For this, the 
surface graphics are also generated to determine by 
observation a beneficial point to tune the algorithm 
and validate. The validation consists of executing 
new runs for the algorithm in the 18 benchmark 
functions and a group (n=4) of parametrization 
schemes proposed from the analysis.  

As a part of the validation process, the t-tests are 
executed for each parametrization scheme and in 
each optimization benchmark function for the 
results of the 30 runs in terms of the cost variable. In 
the same way, box graphics are presented as a 
contrast of the results before and after 
parametrization with the proposed scheme. 
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Fig. 4: The workflow used for BFOA algorithm 
parameters exploration. Each of the w_attr, h_rep, 

d_attr, and w_rep parameters are updated in turn, 
and three algorithm executions are performed for 
average value calculation. 
 

 

4  Results 
The results from the algorithm executions from each 
benchmark function are presented.  
 

4.1   First Phase: Benchmark Results 
Table 3 shows the BFOA algorithm's results in 18 
benchmark functions. Each box corresponds to the 
average result of the 30 algorithm’s repetitions in 
the respective function and with the default 
parameters. 
 
 
 
 
 
 
 
 
 

Table 3. BFOA Results in the 18 benchmark 
functions. 

Opt-Cost 
Óptimo 

Function NFE t Cost 

0 Ackley 28616.8
333 

3764.51
527 

9.344239
34 -1.80 Michaelwi

kcz 
29372.3
667 

3873.65
487 

-
1.801165
383 

0 Rastrigin 28588.8 3762.24
857 

0.710712
312 0 Rosenbro

k 
32261.7
667 

4275.71
127 

0.000652
085 0 Schwefel 40398.7

333 
2474.17
49 

201.1314
457 0 Sphere 38576.7

667 
4499.39
07 

2.74135E-
05 -78.33 Styblinski 32229.9 1959.00

273 
-
78.33226
261 

0 Zakharov 38901.1
333 

5398.30
883 

5.33258E-
05 0 Beale 31692.7 5485.38

043 
4.7815E-
05 0 Booth 37141.1

333 
4843.21
027 

6.12336E-
05 -2.06 Cross In 

Tray 
43420.5
667 

5238.76
627 

-
2.062583
605 

-1 Drop 
Wave 

33297.1
667 

4514.52
487 

-
0.870848
792 

-1 Easom 56335.3
333 

6101.51
563 

-
0.033333
363 

-959.64 Egg 
Holder 

40293.5
667 

5974.64
177 

-
719.0540
648 

-19.20 Holder 
Table 

35989.3
333 

4941.58
257 

-
19.20810
283 

0 Matyas 40177 5371.40
723 

1.69966E-
05 0 Schaffer 2 26183.6 3376.09

31 
0.002326
416 -186.73 Shubert 28487.7

667 
3935.19
177 

-
178.8116
76 

 

4.2   Sensibility Analysis Results 
Regarding the four variables of bacterial interactions 
and the three interest variables. (time, NFE, cost). A 
noticeable difference can be observed between the 
sides of the graphic parting from the center, where 
the default value corresponds. To the left are the 
incremental values from the default, and to the right 
are the decremental ones. That is to say that the 
value 1 is the most positive and the value 2000 the 
most negative. These tests were made, 
simultaneously varying one of the four parameters 
and leaving the other three in default value.  

In the execution time comparison between the 
four parameters in Figure 5, an increase for the 
range 987 to 1161 stands out in the values from 
w_attr, while d_attr and h_rep remain in stable 
fields. In the same way, w_rep presents an increase 
in the range 1103 to 1451 to stabilize subsequently. 

 

 
Fig. 5: Time results comparison for the parameters 
d_attr, h_rep, w_attr, w_rep. 
 

Figure 6 compares the number of the evaluated 
function (NFE) for the four parameters d_attr, 
h_rep, w_attr, and w_rep. The range 987 to 1161 
stands out because the evaluated functions increase 
between the parameters w_rep and w_attr. In 
contrast, the parameter h_rep demonstrates a 
decrease in the functions being assessed. 
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Fig. 6: Comparison of the evaluated functions 
number (NFE) for the parameters d_attr, h_rep, 
w_attr, w_rep. 
 

Figure 7 compares the costs of the functions 
according to the four parameters d_attr, h_rep, 
w_attr, and w_rep. An increase is to be noted from 
the value 1009 for the parameters h_rep y d_attr. In 
the same way, the parameter w_attr presents an 
increase parting from said value to stabilize parting 
from the value 1121 subsequently. 

 

 
Fig. 7: Cost comparison according to parameters 
d_attr, h_rep, w_attr, w_rep. 
 

Surface Graphics. Figure 8 shows the surface 
generated by parametrizations in terms of interest 
variables. The favorable point is located in the 
region where the cost, execution time, and evaluated 
function number are minimum. 

 

 
Fig. 8: Surface graphics in the sensibility analysis. 
 

4.3   Second Phase: Proposed Parameters 
The sensibility analysis and surface graphics 
observation establish the following parametrization 
schemes for validation by repetition and t-test. See 
Table 4. 
 

Table 4. Proposed schemes. 
Scheme d_attr h_rep w_attr w_rep 
I 995.1 0.1 0.2 10 
II 0.1 -0.9 0.2 10 
III 0.1 0.1 655.2 10 
IV 0.1 0.1 0.2 967 

 
4.4   Validation by Repetition and T-Test 
Once the four schemes for tuning BFOA are 
established, the next step is to run the algorithm for 
the 18 benchmark functions with 30 repetitions to 
have a general panorama of the algorithm's 
performance in terms of the cost value. 

Also, as a part of the validation process, it is 
known that a t-test can be used to determine whether 
two groups differ from each other in terms of 
independent samples. At this point, we use the test 
to determine whether the average result (n=30) 
differs from the execution on the default parameter 
values vs. the execution with each proposed scheme.  

Table 5 shows results from the validation by 
repetition and t-test of the parametrization proposed 
scheme number I. The value in the t column 
corresponds to the p significance of the statistical 
test from the cost with default values vs. the value 
achieved with the scheme mentioned. 

 
Table 5. Validation by repetition in the scheme I. 

  Cost w/ Scheme I  

Optimal Function defaults Cost t 

0.0000 Ackley 9.3442 7.7122 0.0600 
-1.8013 Michaelwikcz -1.8012 -1.7987 0.0010 
0.0000 Rastrigin 0.7107 0.0424 0.0000 
0.0000 Rosenbrok 0.0007 0.0744 0.0140 
0.0000 Schwefel 201.1314 213.7595 0.6610 
0.0000 Sphere 0.0000 0.0814 0.3220 
-78.3320 Styblinski -78.3323 -75.9263 0.0040 
0.0000 Zakharov 0.0001 1.0591 0.0050 
0.0000 Beale 0.0000 0.1003 0.0060 
0.0000 Booth 0.0001 3.1139 0.0000 
-2.0636 Cross In Tray -2.0626 -2.0491 0.0260 
-1.0000 Drop Wave -0.8708 -0.9873 0.0000 
-1.0000 Easom -0.0333 -0.0407 0.8730 
-959.6407 Egg Holder -719.0541 -677.5126 0.2330 
-19.2085 Holder Table -19.2081 -18.1454 0.1000 
0.0000 Matyas 0.0000 0.1210 0.0000 
0.0000 Schaffer 2 0.0023 0.0026 0.7420 
-186.7309 Shubert -178.8117 -175.8331 0.6160 

 
Table 6 shows results from the validation by 

repetition and t-test of the parametrization proposed 
scheme number II. The value in the t column 
corresponds to the p significance of the statistical 
test from the cost with default values vs. the value 
achieved with the scheme mentioned. 
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Table 6. Validation by repetition in the scheme II. 
  Cost w/ Scheme II  

Optimal Function defaults Cost t 

0.0000 Ackley 9.3442 8.7900 0.5640 
-1.8013 Michaelwikcz -1.8012 -1.8005 0.0000 
0.0000 Rastrigin 0.7107 0.9730 0.2170 
0.0000 Rosenbrok 0.0007 0.0009 0.3540 
0.0000 Schwefel 201.1314 171.9608 0.2430 
0.0000 Sphere 0.0000 0.0001 0.0170 
-78.3320 Styblinski -78.3323 -78.3307 0.0000 
0.0000 Zakharov 0.0001 0.0001 0.0110 
0.0000 Beale 0.0000 0.0001 0.0080 
0.0000 Booth 0.0001 0.0004 0.0050 
-2.0636 Cross In Tray -2.0626 -2.0586 0.0810 
-1.0000 Drop Wave -0.8708 -0.8939 0.3530 
-1.0000 Easom -0.0333 -0.1333 0.1680 
-959.6407 Egg Holder -719.0541 -777.8452 0.0950 
-19.2085 Holder Table -19.2081 -19.2077 0.1380 
0.0000 Matyas 0.0000 0.0005 0.2750 
0.0000 Schaffer 2 0.0023 0.0013 0.1400 
-186.7309 Shubert -178.8117 -167.4650 0.1680 

 
Table 7 shows results from the validation by 

repetition and t-test of the parametrization proposed 
scheme number III. The value in the t column 
corresponds to the p significance of the statistical 
test from the cost with default values vs. the value 
achieved with the scheme mentioned. 

 
Table 7. Validation by repetition in the scheme III. 

  Cost w/ Scheme 

III 

 

Optimal Function defaults Cost t 

0.0000 Ackley 9.3442 8.3033 0.237
0 -1.8013 Michaelwikc

z 
-1.8012 -1.7891 0.001

0 0.0000 Rastrigin 0.7107 0.7487 0.843
0 0.0000 Rosenbrok 0.0007 0.0363 0.000
0 0.0000 Schwefel 201.1314 191.4861 0.693
0 0.0000 Sphere 0.0000 0.0250 0.000
0 -78.3320 Styblinski -78.3323 -78.3307 0.020
0 0.0000 Zakharov 0.0001 0.0235 0.000
0 0.0000 Beale 0.0000 0.0071 0.000
0 0.0000 Booth 0.0001 0.0161 0.006
0 -2.0636 Cross In Tray -2.0626 -1.9844 0.000
0 -1.0000 Drop Wave -0.8708 -0.8301 0.168
0 -1.0000 Easom -0.0333 0.0000 0.326
0 -

959.6407 
Egg Holder -

719.0541 
-738.2348 0.584

0 -19.2085 Holder Table -19.2081 -19.1903 0.000
0 0.0000 Matyas 0.0000 0.1508 0.000
0 0.0000 Schaffer 2 0.0023 0.0073 0.000
0 -

186.7309 
Shubert -

178.8117 
-159.4473 0.050

0  
Table 8 shows results from the validation by 

repetition and t-test of the parametrization proposed 
scheme number IV. The value in the t column 
corresponds to the p significance of the statistical 
test from the cost with default values vs. the value 
achieved with the scheme mentioned. 

 
 
 
 
 
 
 
 
 

Table 8. Validation by repetition in the scheme IV. 
  Cost w/ Scheme 

IV 

 

Optimal Function defaults Cost t 

0.0000 Ackley 9.3442 9.5079 0.829
0 -1.8013 Michaelwikc

z 
-1.8012 -1.– 0.000

0 0.0000 Rastrigin 0.7107 0.6810 0.865
0 0.0000 Rosenbrok 0.0007 0.0011 0.153
0 0.0000 Schwefel 201.1314 184.9300 0.546
0 0.0000 Sphere 0.0000 0.0000 0.000
0 -78.3320 Styblinski -78.3323 -78.3323 0.637
0 0.0000 Zakharov 0.0001 0.0000 0.000
0 0.0000 Beale 0.0000 0.0000 0.020
0 0.0000 Booth 0.0001 0.0000 0.003
0 -2.0636 Cross In Tray -2.0626 -2.0626 0.682
0 -1.0000 Drop Wave -0.8708 -0.8681 0.920
0 -1.0000 Easom -0.0333 -0.0395 0.918
0 -

959.6407 
Egg Holder -

719.0541 
-767.3098 0.195

0 -19.2085 Holder Table -19.2081 -19.1103 0.327
0 0.0000 Matyas 0.0000 0.0001 0.122
0 0.0000 Schaffer 2 0.0023 0.0023 0.993
0 -

186.7309 
Shubert -

178.8117 
-159.7021 0.033

0  
The average results for the NFE and time values 

are calculated for the 30 runs on each of the four 
schemes.  

Table 9 shows the values for schemes I and II on 
each benchmark function. 

 
Table 9. Average results of the different schemes 
regarding the NFE variables and execution time. 

 Scheme I  Scheme II  

Function NFE time NFE time 

Ackley 55527.7 4860.7 31556.0 3270.5 
Michaelwikcz 40781.2 4406.9 38876.2 3967.6 

Rastrigin 41811.0 4540.4 28611.6 3273.9 
Rosenbrok 42265.7 4664.5 32620.5 3618.4 
Schwefel 56504.8 4155.0 41796.4 3414.1 
Sphere 41535.9 3330.1 42232.6 3428.6 

Styblinski 41545.8 3307.1 39536.2 3443.3 
Zakharov 43772.7 3561.1 41164.5 3497.8 

Beale 41089.8 3839.0 35473.4 3553.2 
Booth 47924.9 4277.0 40768.2 3878.8 

Cross In Tray 48067.7 4306.3 53430.4 4688.1 
Drop Wave 41860.6 3905.2 45815.9 4311.8 

Easom 56376.8 4742.3 57087.8 4945.9 
Egg Holder 56469.9 5403.0 41484.3 4075.8 

Holder Table 47909.8 4967.1 45461.4 4359.0 
Matyas 48012.7 4944.9 47669.3 4530.5 

Schaffer 2 47086.3 4844.4 28157.3 3075.7 
Shubert 41740.7 3412.9 28503.6 2617.2 

 
Table 10 shows schemes III and IV values on 

each benchmark function. 
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Table 10. Average results of the different schemes 
regarding the NFE variables and execution time. 

 Scheme  III  Scheme IV  
Function NFE time NFE time 

Ackley 28397.0 2642.3 34970.3 3378.5 
Michaelwikcz 27624.6 3258.6 37688.3 3982.1 

Rastrigin 28518.5 3399.1 29088.9 3284.6 
Rosenbrok 31482.9 3555.4 33113.6 3678.9 
Schwefel 38489.8 2882.3 42143.2 3058.0 
Sphere 30898.6 2607.4 37131.7 2695.0 

Styblinski 29133.1 2450.5 38598.5 2861.5 
Zakharov 34235.4 2752.8 43078.6 3141.3 

Beale 30177.7 2788.7 35717.8 3263.7 
Booth 35541.1 3108.8 38808.1 3424.3 

Cross In Tray 28032.6 2611.1 44224.6 3737.6 
Drop Wave 28062.0 2667.1 47192.7 4012.9 

Easom 28000.0 2563.6 50800.7 4254.3 
Egg Holder 38283.2 3848.3 41806.9 4239.0 

Holder Table 28787.8 3346.8 45688.5 4369.4 
Matyas 31181.9 3522.4 48440.2 4600.1 

Schaffer 2 28123.9 3317.0 27974.6 3082.4 
Shubert 28444.3 2424.9 28712.0 2186.1 

 

4.5   Box Diagrams 
Here are the box diagrams for the cases where the 
tuning changed the results (Figure 9). 
 

 
Fig. 9: Cases where the parametrization proposal 
improved the cost variable results in contrast with 
the default parametrization results in the 
independent runs group of 30 repetitions for the 
BFOA algorithm. 
 
 
5   Discussion 
Phase 1, developed in this study, allowed us to 
observe an overview of the behavior and 
performance of BFOA in the 18 benchmark 
functions described. From this phase, it was possible 
to make a performance comparison considering the 
variables NFE, time, and cost. As a next step of 
phase 1, additional tests were made with the 
algorithm considering a set of parameterization 
values in a benchmark function. This part of the 

process allowed us to observe a new panorama of 
performance concerning the multiplicity of values 
between the four parameters of attraction and 
repulsion in BFOA and proceed to phase 2, in which 
from the results obtained between the 18 benchmark 
functions and the observation of the results of 
parameter values on landscape graphs, four work 
schemes were integrated.  

With these schemes, more specific tests were 
carried out with the fact that 30 runs were again 
made for each benchmark function in each proposed 
scheme. 

This finding is consistent with the literature that 
the performance of an optimization algorithm 
depends on the problem to be attacked, as well as 
the parameter values and limits that direct the search 
for solutions. Likewise, as part of phase 2, t-tests 
were carried out to determine significant differences 
between sets of 30 runs of each benchmark function, 
being a set corresponding to the runs of the 
algorithm with the default values, in contrast to 
another independent set of runs made with the 
different values of the proposed schemes. This 
contrast was made by calculating the significance 
value of the t-test, with which it is possible to reject 
the null hypothesis that there is no significant 
difference between the mean of the independent 
samples. In this sense, Table 11 shows those cases 
in which a significant difference was found between 
said pair of sets of runs. Likewise, the values of 
significance p marked in bold for the corresponding 
cases are observed.  

 
Table 11. The p-value for each benchmark function 

where any scheme made a significant difference. 
Function Scheme 

I 

Scheme 

II 

Scheme 

III 

Scheme 

IV 

Michaelwikc
z 

0.001 0 0.001 0 

Rastrigin 0 0.217 0.843 0.865 
Rosenbrok 0.014 0.354 0 0.153 
Sphere 0.322 0.017 0 0 
Styblinski 0.004 0 0.02 0.637 
Zakharov 0.005 0.011 0 0 
Beale 0.006 0.008 0 0.02 
Booth 0 0.005 0.006 0.003 
Cross In Tray 0.026 0.081 0 0.682 
Drop Wave 0 0.353 0.168 0.92 
Holder Table 0.1 0.138 0 0.327 
Matyas 0 0.275 0 0.122 
Schaffer 2 0.742 0.14 0 0.993 
Shubert 0.616 0.168 0.05 0.033 

 
It is noteworthy in the case of benchmark 

functions in which no difference was found. As are 
the functions Ackley, Schwefel, Easom, and Egg 
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Holder. This finding might be due to the search 
space and the nature of the algorithm based on 
foraging bacteria. Finally, the box diagrams visually 
describe cases from the EggHolder, Zarackarov, and 
Rastrigin functions in which an improvement was 
found regardless of the statistic t-test. It is 
recommended to perform a more extensive test on 
the EggHolder function. 
 

 

6  Conclusion 
The results presented in this study conclude that the 
BFOA algorithm is susceptible to particular tuning 
according to the problem aimed to solve. The 
benchmark functions used for this experiment can 
be taken as a reference for future tunings. As a 
prospective study, the proposed schemes can be 
used as a reference. It is essential to notice that in 
terms of time and NFE, scheme III has remarkable 
results regarding the other three. In regards to the 
cost, by adding the absolute differences of the 
averages throughout the 18 benchmark functions 
from the optimal vs. the result of each scheme, 
results outstanding scheme II; however, to exploit 
the usefulness of this study, the results of the 
interest function must be considered (any of the 18 
presented) and in the light of the explored 
parametrization schemes. 

The limitations of this study are related to the 
parameter values explored. Only one of the four 
parameters was adjusted, while the other three 
remained on the default value. It is recommended to 
perform a more extensive test for the generated 
schemes in this work. In future directions, BFOA 
might be tested on schemes III and II, leaving 
behind benchmark functions to work on problems 
from a specific field. 
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