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Abstract: - Learning a new programming language is challenging for essentially the entirety of our population 
that decides to try and pick up said skill even those who have previously learned another language find it very 
difficult. This study investigates the difficulties students face when learning "for" loops in the Python 
programming language. The research utilizes an eye-tracking device to analyze pupil dilation and blinking rates 
as participants attempt to solve Python code problems involving "for" loops. The study includes four different 
code scenarios, each with varying degrees of complexity, including nested "for" loops. The results show that a 
significant portion of the participants struggled with the tasks, achieving a low average success rate of 
approximately 28%. Consistent variations in pupil dilation and blinking patterns were observed, indicating high 
stress levels and potential confusion. The data revealed specific areas of the code where students commonly 
struggled, particularly with nested “for” loops and the “print()” function. Eye-tracking data revealed consistent 
variations in pupil dilation and blinking patterns, indicating high stress levels among participants. Teachers 
should be aware of the identified areas of confusion and design teaching strategies that address them directly. 
Leveraging eye-tracking data to inform the development of interactive programming exercises or tools that 
provide more effective visual representations of code concepts can significantly improve student understanding. 
Therefore, the paper ends with some incipient teaching recommendations and future research directions. 
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1   Introduction 
Learning programming is a complex problem in the 
varied contexts in which it is taught for the first 
time and for different reasons, [1], [2], [3]. Students 
in highly digital courses such as Communication, 
Design, and Multimedia have a lot of contact with 
programming and also face challenges with some 

programming languages, such as C or Python, [4], 
[5], on an almost daily basis. Among the diverse 
problems students face in programming learning for 
the first time, difficulty with ”for” loops is a 
common problem, [6], [7]. This difficulty is 
twofold: the syntax part of the loop – or, in other 
words, the functional and written aspect – and the 
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semantic part, which makes it reach the intended 
result. 

The research presented in this paper will only 
cover the Python language and the ability to analyze 
and interpret ”for” loops. The use of ”for” loops is 
indispensable for creating complex, functional 
programs, and as such, finding ways to understand 
why people find it difficult is crucial to finding 
better teaching methods for the language. 

This research is carried out using a GazePoint 
eye-tracker, which collects data on pupil dilation 
and the number of blinks per minute. The device’s 
software transmits a video with the study protocol 
(Figure 5), displaying four different Python codes, 
specifically containing ”for” loops. Two codes have 
only one loop, and the other two have a chained 
loop (a loop within another), sometimes nicknamed 
“for for”. By collecting this data, it is possible to 
analyze the lines of code and alternatives that the 
participants looked at for the longest time, as well 
as the blinkings, which is a strong indication of the 
comfort of the participant’s eyes, as well as how 
tired or bored they are. Many blinks far below or far 
above the average can indicate tiredness, 
discomfort, and drowsiness. Through this analysis, 
it is possible to identify the parts of the ”for” loop in 
which the participant experiences the most 
difficulty. 

The rest of the paper is organized as follows. 
Section 2 describes the methodology, section 3 
contains the research questions, section 4 contains 
the analysis of results, and section 5 contains the 
conclusions and some considerations for further 
work. 
 
 
2   Methodology 
 

2.1  Conditions of the Study 
For the study analysis, 30 different versions of the 
same protocol were created, Table 1, each with the 
four ”for” loops organized in different, random 
ways without repetition to prevent participants from 
exchanging answers with each other. In this way, 
each participant had a specific order for each loop 
codification, which guaranteed greater fidelity in the 
sample of results. It is worth saying that the 
environment in which this experiment was carried 
out was highly controlled at both auditory and 
visual levels, avoiding distractions. In each 
protocol, four ”for” loops were presented, each with 
four response options, which participants had to 
observe and say out loud the option they thought 
was correct (Figure 1, Figure 2, Figure 3 and Figure 
4). These same protocols were displayed and 

presented to the participants, who sat in front of the 
screen. At the same time, their gaze was tracked by 
the GazePoint eye-tracker. The main equipment 
required is an eye tracker, which can be mounted on 
a computer monitor. The eye-tracker device used 
for the study was the Gazepoint GP3 HD and the 
software provided by the same company in version 
6.11.0 (August 31, 2023) running on a notebook 
with Windows 11 operating system connected to an 
external monitor to run the tests. The system uses a 
light source - usually infrared- for greater precision 
- aimed at the user’s eyes. A camera tracks the 
reflection of the light and the movement of the 
eye’s visible features, such as pupil dilatation. 
Through this process, we can access different data 
and metrics about the user being studied, including: 

• Gaze direction; 
• Number of fixations; 
• Moment of the first fixation; 
• Flashing rate; 
• Blinking; 
• Pupil dilation. 
This data will be connected to user reactions. 

For example, the pupil's diameter corresponds to the 
user’s concentration level, allowing us to analyze 
said reactions and mindsets. On the other hand, 
blinking allows us to identify whether what the user 
sees is causing tiredness or lack of interest. This 
data collection form is much more realistic because 
we can confidently gauge the user’s reaction. In 
contrast, if they were to report their experience, it 
could be influenced and thus bias the results of the 
sample and, consequently, the study. 
 
2.2  Data Collection 
A total of thirty tests were carried out on university 
students, with 30 different individuals, 11 of whom 
were male and 19 female. The participants’ ages 
ranged from 18 to 28, and they were all students at 
the Superior School of Education of Polytechnic 
University of Coimbra. Each participant was called 
in turn in the laboratory. Before collecting data from 
each user, the eye-tracker was calibrated to keep the 
results as accurate as possible. The participant sits 
in front of the screen so that the eye tracker 
recognizes both eyes, and the calibration starts. A 
white dot appears in the center of the black screen, 
and the participant must follow it with their eyes as 
it moves to the edges of the screen. If the calibration 
is done correctly, data can then be collected. If not, 
the process is repeated until both eyes are correctly 
calibrated. After the calibration, the codification 
experiment begins, presenting the four codifications 
(Figure 1, Figure 2, Figure 3 and Figure 4) and the 
respective possible answers. After completing the 
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test, users were asked about their main 
struggles and tips for improving the protocol, in 
which the user listed various characteristics that 
helped them understand the weak and strong points 
of the test. The codifications used in the protocol 
are listed in (Figure 1, Figure 2, Figure 3 and Figure 
4). 
 

 
Fig. 1: Codification A 
 

 
Fig. 2: Codification B 
 

 
Fig. 3: Codification C 
 

 
Fig. 4: Codification D 
 

The procedure in which the Protocol proceeded 
is represented in Fig. 5. 

 

 
Fig. 5: Protocol Procedure 
 

The order in which each condition was 
presented to each participant was different for each 
subject, as illustrated in Table 1. 

 
Table 1. Randomization Table 

Participant Order of 

questions 

Participant Order of 

questions 

P1 B, D, A, C P16 C, D, B, A 
P2 C, A, D, B P17 D, C, A, B 
P3 D, B, C, A P18 A, D, C, B 
P4 A, C, B, D P19 C, A, B, D 
P5 C, D, A, B P20 B, C, D, A 
P6 A, B, D, C P21 A, B, D, C 
P7 D, A, C, B P22 D, A, B, C 
P8 B, C, A, D P23 C, B, A, D 
P9 D, C, B, A P24 A, C, D, B 
P10 A, B, C, D P25 B, A, C, D 
P11 B, D, C, A P26 D, C, A, B 
P12 C, A, B, D P27 A, D, B, C 
P13 D, B, A, C P28 C, B, D, A 
P14 A, C, B, D P29 B, A, D, C 
P15 B, A, D, C P30 D, C, B, A 
 
 
3   Research Questions 
This paper describes an experiment concerning 
students' primary problem when starting 
programming: the difficulty of using “for” loops in 
a programming language like Python. As such, we 
used some tests to obtain the gaze data necessary to 
identify which factors affect a user’s capacity for 
code interpretation. 

Several studies use eye tracking to study models 
of attention and decision-making in several 
situations and activities [8], [9]. In [10], the authors, 
besides concluding that eye-tracking software can 
directly inform the software tools and developers—
letting them know which areas to change and 
clarify—it was also concluded that experts spend 
more time viewing complex statements and “jump 
around” more often, knowing exactly where to 
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gather information for certain aspects. At the same 
time, novices get easily distracted by comments and 
clumsily glance everywhere as they are not sure 
how the code itself works. This type of study can 
give meaningful insights to help students with 
difficulties. For instance, perhaps the code used 
should not include comments so as not to distract 
less experienced users from the central issue of the 
code. Additionally, the code should be made as 
simple as possible for this exact purpose. 

This paper shall tackle three main questions that 
we plan to answer by the end: 

1. Is it possible to predict the correctness of a 
multiple-choice answer based on the eye movement 
data? 

• The movement data will be analyzed and 
compared to how accurate the answers are, taking 
into consideration the levels of proficiency of each 
user. According to this, it might be possible to 
identify patterns within correct answers. 

• However, it is expected to simply predict 
the user’s confidence, not precisely the correctness. 

2. How does the complexity of a Python 
question influence the eye’s behavior? 

• Using “for” and nested “for” loops, it will 
be possible to test users' gaze when faced with 
differently composed code questions to see if their 
reactions change according to the complexity of the 
questions. 

• It is expected that more complex questions 
will cause less experienced users to take more time 
analyzing the code before moving on to the 
answers, while more experienced users might have 
no trouble. 

3. Can eye-tracking data identify areas in 
Python code that are commonly misunderstood or 
misinterpreted? 

• As eye-tracking can detect confusion via 
constant revisits to the same areas, we might 
identify misunderstood areas that can later be fixed 
and polished. 

• It is possible to expect that, yes, eye-
tracking data might be able to identify areas that are 
commonly misunderstood. 

Within this experience, there have been fifteen 
users who have reported not having any kind of 
experience in Python coding. On the remaining 
fifteen, however, it is possible to predict that the 
varying levels of Python programming proficiency 
that they said to have (from two to four, on a Likert 
scale of 5 points) will influence their eye movement 
patterns, as well as the complexity of the questions 
and how they interact with them. These results are 
assumed to later be used to predict how confident 
someone is in getting the correct answer to the 

questions, as well as help identify the areas in the 
code that might need alterations due to being 
commonly misunderstood. 

 
 

4   Analysis 
Before the analysis was started, there were defined 
”average” ranges for eye dilation (left and right eye) 
and the number of blinks per minute. These 
”standard” ranges were defined based on previous 
research on the subjects, [11], [12], [13], [14]: 

• The human pupil is normally 2-4 mm in 
size. 

• Human eyes usually blink on average 
between 14 and 17 times per minute. 

Any deviation from these standards must be 
considered and analyzed to arrive at a more accurate 
result, taking into account the participant's context. 
For example, pupil dilation is not altered by light, as 
all the participants carried out the data collection in 
the same laboratory, with the same screen and 
lighting adjusted to this purpose. 

In this study, three metrics were analyzed: LPD 
- Left Pupil Dilation, which represents the diameter 
of the pupil of the left eye in pixels; RPD - Right 
Pupil Dilation, which represents the diameter of the 
pupil of the right eye in pixels; and BKPMIN - 
Blinking Per Minute, which represents the number 
of blinking during 60 seconds (1 minute). 
 
4.1  Codification A 
Codification A consisted of just three lines of code, 
including a "for" statement and producing; as a 
result, the printing of a set of numbers in ascending 
order. 
Although the correct answer was option A, the most 
answered option was C. Of all 30 participants, only 
nine answered correctly, making for a 30% success 
rate. In this condition, it can be seen that there was 
more significant pupil dilation in rows 2 and 3 
compared to the first row. There was a lower 
blinking in the second row of code. Moving on to 
the answering options, both the pupils and the 
blinking level decreased in the most answered 
alternative, C. According to previous research, we 
can draw some interpretations from these 
deviations. The increase in pupil dilatation 
throughout the reading may indicate stress caused 
by the complexity of the code to be interpreted, 
while their decrease indicates greater focus. Less 
blinking indicates more attention/concentration 
needed for more complex instructions. These results 
are depicted in Figure 6, Figure 7, Figure 8, Figure 
9, Figure 10 and Figure 11. 
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Fig. 6: LPD lines 
 

 
Fig. 7: RPD lines 
  

 

 
Fig. 8: BKPMIN lines 
 

 

 
Fig. 9: LPD Options 
 

 
Fig. 10: RPD Options 

 
Fig.11: BKPMIN Options 

 
 
4.2  Codification B 
Codification B also consisted of just three lines of 
code, including a "for" statement but producing, as 
a result, the printing of a set of numbers in 
descending order. Although the correct answer was 
option A, most students answered option D. Of all 
30 participants, only seven answered correctly, 
making for a success rate of roughly 23%. In this 
condition, it can be seen that the pupils of both eyes 
remained evenly dilated and constant along the lines 
of code; meanwhile, blinking increased in lines 2 
and 3. Moving on to the answering options, pupil 
diameter decreased considerably in the most 
answered option, while blinking also decreased. A 
balanced pupil diameter can imply a lack of focus 
or understanding of the code to be interpreted, a 
sign of ”giving up” on understanding. Its increase in 
the most answered alternative is again associated 
with focus and trying to understand it. The increase 
in blinking in lines 2 and 3 can be interpreted as 
eyestrain and difficulty focusing. At the same time, 
the decrease in the options is a sign that the 
participants have focused on them, especially the 
most chosen ones. It is possible to observe that, 
although similar, this condition had fewer correct 
answers than the previous condition, which may 
mean that participants are having more difficulty 
interpreting codes that result in decreasing 
sequences. These results are depicted in Figure 12, 
Figure 13, Figure 14, Figure 15, Figure  16 and 
Figure 17. 
 

 
Fig. 12: LPD lines 
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Fig. 13: RPD lines 
  

 
Fig. 14: BKPMIN lines 
 

 
Fig. 15: LPD Options 
 

 

 
Fig. 16: RPD Options 
 

 

 
Fig. 17: BKPMIN Options 
 
4.3  Codification C 
Codification C consisted of five lines of code, 
including a chained "for" statement and producing, 

as a result, the printing of a set of numbers in 
ascending order. The correct answer to this 
condition is option A, which was also the one most 
answered by the participants. Of the 30, 11 chose 
option A, with a success rate of about 37%. The 
diameter of the pupils of both eyes remained stable 
along most of the lines, except line four, which is a 
challenging ”print()” function in which the diameter 
increased. Blinking increased on the first line and 
gradually decreased along the lines. Contrary to our 
expectations, blinking decreased more in option B, 
the second most answered option. The increased 
blinking in the first line could explain the 
participant’s ”shock” at seeing that it is a more 
complex code than the previous two. However, the 
stress decreases throughout the reading, and the 
participant stabilizes and focuses more. This could 
explain the decrease in blinking. These results are 
depicted in figures Figure 18, Figure 19, Figure 20, 
Figure 21, Figure  22 and Figure 23. 
 

 
Fig. 18: LPD lines 
 

 
Fig. 19: RPD lines 
  

 
Fig. 20: BKPMIN lines 
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Fig. 21: LPD Options 
  

 
Fig. 22: RPD Options 
  

 
Fig. 23: BKPMIN Options 
 
4.4  Codification D 
Codification D also consisted of five lines of code, 
including a chained "for" statement but producing, 
as a result, the printing of a set of numbers in 
descending order. The correct answer to this 
condition is option A, but the one most answered by 
the participants was option C. Of all the 
participants, only 7 got it right – along with 
condition B, this was the question with the most 
errors, with a success rate of about 23%. On the first 
line and last lines, it can be seen that the diameter 
has a more significant variation, and it decreased 
considerably throughout the other lines of code. The 
blinking remained stable throughout the lines of 
code and answering options, increasing slightly in 
options C and D. The increase in pupil diameter 
throughout the reading of the condition shows that 
the participants had significant levels of stress with 
the interpretation of the code and the stable blinking 
may signal a high cognitive load, but little result 
due to a lack of knowledge. Although the 
participants answered alternative C most, they 
focused more on D, indicating indecision about 
which alternative to choose. These results are 

depicted in Figure 24, Figure 25, Figure 26, Figure 
27, Figure  28 and Figure 29. 

 

 
Fig. 24: LPD lines 
  

 
Fig. 25: RPD lines 
  

 
Fig. 26: BKPMIN lines 
 

 
Fig. 27: LPD Options 
 

 
Fig. 28: RPD Options 
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Fig. 29: BKPMIN Options 
 
4.5  Post-Experiment Feedback 
The results indicate that most of the participants 
had great difficulty responding to the questions, 
with a considerably low success rate at an average 
of only about 28%. The success rates by task type 
were 30% for Codification A, 23% for 
Codifications B and D, and 37% for Codification 
C. Additionally, there were constant variations in 
dilation and blinking, meaning that the participants 
were experiencing high-stress levels. With a post-
study questionnaire, participants answered whether 
they had any difficulties and what they were. The 
most frequently cited struggle was not knowing or 
being confused with the syntax of the Python 
language, as reported by half of the participants 
(although all of them had already had some kind of 
contact with programming). Other struggles 
included difficulties with chained ”for” loops, 
difficulties with ”for” loops in general, and 
difficulties with loops that have decreasing results. 
Three participants claimed not to experience any 
difficulties. With these results, it will be possible to 
answer the three initial hypotheses. Concerning the 
first question, “Is it possible to predict the 
correctness of a multiple-choice answer based on 
the eye movement data?” the analyzed data enabled 
us to recognize the answering options on which the 
participants concentrated most, even if not the 
chosen option. Although it was impossible to 
predict the correct answer option, it is possible to 
know how confident the participant was in their 
response through their levels of stress and focus, 
analyzed through blinking and dilatation. 
Regarding the second question, “How does the 
complexity of a Python question influence the 
eye’s behavior?, the questions considered more 
”complex” were those that had a chained loop, 
which were question C and question D. Despite 
being more complex, condition C received the most 
correct answers, while D received the fewest (tying 
with B). The main difference between the two 
questions was the sequence of their results - C 
presents the results in ascending order, while D 
presents them in descending order. In the most 

correct question, it is possible to notice less pupil 
dilation, which demonstrates greater concentration 
and understanding, while in the less correct 
question, there is a considerable increase in 
dilation. Therefore, the more complex the code, the 
higher the stress levels and the greater the pupil 
dilation.  

Finally, and considering the hypothesis “Can 
eye-tracking data be used to identify areas in 
Python code that are commonly misunderstood or 
misinterpreted?”, we consider that the eye-tracker 
can, in fact, identify the areas of the code where 
participants gaze and fixate the most. Even though 
this data was collected, it was not explored in this 
study. The data analyzed only included the dilation 
of the right and left eyes and the number of blinks 
per minute. Although this data was not enough to 
identify the areas that are least understood, it was 
enough to identify the lines with higher rates of 
stress or tiredness. 
 
4.6  Additional Considerations 
To determine the difficulty levels of the code 
samples, we used a combination of structural 
complexity, participant performance, behavioral 
markers (pupil dilation and blink rate), and 
feedback. By the combination of all these factors, 
single "for" loops were rated as simpler than nested 
"for" loops. For programming tasks, single "for" 
loops typically present a lower difficulty due to 
their linear nature, while nested loops increase the 
difficulty by requiring additional layers of control 
flow to be managed simultaneously. This additional 
processing places greater demands, especially for 
novice learners lacking the structured knowledge to 
interpret complex constructs like nested loops 
efficiently. 

The study's eye-tracking data provides 
evidence of this increased difficulty in more 
complex tasks. Heightened pupil dilation and 
reduced blinking rates observed during nested or 
descending loop codifications suggest higher stress 
and concentration levels, indicating that 
participants were nearing their cognitive processing 
limits. Complexity also increased with tasks 
requiring more challenging outputs, such as 
descending sequences. Eye-tracking data (notably 
pupil dilation and blink rates) showed higher stress 
and focus on specific lines in the more complex 
codifications, reinforcing these assessments. Lower 
success rates and longer completion times on 
nested loops (especially Codification D) further 
indicated higher difficulty levels. Participant 
feedback also confirmed that nested structures and 
descending outputs were particularly challenging. 
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These aspects together provided a well-rounded 
basis for categorizing code samples by difficulty. 
 

4.7  Teaching Recommendations 
We consider the findings in this study could give 
some suggestions on teaching strategies. For 
example, since the data suggest high stress during 
complex nested loops (Codification D), practical 
solutions, like dedicating more time to nested loop 
exercises or simplifying initial tasks to prevent 
overwhelm could be followed. With the difficulty 
of understanding "for" loops highlighted, 
curriculum changes or teaching techniques, such as 
visual aids, more gradual progression from simple 
to complex loops, or integrating eye-tracking data 
to create adaptive learning systems that detect and 
respond to student stress in real-time could also be 
used and integrated into the teaching practices. 

Therefore, we consider potential broader 
applications of eye-tracking for programming 
education. For example, tracking eye behavior 
could allow educators to detect problem areas in 
other programming topics, like recursion or array 
handling, enhancing pedagogical approaches across 
different programming concepts. It can mainly be 
used to identify common misconceptions by 
explicitly stating the areas of the code that were 
consistently misunderstood by participants, as 
indicated by eye-tracking data. Based on the 
identified misconceptions, concrete teaching 
strategies that could be implemented to address 
those issues could be studied and proposed. For 
example, teachers could emphasize the importance 
of breaking down nested loops into smaller, more 
manageable steps, or integrate visual aids and 
animations to improve students' understanding of 
some concepts and structures. 
 
 
5   Conclusions and Future Work 
This study analyzed students’ difficulties with the 
”for” loops of the Python language using an eye-
tracker. The results indicate that a large proportion 
of students do experience difficulties when 
interpreting the loops for various reasons. The main 
difficulty pointed out is the language itself, going 
beyond the loop. Some students’ lack of sufficient 
knowledge of the language’s syntax could lead to 
inconclusive results. Among those who knew the 
syntax, the lack of practice and the difficulty of the 
codifications themselves were also problems 
pointed out by the participants. These results 
contribute to understanding the origin of this 
difficulty and reflecting on solutions. In this sense, 

it is essential to understand the reasons for the 
student's difficulties with the code in order to come 
up with new teaching strategies. In this case, the 
study was done with ”for” loops, which are basic 
instructions in any programming language. From 
the data analyzed, it can be seen that the ”for” loop 
causes high levels of stress in the participants, 
causing complications when it comes to their 
answers. This may, however, come from the lack of 
experience that many of the subjects demonstrated 
and reported, often coming from flaws in the 
teaching methods on such topics. However, we 
recognize the study’s limitations. This is because 
all kinds of students were involved, aged between 
16 and 28, and some didn’t have a solid 
programming background. However, we found that 
everyone had the minimum knowledge to 
participate in the study in an intellectually honest 
way. This is an important subject and further 
research on the subject is strongly recommended in 
order to achieve a more effective way of teaching 
and educating about programming and, in 
particular, Python - as it is one of the most versatile 
programming languages used worldwide.  

In conclusion, teaching practices can have 
some flaws that lead to minor errors on the part of 
students or even a general lack of knowledge of 
programming. In this sense, there is an urgent need 
to adopt new teaching strategies to make learning 
more efficient and effective. Frequent revision of 
basic programming concepts before moving on to 
more advanced conditions, the application of these 
concepts in exercises carried out in the classroom, 
and the appropriate monitoring by the teacher are 
fundamental for greater understanding and better 
results. With these changes, a new generation of 
programmers will be created who are much better 
trained and prepared for the evolution of 
technology. 

Since this experiment opens up horizons for 
many more successors, it encourages the repetition 
of this experiment with a larger population and 
greater diversity, tests using other styles of 
alternative protocols and the inclusion of other 
Python concepts, or even other languages (C, C++, 
JavaScript...), enabling to compare the difficulties 
demonstrated by the participants observed. 
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