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Abstract: - We present a new iterative conjugate gradient technique for image processing. The technique is 
based on a new derivation of the conjugacy coefficient and develops a variant of the classical Fletcher-Reeves 
conjugate gradient method. The derivation exploits a quadratic function model. The new method is intended to 
minimize the presence of noise by utilizing the adaptive median filter (AMF) to reduce salt-and-pepper noise, 
while the adaptive center-weighted median filter (ACWMF) is used to reduce random-valued noise. The 
theoretical convergence properties of the method are proven and then tested on a basic set of images using 
MATLAB. The results show that the proposed algorithm is more efficient than the classical Fletcher-Reeves 
(FR) method, as measured by the signal-to-noise ratio (PSNR). The number of iterations and the number of 
function evaluations are also lower for the proposed method. The favorable performance of the new algorithm 
provides promise for deriving similar techniques that enhance the speed and efficiency of image-processing 
libraries. 
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1  Introduction 
Extensive research and practical applications have 
been devoted to the field of image restoration across 
various domains in scientific and engineering. This 
field focuses on the restoration of an image file from 
a degraded observation. For instance, pictures 
captured by telescopes and satellites often suffer 
from degradation caused by air turbulence. 
Moreover, images frequently encounter noise 
originating from environmental effects, transmission 
channels, and other associated elements throughout 
the processes of acquisition, resizing, and 
communication. Consequently, these factors 
adversely affect the image quality, resulting in 
distortion and loss of valuable information. 
Moreover, noise can have a detrimental impact on 
subsequent image-processing tasks, including image 
analysis, image tracking, and video processing. 

Therefore, image cleansing plays a pivotal role in 
contemporary image processing systems. 

The objective of image cleansing is to restore the 
original image quality by reducing the presence of 
noise in noisy images. Nevertheless, this task 
presents a challenge due to the difficulty in 
distinguishing between noise, edges, and textures, as 
these elements often possess high-frequency 
characteristics. Consequently, throughout the 
cleansing process, restored images may 
inadvertently lose certain significant details. In 
essence, the primary challenge faced by image 
processing systems lies in recovering relevant 
information from noisy images while effectively 
removing noise, ultimately leading to the generation 
of high-quality images. In certain scenarios, it 
becomes necessary to recover stellar images not 
necessarily observed directly within the Earth's 
atmosphere. The main objective of this research is 
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to devise a set of optimization methodologies that 
can effectively handle edge-preserving 
regularization (EPR) objective functions. 

When it comes to image processing methods, a 
comparative analysis reveals the distinct strengths 
and characteristics of various approaches, with 
conjugate gradient methods standing out in specific 
contexts. Classical methods, such as Fourier 
Transform-based techniques, excel in capturing 
global frequency information but may fall short 
when dealing with localized features. Meanwhile, 
wavelet-based methods offer a compromise by 
combining both global and local information, 
making them versatile for various applications. 
Machine learning-based approaches, particularly 
deep learning models like convolutional neural 
networks (CNNs), have gained immense popularity 
for their ability to learn complex hierarchical 
features directly from data, showcasing remarkable 
performance in tasks like image recognition. 
Conjugate gradient methods have proven their 
viability in image processing, especially when it 
comes to noise reduction. The conjugate gradient 
algorithm's ability to converge rapidly, particularly 
in cases of ill-conditioned systems, makes it well-
suited for large-scale optimization tasks in image 
processing. This iterative optimization technique 
ensures that each iteration provides a substantial 
reduction in the objective function, contributing to 
the overall enhancement of image quality. The 
methods can achieve robust and computationally 
efficient solutions, aligning with the demands of 
real-world applications where both accuracy and 
speed are paramount. 

To address impulse noise reduction, a recent 
advancement was made in the form of a two-phase 
technique described in, [1]. This technique utilizes 
the adaptive median filter (AMF) to mitigate salt-
and-pepper noise, while for random-valued noise, 
the adaptive method of center-weighted median 
filter (ACWMF) is employed. The ACWMF is 
further enhanced by implementing the variable 
window technique, which enhances its ability to 
detect and address severe damage in images, [1]. 
For this study, we exclusively focus on handling 
salt-and-pepper noise. 

 Let 𝑿 represent the actual picture and Α =
{1,2,3, . . . . . M} × {1,2,3, . . . . . N} represent the index 
set of 𝑿 and Ν ⊂ Α refer to the set of noisy pixel 
indices detected throughout the first phase. Also, let 
Pi,j denote the set of the four nearest neighbors at 
position (i, j) ∈ Α, yi,j. In addition, we use ui,j =

[ui,j](i,j)∈Ν
 to indicate a lexicographically organized 

column vector of length c, where 𝑐 represents the 

size of N. Therefore, the minimization of the 
following function will restore the noisy pixels: 

𝑓𝛼(𝑢) = ∑ [|𝑢𝑖,𝑗 − 𝑦𝑖,𝑗| +
𝛽

2
(2 × 𝑆𝑖,𝑗

1 +(𝑖,𝑗)∈𝛮

𝑆𝑖,𝑗
2 )] ,        (1) 

where 𝛽 is the regularization parameter,  
 𝑆𝑖,𝑗

1 = 2 ∑ 𝜙𝛼(𝑢𝑖,𝑗 − 𝑦𝑚,𝑛)(𝑚,𝑛)∈𝛲𝑖,𝑗∩𝛮𝑐  
and 

𝑆𝑖,𝑗
2 = ∑ 𝜙𝛼(𝑢𝑖,𝑗 − 𝑦𝑚,𝑛(𝑚,𝑛)∈𝛲𝑖,𝑗∩𝛮 ). 

 
Function (1) ensures the preservation of all the 

edges  ϕα = √α + x2, α > 0. Generally, impulsive 
noise can be described with this function. The 
slavish AMF introduced in, [3] is fundamentally 
based on minimizing (1). In practical applications, 
the non-smooth data-fitting term can be omitted 
since it is not necessary for the next phase, which 
specifically aims to recover only the poor-quality 
pixels after noise reduction. Consequently, various 
optimization strategies can be employed to 
minimize the following smooth EPR (such as, [2]): 

𝑓𝛼(𝑢) = ∑ [(2 × 𝑆𝑖,𝑗
1 + 𝑆𝑖,𝑗

2 )](𝑖,𝑗)∈𝛮 .             (2) 
 
Since the Conjugate Gradient (CG) methods 

have low storage requirements, they prove to be 
highly effective in tackling unconstrained 
minimization problems expressed as: 

𝑀𝑖𝑛 𝑓(𝑥)  ,  x ∈ 𝑅𝑛 ,                                       (3) 
 
(see, [3]). To solve (1), subsequent solution 
estimates are generated using 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘,                          (4) 
 
where the step length 𝛼𝑘 is traditionally 
approximated by performing a one-dimensional line 
search. The approximation suffices since finding the 
exact solution is time-consuming and may even be 
not possible to obtain. However, for quadratic 
functions, the step length  αk can be expressed 
exactly as, [4], [5], [6], [8] 

𝛼𝑘 =
−𝑔𝑘

𝑇𝑑𝑘

𝑑𝑘
𝑇𝑄𝑑𝑘

 .                                (5) 

For non-quadratic problems, αk is determined to 
guarantee that the computed search direction is 
sufficiently descent through enforcing the strong 
Wolfe conditions, [8] 

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘        (6a) 

and  
𝑑𝑘

𝑇𝑔(𝑥𝑘 + 𝛼𝑘𝑑𝑘) ≥ 𝜎 𝑑𝑘
𝑇𝑔𝑘,         (6b) 

where  0 < δ < σ < 1.  The search directions for 
CG methods are obtained using 

𝑑𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑠𝑘,                         (7) 
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where βk is taken as a conjugacy parameter. Both 

dk and dk+1 satisfy the condition for conjugacy  
𝑑𝑖

𝑇Qd𝑗 = 0,∀𝑖 ≠ j,  
for a symmetric matrix Q ∈ 𝑅𝑛×𝑛. 

Particularly intriguing are the global 
convergence characteristics of CG algorithms. 
According to, [9], the Fletcher and Reeves (FR) 
formula for βk has the best convergence results. On 
the other hand, the Hestenes-Stiefel (HS) method, a 
highly recognized CG technique, fails to meet the 
global convergence criterion under inexact line 
search, [10]. The two choices of βk are given, 
respectively, as: 

𝛽𝑘
𝐹𝑅 =

𝑔𝑘+1
𝑇 𝑔𝑘+1

𝑔𝑘
𝑇𝑔𝑘

 and 𝛽𝑘
𝐻𝑆 =

𝑦𝑘
𝑇𝑔𝑘+1

𝑑𝑘
𝑇𝑦𝑘

,                (8) 

where 𝑦𝑘 = 𝑔𝑘+1 − 𝑔𝑘. An attractive property of 
the Hestenes-Stiefel formula is the fact that it 
satisfies the conjugacy criteria. 

  Numerous alternative approaches have been 
investigated to upgrade the numerical behavior of 
CG methods, considering their advantageous storage 
demands (refer to, [11], [12], [13], [14], for further 
details). A wide range of problems can be addressed 
with CG methods, including machine learning, 
mechanics, nonlinear and differential equations, and 
many others. Furthermore, an additional potential 
domain for their application lies within Human 
Performance Technology (HPT). HPT heavily relies 
on the numerical Performance Improvement (PI) 
attributes of computer systems, which are facilitated 
by specialized algorithms enabling logical 
assessments, [15]. An empirical study found that 
CG methods improve the performance and 
efficiency of mobile users and help them adopt 
mobile Electronic Performance Support Systems 
(EPSS), [16].  

One useful approach that has proven viability in 
improving the performance of the CG methods, is 
based on the incorporation of the quasi-Newton idea 
in developing better converging CG methods, [7]. 
This is achieved by rewriting (7) as 

−𝑄𝑘+1
−1 𝑔𝑘+1 = −𝑔𝑘+1 + 𝛽𝑘𝑠𝑘,        (9) 

 
where 𝑄𝑘+1 is the Hessian matrix of the function 
being minimized, [13]. 

  Distinguishing itself from conventional CG 
algorithms, the aforementioned approach exhibits a 
distinctive quality of consistently generating 
improved downhill directions while adhering to the 
conjugacy properties, as demonstrated by the 
reported outcomes. Subsequently, in the subsequent 
section, a quadratic model is utilized to derive novel 
conjugacy parameters 𝛽𝑘, leading to the 
development of a new CG algorithm. 

 

2  Deriving the New Parameter 
The key idea of the derivation of the new CG 
parameter is the utilization of a classical quadratic 
model given by 
 𝑓(𝑢) = 𝑓(𝑢𝑘+1) + 𝑔𝑘+1

𝑇 (𝑢 − 𝑢𝑘+1) +
1

2
(𝑢 −

𝑢𝑘+1)𝑇𝐴(𝑢𝑘)(𝑢 − 𝑢𝑘+1),                          (10) 
 
where Q is the constant Hessian of the quadratic 
function. The gradient of the model is expressed as 
 

𝑔𝑘+1 = 𝑔𝑘 + 𝑄(𝑢𝑘)𝑠𝑘 ,                              (11) 
for 𝑠𝑘 =  𝑢𝑘+1 − 𝑢𝑘.  
   From (10) and (11), the second-order curvature is 
given by 

𝑠𝑘
𝑇𝑄(𝑢𝑘)𝑠𝑘 = 2(𝑓𝑘 − 𝑓𝑘+1) + 2𝑔𝑘+1

𝑇 𝑠𝑘,      (12)                             
 
or, equivalently,  

𝑠𝑘
𝑇𝑄(𝑢𝑘)𝑠𝑘 = 2(𝑓𝑘 − 𝑓𝑘+1) + 2𝑦𝑘

𝑇𝑠𝑘 + 2𝑔𝑘
𝑇𝑠𝑘,   (13) 

 
Equation (13) leads to the following matrix 
definition 

𝑄(𝑢𝑘) =
2(𝑓𝑘−𝑓𝑘+1)+2𝑦𝑘

𝑇𝑠𝑘+2𝑔𝑘
𝑇𝑠𝑘

𝑠𝑘
𝑇𝑠𝑘

𝐼𝑛  ,        (14)                                                         

where 𝐼𝑛 is the n by n Identity matrix. Substituting 
(14) in (9) yields a new conjugacy parameter as 
follows: 

𝛽𝑘
𝐵𝐵𝐷 = (1 −

𝑠𝑘
𝑇𝑠𝑘

2(𝑓𝑘−𝑓𝑘+1)+2𝑦𝑘
𝑇𝑠𝑘+2𝑔𝑘

𝑇𝑠𝑘
)

𝑔𝑘+1
𝑇 𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

,   (15)                                                 

 
The algorithmic framework is given next. 
 
BBD Algorithm: 
i) Start with the initial solution point, 𝑥1 ∈ 𝑅𝑛. Set 
𝑘 = 1 and 𝑑1 = −𝑔1.  If  ‖𝑔1‖ ≤ 10−6,  then 
terminate. 
ii)  Find 𝛼𝑘 > 0 that satisfies conditions (6). 
iii) Calculate 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘 and the 
corresponding gradient 𝑔𝑘+1 = 𝑔(𝑥𝑘+1). If  
‖𝑔𝑘+1‖ ≤ 10−6, then halt.  
iv) Calculate 𝛽𝑘 using (15) and construct 𝑑𝑘+1 from 
(7). 
v) 𝑘 = 𝑘 + 1 and go to (ii). 
 
 

3  Convergence Analysis  
To ensure the global convergence of the BBD 
algorithm on uniformly convex problems, it is 
necessary to rely on the following assumptions. 
 
 i. The level set 𝛺 = {𝑥 ∈ 𝑅𝑛/𝑓(𝑥) ≤ 𝑓(𝑥1)} is 
bounded.  
 ii. There exists a constant L > 0 such that the 
gradient g of the objective function is Lipschitz 
continuous in some neighborhood 𝛬 of 𝛺, such that 
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‖𝑔(𝜊) − 𝑔(𝜏)‖ ≤ 𝐿 ‖𝑜 − 𝜏‖, ∀𝜏, 𝜊 ∈ 𝛬     (16) 
(see, [14], for more details).  
In this particular situation, there is a stable 𝛤 ≥ 0 
such that, provided that certain function 
assumptions are met, ‖𝛻𝑓(𝑥)‖ ≤ 𝛤. 
 

Theorem 1. 

      If 𝑠𝑘
𝑇𝑦𝑘 ≠ 0, the search directions given by (7), 

using (15), are descent directions. 
Proof. We have 𝑔0

𝑇𝑑0 = −‖𝑔0‖2 < 0 since 𝑑0 =
−𝑔0,. Consider 𝑑𝑘

𝑇𝑔𝑘 ≤ 0 to be true. Multiplying 
(6) by 𝑔𝑘+1 results in 
𝑑𝑘+1

𝑇 𝑔𝑘+1  −  𝑔𝑘+1
𝑇 𝑔𝑘+1 + (1 −

𝑠𝑘
𝑇𝑠𝑘

2(𝑓𝑘−𝑓𝑘+1)+2𝑦𝑘
𝑇𝑠𝑘+2𝑔𝑘

𝑇𝑠𝑘
)    𝑦𝑘

𝑇𝑔𝑘+1

𝑠𝑘
𝑇𝑦𝑘

 𝑠𝑘
𝑇𝑔𝑘+1.    

 
(17) 

Let 𝜛𝑘𝑠𝑘
𝑇𝑦𝑘 = 𝑠𝑘

𝑇𝑦𝑘(2(𝑓𝑘 − 𝑓𝑘+1) + 2𝑦𝑘
𝑇𝑠𝑘 +

2𝑔𝑘
𝑇𝑠𝑘), then it is easy to show that 

𝑑𝑘+1
𝑇 𝑔𝑘+1 =  − ‖𝑔𝑘+1‖2 + (

𝜛𝑘𝑠𝑘
𝑇𝑦𝑘−𝑠𝑘

𝑇𝑠𝑘

𝜛𝑘𝑠𝑘
𝑇𝑦𝑘

)   
𝑦𝑘

𝑇𝑔𝑘+1

𝑠𝑘
𝑇𝑦𝑘

 𝑠𝑘
𝑇𝑔𝑘+1.                                                        

(18) 
   Now using the Lipschitz condition leads 
to 𝑦𝑘

𝑇𝑔𝑘+1 ≤ 𝐿𝑠𝑘
𝑇𝑔𝑘+1 and 𝑠𝑘

𝑇𝑦𝑘  ≤   𝐿  𝑠𝑘
𝑇𝑠𝑘. Thus, 

it can be deduced that 
 
𝑑𝑘+1

𝑇 𝑔𝑘+1 ≤ −‖𝑔𝑘+1‖2 +  (
𝜛𝑘𝐿𝑠𝑘

𝑇𝑠𝑘−𝑠𝑘
𝑇𝑠𝑘

𝜛𝑘𝑠𝑘
𝑇𝑦𝑘

)   𝐿(𝑠𝑘
𝑇𝑔𝑘+1)2

𝑠𝑘
𝑇𝑦𝑘

 . 
(19) 

(19) 

Because L and 𝛼𝑘
2 are very small, it is clear that: 

                       𝑑𝑘+1
𝑇 𝑔𝑘+1 ≤ 0.                     (20) (20) 

The proof is established.           
  
     For any conjugate gradient approach, employing 
the strong Wolfe conditions (6), the general 
convergence results in, [15], apply and are stated in 
Lemma 1 below. 
 
Lemma 1. 
If assumptions (i) and (ii) are true, then for any 
conjugate gradient method using 𝑑𝑘+1 = −𝑔𝑘+1 +
𝛽𝑘𝑑𝑘, for αk selected to satisfy the strong Wolfe 
conditions (6) the following applies: 
If 

 ∑
1

‖𝑑𝑘+1‖2 = ∞𝑘>1  ,  (21) 

then  

                        

𝑙𝑖𝑚
𝑘→∞

(𝑖𝑛𝑓‖𝑔𝑘+1‖) = 0.   
(22) 

The same results were used in  [13], [15], [16], [17], 
[18]. 
   We now utilize the results in Lemma 1 to prove 
the same for our method. 
 

Theorem 2.  

If a constant μ > 0 exists such that it satisfies, for 
any 𝑘: 

  

(𝛻𝑓(𝑢) − 𝛻𝑓(𝑤))𝑇(𝑢 − 𝑤) ≥ 𝜇‖𝑢 − 𝑤‖2, 
∀𝑢, 𝑤 ∈ 𝑅𝑛,    

                               (23) 
 

then by Lemma 1, the following holds: 
𝑙𝑖𝑚
𝑘→∞

(𝑖𝑛𝑓‖𝑔𝑘+1‖) = 0.  
(24) 

Proof. It is clear from (12) that: 
‖𝑑𝑘+1‖ = ‖𝑔𝑘+1‖ +

|(1 − 𝜔)
𝑔𝑘+1

𝑇 𝑦𝑘

𝑠𝑘
𝑇𝑦𝑘

| ‖𝑠𝑘‖,                       (25) 

where 𝜔 = 𝑠𝑘
𝑇𝑠𝑘/𝑠𝑘

𝑇𝑦𝑘. Using Cauchy's inequality: 
 
 ‖𝑑𝑘+1‖ ≤ ‖𝑔𝑘+1‖ + |(1 −

𝜔)|
‖𝑔𝑘+1‖‖𝑦𝑘‖

‖𝑠𝑘‖‖𝑦𝑘‖
‖𝑠𝑘‖ ≤ (2 −

𝜔)‖𝑔𝑘+1‖. 
            (26) 

 
Therefore, ‖𝛻𝑓(𝑥)‖ ≤ 𝛤 implies that: 
 

∑
1

‖𝑑𝑘‖2

𝑘≥1

− (
1

2 − 𝜔
)

1

𝛤
∑ 1

𝑘≥1

= ∞. 
(27) 

 
It follows that 𝑙𝑖𝑚

𝑘→∞
𝑖𝑛𝑓‖𝑔𝑘‖ = 0 using Lemma 1.  

 
 

4  Numerical Results 
We evaluate the new algorithm's performance in the 
context of reducing salt-and-pepper impulse noise 
(3). The test images utilized in this evaluation are 
presented in Table 1. Additionally, Table 1 provides 
the numerical results obtained from comparing the 
classical CG FR method with the newly derived 
algorithm. The comparison is based on parameters 
that include the number of function/gradient 
evaluations, count of iterations, and Peak signal-to-
noise ratio (PSNR), [2], [19], [20]. We use 
MATLAB 2015a for all simulations. This study 
focuses on developing an efficient and fast way to 
reduce carbon emissions in (3). We use the PSNR 
value, [21], [22], to assess the corrected images' 
pixel quality: 

 
   𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10

2552

1

𝑀𝑁
∑ (𝑢𝑖,𝑗

𝑟 −𝑢𝑖,𝑗
∗ )2

𝑖,𝑗
 ,         (28)                                                                  
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where 𝑢𝑖,𝑗
𝑟  and 𝑢𝑖,𝑗

∗  refer to the pixel values of the 
denoised and initial images, respectively. The 
termination conditions for both procedures are as 
follows: 

|𝑓(𝑢𝑘) − 𝑓(𝑢𝑘−1)|

|𝑓(𝑢𝑘)|
≤ 10−4 

and 
‖𝑓(𝑢𝑘)‖ ≤ 10−4(1 + |𝑓(𝑢𝑘)|).     (29) 

 
Figure 1, Figure 2, Figure 3, and Figure 4 

showcase the outcomes achieved by implementing 
the algorithms on noisy images. Specifically, the 

first image in Figures 1, 2, 3, and 4 depicts the 
images corrupted with 70% salt-and-pepper noise. 
The results obtained from the FR method are 
represented in the second image of each figure. The 
third image in Figure 1, Figure 2, Figure 3, and 
Figure 4 exhibits the outcomes of the BBD method. 
The proposed BBD image correction method is 
demonstrated to be effective and efficient evidenced 
by the visual representations. 

 

 
 

Table 1. Numerical results of FR and BBD algorithms 
Image Noise level r (%) 

FR-Method BBD-Method 

NI NF PSNR (dB) NI NF PSNR (dB) 
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31.80 
28.14 

c512 
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24.3 

41 
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                    Fig. 1: Demonstrates the results of algorithms FR and BBD of  256 * 256 Lena image 
 

 

   

   

   

                     Fig. 2: Demonstrates the results of algorithms FR and BBD of  256 * 256 house images. 
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Fig. 3:  Demonstrates the results of algorithms FR and BBD of  256 * 256 Elaine image 
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Fig. 4: Demonstrates the results of algorithms FR and BBD of 256 * 256 Cameraman image. 

 
 
5   Conclusion 
In this paper, the primary objective was to develop 
innovative and modified conjugate gradient 
formulae that supersede the performance of the 
conventional Fletcher-Reeves conjugate gradient 
(FR) approach, specifically in the context of picture 
restoration. Through a comprehensive analysis, the 
experimental results validate the global convergence 
of the proposed novel techniques, particularly when 
subjected to the strong Wolfe line search conditions. 
The application of the Wolfe conditions ensures 
both sufficient decrease and curvature conditions in 
the optimization process. The convergence analysis 
reveals that, even in the presence of complex, ill-
conditioned systems inherent in image processing 
tasks, the proposed method consistently converges 
globally. The experimental results consistently 
demonstrate that the newly introduced algorithm, 
referred to as BBD, consistently achieves 
remarkable reductions in iteration counts and 
function evaluations. Remarkably, these efficiency 
improvements are achieved without compromising 
the quality of picture restoration.   Further research 
may focus on looking at other possibilities that 
utilize more of the quasi-Newton methods within 
CG algorithms, such as the ones proposed in, [23]. 
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