
Repeated Measures Study within Subjects with Randomizations

(Python Codes)

ANA RITA TEIXEIRA1,2, SÓNIA BRITO-COSTA1,3, ANABELA GOMES3,4

1InED - Center for Research and Innovation in Education,
Polytechnic of Porto,

Rua Dr. Roberto Frias, 712, 4200-465 Porto,
PORTUGAL

2Porto Institute of Engineering (ISEP),

Polytechnic of Porto,
Rua Dr. António Bernardino de Almeida, 431, 42249-015 Porto,

PORTUGAL

3Polytechnic University of Coimbra,
Rua da Misericórdia, Lagar dos Cortiços, S. Martinho do Bispo, 3045-093 Coimbra,

PORTUGAL

4Centre for Informatics and Systems (CISUC),
University of Coimbra,

Polo II, Pinhal de Marrocos, 3030-290 Coimbra,
PORTUGAL

Abstract: - Learning a new programming language is challenging for essentially the entirety of our population
that decides to try and pick up said skill even those who have previously learned another language find it very
difficult. This study investigates the difficulties students face when learning "for" loops in the Python
programming language. The research utilizes an eye-tracking device to analyze pupil dilation and blinking rates
as participants attempt to solve Python code problems involving "for" loops. The study includes four different
code scenarios, each with varying degrees of complexity, including nested "for" loops. The results show that a
significant portion of the participants struggled with the tasks, achieving a low average success rate of
approximately 28%. Consistent variations in pupil dilation and blinking patterns were observed, indicating high
stress levels and potential confusion. The data revealed specific areas of the code where students commonly
struggled, particularly with nested “for” loops and the “print()” function. Eye-tracking data revealed consistent
variations in pupil dilation and blinking patterns, indicating high stress levels among participants. Teachers
should be aware of the identified areas of confusion and design teaching strategies that address them directly.
Leveraging eye-tracking data to inform the development of interactive programming exercises or tools that
provide more effective visual representations of code concepts can significantly improve student understanding.
Therefore, the paper ends with some incipient teaching recommendations and future research directions.

Key-Words: - Computer Science, Difficulties, Eye Tracker, “For” Loop, Introductory programming, Python,

“For” Loop.

Received: March 29, 2024. Revised: October 4, 2024. Accepted: November 16, 2024. Available online: December 21, 2024.

1 Introduction
Learning programming is a complex problem in the
varied contexts in which it is taught for the first
time and for different reasons, [1], [2], [3]. Students
in highly digital courses such as Communication,
Design, and Multimedia have a lot of contact with
programming and also face challenges with some

programming languages, such as C or Python, [4],
[5], on an almost daily basis. Among the diverse
problems students face in programming learning for
the first time, difficulty with ”for” loops is a
common problem, [6], [7]. This difficulty is
twofold: the syntax part of the loop – or, in other
words, the functional and written aspect – and the

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.10 Ana Rita Teixeira, Sónia Brito-Costa, Anabela Gomes

E-ISSN: 2415-1521 92 Volume 13, 2025

semantic part, which makes it reach the intended
result.

The research presented in this paper will only
cover the Python language and the ability to analyze
and interpret ”for” loops. The use of ”for” loops is
indispensable for creating complex, functional
programs, and as such, finding ways to understand
why people find it difficult is crucial to finding
better teaching methods for the language.

This research is carried out using a GazePoint
eye-tracker, which collects data on pupil dilation
and the number of blinks per minute. The device’s
software transmits a video with the study protocol
(Figure 5), displaying four different Python codes,
specifically containing ”for” loops. Two codes have
only one loop, and the other two have a chained
loop (a loop within another), sometimes nicknamed
“for for”. By collecting this data, it is possible to
analyze the lines of code and alternatives that the
participants looked at for the longest time, as well
as the blinkings, which is a strong indication of the
comfort of the participant’s eyes, as well as how
tired or bored they are. Many blinks far below or far
above the average can indicate tiredness,
discomfort, and drowsiness. Through this analysis,
it is possible to identify the parts of the ”for” loop in
which the participant experiences the most
difficulty.

The rest of the paper is organized as follows.
Section 2 describes the methodology, section 3
contains the research questions, section 4 contains
the analysis of results, and section 5 contains the
conclusions and some considerations for further
work.

2 Methodology

2.1 Conditions of the Study
For the study analysis, 30 different versions of the
same protocol were created, Table 1, each with the
four ”for” loops organized in different, random
ways without repetition to prevent participants from
exchanging answers with each other. In this way,
each participant had a specific order for each loop
codification, which guaranteed greater fidelity in the
sample of results. It is worth saying that the
environment in which this experiment was carried
out was highly controlled at both auditory and
visual levels, avoiding distractions. In each
protocol, four ”for” loops were presented, each with
four response options, which participants had to
observe and say out loud the option they thought
was correct (Figure 1, Figure 2, Figure 3 and Figure
4). These same protocols were displayed and

presented to the participants, who sat in front of the
screen. At the same time, their gaze was tracked by
the GazePoint eye-tracker. The main equipment
required is an eye tracker, which can be mounted on
a computer monitor. The eye-tracker device used
for the study was the Gazepoint GP3 HD and the
software provided by the same company in version
6.11.0 (August 31, 2023) running on a notebook
with Windows 11 operating system connected to an
external monitor to run the tests. The system uses a
light source - usually infrared- for greater precision
- aimed at the user’s eyes. A camera tracks the
reflection of the light and the movement of the
eye’s visible features, such as pupil dilatation.
Through this process, we can access different data
and metrics about the user being studied, including:

• Gaze direction;
• Number of fixations;
• Moment of the first fixation;
• Flashing rate;
• Blinking;
• Pupil dilation.
This data will be connected to user reactions.

For example, the pupil's diameter corresponds to the
user’s concentration level, allowing us to analyze
said reactions and mindsets. On the other hand,
blinking allows us to identify whether what the user
sees is causing tiredness or lack of interest. This
data collection form is much more realistic because
we can confidently gauge the user’s reaction. In
contrast, if they were to report their experience, it
could be influenced and thus bias the results of the
sample and, consequently, the study.

2.2 Data Collection
A total of thirty tests were carried out on university
students, with 30 different individuals, 11 of whom
were male and 19 female. The participants’ ages
ranged from 18 to 28, and they were all students at
the Superior School of Education of Polytechnic
University of Coimbra. Each participant was called
in turn in the laboratory. Before collecting data from
each user, the eye-tracker was calibrated to keep the
results as accurate as possible. The participant sits
in front of the screen so that the eye tracker
recognizes both eyes, and the calibration starts. A
white dot appears in the center of the black screen,
and the participant must follow it with their eyes as
it moves to the edges of the screen. If the calibration
is done correctly, data can then be collected. If not,
the process is repeated until both eyes are correctly
calibrated. After the calibration, the codification
experiment begins, presenting the four codifications
(Figure 1, Figure 2, Figure 3 and Figure 4) and the
respective possible answers. After completing the

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.10 Ana Rita Teixeira, Sónia Brito-Costa, Anabela Gomes

E-ISSN: 2415-1521 93 Volume 13, 2025

test, users were asked about their main
struggles and tips for improving the protocol, in
which the user listed various characteristics that
helped them understand the weak and strong points
of the test. The codifications used in the protocol
are listed in (Figure 1, Figure 2, Figure 3 and Figure
4).

Fig. 1: Codification A

Fig. 2: Codification B

Fig. 3: Codification C

Fig. 4: Codification D

The procedure in which the Protocol proceeded
is represented in Fig. 5.

Fig. 5: Protocol Procedure

The order in which each condition was
presented to each participant was different for each
subject, as illustrated in Table 1.

Table 1. Randomization Table

Participant Order of

questions

Participant Order of

questions

P1 B, D, A, C P16 C, D, B, A
P2 C, A, D, B P17 D, C, A, B
P3 D, B, C, A P18 A, D, C, B
P4 A, C, B, D P19 C, A, B, D
P5 C, D, A, B P20 B, C, D, A
P6 A, B, D, C P21 A, B, D, C
P7 D, A, C, B P22 D, A, B, C
P8 B, C, A, D P23 C, B, A, D
P9 D, C, B, A P24 A, C, D, B
P10 A, B, C, D P25 B, A, C, D
P11 B, D, C, A P26 D, C, A, B
P12 C, A, B, D P27 A, D, B, C
P13 D, B, A, C P28 C, B, D, A
P14 A, C, B, D P29 B, A, D, C
P15 B, A, D, C P30 D, C, B, A

3 Research Questions
This paper describes an experiment concerning
students' primary problem when starting
programming: the difficulty of using “for” loops in
a programming language like Python. As such, we
used some tests to obtain the gaze data necessary to
identify which factors affect a user’s capacity for
code interpretation.

Several studies use eye tracking to study models
of attention and decision-making in several
situations and activities [8], [9]. In [10], the authors,
besides concluding that eye-tracking software can
directly inform the software tools and developers—
letting them know which areas to change and
clarify—it was also concluded that experts spend
more time viewing complex statements and “jump
around” more often, knowing exactly where to

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.10 Ana Rita Teixeira, Sónia Brito-Costa, Anabela Gomes

E-ISSN: 2415-1521 94 Volume 13, 2025

gather information for certain aspects. At the same
time, novices get easily distracted by comments and
clumsily glance everywhere as they are not sure
how the code itself works. This type of study can
give meaningful insights to help students with
difficulties. For instance, perhaps the code used
should not include comments so as not to distract
less experienced users from the central issue of the
code. Additionally, the code should be made as
simple as possible for this exact purpose.

This paper shall tackle three main questions that
we plan to answer by the end:

1. Is it possible to predict the correctness of a
multiple-choice answer based on the eye movement
data?

• The movement data will be analyzed and
compared to how accurate the answers are, taking
into consideration the levels of proficiency of each
user. According to this, it might be possible to
identify patterns within correct answers.

• However, it is expected to simply predict
the user’s confidence, not precisely the correctness.

2. How does the complexity of a Python
question influence the eye’s behavior?

• Using “for” and nested “for” loops, it will
be possible to test users' gaze when faced with
differently composed code questions to see if their
reactions change according to the complexity of the
questions.

• It is expected that more complex questions
will cause less experienced users to take more time
analyzing the code before moving on to the
answers, while more experienced users might have
no trouble.

3. Can eye-tracking data identify areas in
Python code that are commonly misunderstood or
misinterpreted?

• As eye-tracking can detect confusion via
constant revisits to the same areas, we might
identify misunderstood areas that can later be fixed
and polished.

• It is possible to expect that, yes, eye-
tracking data might be able to identify areas that are
commonly misunderstood.

Within this experience, there have been fifteen
users who have reported not having any kind of
experience in Python coding. On the remaining
fifteen, however, it is possible to predict that the
varying levels of Python programming proficiency
that they said to have (from two to four, on a Likert
scale of 5 points) will influence their eye movement
patterns, as well as the complexity of the questions
and how they interact with them. These results are
assumed to later be used to predict how confident
someone is in getting the correct answer to the

questions, as well as help identify the areas in the
code that might need alterations due to being
commonly misunderstood.

4 Analysis
Before the analysis was started, there were defined
”average” ranges for eye dilation (left and right eye)
and the number of blinks per minute. These
”standard” ranges were defined based on previous
research on the subjects, [11], [12], [13], [14]:

• The human pupil is normally 2-4 mm in
size.

• Human eyes usually blink on average
between 14 and 17 times per minute.

Any deviation from these standards must be
considered and analyzed to arrive at a more accurate
result, taking into account the participant's context.
For example, pupil dilation is not altered by light, as
all the participants carried out the data collection in
the same laboratory, with the same screen and
lighting adjusted to this purpose.

In this study, three metrics were analyzed: LPD
- Left Pupil Dilation, which represents the diameter
of the pupil of the left eye in pixels; RPD - Right
Pupil Dilation, which represents the diameter of the
pupil of the right eye in pixels; and BKPMIN -
Blinking Per Minute, which represents the number
of blinking during 60 seconds (1 minute).

4.1 Codification A
Codification A consisted of just three lines of code,
including a "for" statement and producing; as a
result, the printing of a set of numbers in ascending
order.
Although the correct answer was option A, the most
answered option was C. Of all 30 participants, only
nine answered correctly, making for a 30% success
rate. In this condition, it can be seen that there was
more significant pupil dilation in rows 2 and 3
compared to the first row. There was a lower
blinking in the second row of code. Moving on to
the answering options, both the pupils and the
blinking level decreased in the most answered
alternative, C. According to previous research, we
can draw some interpretations from these
deviations. The increase in pupil dilatation
throughout the reading may indicate stress caused
by the complexity of the code to be interpreted,
while their decrease indicates greater focus. Less
blinking indicates more attention/concentration
needed for more complex instructions. These results
are depicted in Figure 6, Figure 7, Figure 8, Figure
9, Figure 10 and Figure 11.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.10 Ana Rita Teixeira, Sónia Brito-Costa, Anabela Gomes

E-ISSN: 2415-1521 95 Volume 13, 2025

Fig. 6: LPD lines

Fig. 7: RPD lines

Fig. 8: BKPMIN lines

Fig. 9: LPD Options

Fig. 10: RPD Options

Fig.11: BKPMIN Options

4.2 Codification B
Codification B also consisted of just three lines of
code, including a "for" statement but producing, as
a result, the printing of a set of numbers in
descending order. Although the correct answer was
option A, most students answered option D. Of all
30 participants, only seven answered correctly,
making for a success rate of roughly 23%. In this
condition, it can be seen that the pupils of both eyes
remained evenly dilated and constant along the lines
of code; meanwhile, blinking increased in lines 2
and 3. Moving on to the answering options, pupil
diameter decreased considerably in the most
answered option, while blinking also decreased. A
balanced pupil diameter can imply a lack of focus
or understanding of the code to be interpreted, a
sign of ”giving up” on understanding. Its increase in
the most answered alternative is again associated
with focus and trying to understand it. The increase
in blinking in lines 2 and 3 can be interpreted as
eyestrain and difficulty focusing. At the same time,
the decrease in the options is a sign that the
participants have focused on them, especially the
most chosen ones. It is possible to observe that,
although similar, this condition had fewer correct
answers than the previous condition, which may
mean that participants are having more difficulty
interpreting codes that result in decreasing
sequences. These results are depicted in Figure 12,
Figure 13, Figure 14, Figure 15, Figure 16 and
Figure 17.

Fig. 12: LPD lines

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.10 Ana Rita Teixeira, Sónia Brito-Costa, Anabela Gomes

E-ISSN: 2415-1521 96 Volume 13, 2025

Fig. 13: RPD lines

Fig. 14: BKPMIN lines

Fig. 15: LPD Options

Fig. 16: RPD Options

Fig. 17: BKPMIN Options

4.3 Codification C
Codification C consisted of five lines of code,
including a chained "for" statement and producing,

as a result, the printing of a set of numbers in
ascending order. The correct answer to this
condition is option A, which was also the one most
answered by the participants. Of the 30, 11 chose
option A, with a success rate of about 37%. The
diameter of the pupils of both eyes remained stable
along most of the lines, except line four, which is a
challenging ”print()” function in which the diameter
increased. Blinking increased on the first line and
gradually decreased along the lines. Contrary to our
expectations, blinking decreased more in option B,
the second most answered option. The increased
blinking in the first line could explain the
participant’s ”shock” at seeing that it is a more
complex code than the previous two. However, the
stress decreases throughout the reading, and the
participant stabilizes and focuses more. This could
explain the decrease in blinking. These results are
depicted in figures Figure 18, Figure 19, Figure 20,
Figure 21, Figure 22 and Figure 23.

Fig. 18: LPD lines

Fig. 19: RPD lines

Fig. 20: BKPMIN lines

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.10 Ana Rita Teixeira, Sónia Brito-Costa, Anabela Gomes

E-ISSN: 2415-1521 97 Volume 13, 2025

Fig. 21: LPD Options

Fig. 22: RPD Options

Fig. 23: BKPMIN Options

4.4 Codification D
Codification D also consisted of five lines of code,
including a chained "for" statement but producing,
as a result, the printing of a set of numbers in
descending order. The correct answer to this
condition is option A, but the one most answered by
the participants was option C. Of all the
participants, only 7 got it right – along with
condition B, this was the question with the most
errors, with a success rate of about 23%. On the first
line and last lines, it can be seen that the diameter
has a more significant variation, and it decreased
considerably throughout the other lines of code. The
blinking remained stable throughout the lines of
code and answering options, increasing slightly in
options C and D. The increase in pupil diameter
throughout the reading of the condition shows that
the participants had significant levels of stress with
the interpretation of the code and the stable blinking
may signal a high cognitive load, but little result
due to a lack of knowledge. Although the
participants answered alternative C most, they
focused more on D, indicating indecision about
which alternative to choose. These results are

depicted in Figure 24, Figure 25, Figure 26, Figure
27, Figure 28 and Figure 29.

Fig. 24: LPD lines

Fig. 25: RPD lines

Fig. 26: BKPMIN lines

Fig. 27: LPD Options

Fig. 28: RPD Options

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.10 Ana Rita Teixeira, Sónia Brito-Costa, Anabela Gomes

E-ISSN: 2415-1521 98 Volume 13, 2025

Fig. 29: BKPMIN Options

4.5 Post-Experiment Feedback
The results indicate that most of the participants
had great difficulty responding to the questions,
with a considerably low success rate at an average
of only about 28%. The success rates by task type
were 30% for Codification A, 23% for
Codifications B and D, and 37% for Codification
C. Additionally, there were constant variations in
dilation and blinking, meaning that the participants
were experiencing high-stress levels. With a post-
study questionnaire, participants answered whether
they had any difficulties and what they were. The
most frequently cited struggle was not knowing or
being confused with the syntax of the Python
language, as reported by half of the participants
(although all of them had already had some kind of
contact with programming). Other struggles
included difficulties with chained ”for” loops,
difficulties with ”for” loops in general, and
difficulties with loops that have decreasing results.
Three participants claimed not to experience any
difficulties. With these results, it will be possible to
answer the three initial hypotheses. Concerning the
first question, “Is it possible to predict the
correctness of a multiple-choice answer based on
the eye movement data?” the analyzed data enabled
us to recognize the answering options on which the
participants concentrated most, even if not the
chosen option. Although it was impossible to
predict the correct answer option, it is possible to
know how confident the participant was in their
response through their levels of stress and focus,
analyzed through blinking and dilatation.
Regarding the second question, “How does the
complexity of a Python question influence the
eye’s behavior?, the questions considered more
”complex” were those that had a chained loop,
which were question C and question D. Despite
being more complex, condition C received the most
correct answers, while D received the fewest (tying
with B). The main difference between the two
questions was the sequence of their results - C
presents the results in ascending order, while D
presents them in descending order. In the most

correct question, it is possible to notice less pupil
dilation, which demonstrates greater concentration
and understanding, while in the less correct
question, there is a considerable increase in
dilation. Therefore, the more complex the code, the
higher the stress levels and the greater the pupil
dilation.

Finally, and considering the hypothesis “Can
eye-tracking data be used to identify areas in
Python code that are commonly misunderstood or
misinterpreted?”, we consider that the eye-tracker
can, in fact, identify the areas of the code where
participants gaze and fixate the most. Even though
this data was collected, it was not explored in this
study. The data analyzed only included the dilation
of the right and left eyes and the number of blinks
per minute. Although this data was not enough to
identify the areas that are least understood, it was
enough to identify the lines with higher rates of
stress or tiredness.

4.6 Additional Considerations
To determine the difficulty levels of the code
samples, we used a combination of structural
complexity, participant performance, behavioral
markers (pupil dilation and blink rate), and
feedback. By the combination of all these factors,
single "for" loops were rated as simpler than nested
"for" loops. For programming tasks, single "for"
loops typically present a lower difficulty due to
their linear nature, while nested loops increase the
difficulty by requiring additional layers of control
flow to be managed simultaneously. This additional
processing places greater demands, especially for
novice learners lacking the structured knowledge to
interpret complex constructs like nested loops
efficiently.

The study's eye-tracking data provides
evidence of this increased difficulty in more
complex tasks. Heightened pupil dilation and
reduced blinking rates observed during nested or
descending loop codifications suggest higher stress
and concentration levels, indicating that
participants were nearing their cognitive processing
limits. Complexity also increased with tasks
requiring more challenging outputs, such as
descending sequences. Eye-tracking data (notably
pupil dilation and blink rates) showed higher stress
and focus on specific lines in the more complex
codifications, reinforcing these assessments. Lower
success rates and longer completion times on
nested loops (especially Codification D) further
indicated higher difficulty levels. Participant
feedback also confirmed that nested structures and
descending outputs were particularly challenging.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.10 Ana Rita Teixeira, Sónia Brito-Costa, Anabela Gomes

E-ISSN: 2415-1521 99 Volume 13, 2025

These aspects together provided a well-rounded
basis for categorizing code samples by difficulty.

4.7 Teaching Recommendations
We consider the findings in this study could give
some suggestions on teaching strategies. For
example, since the data suggest high stress during
complex nested loops (Codification D), practical
solutions, like dedicating more time to nested loop
exercises or simplifying initial tasks to prevent
overwhelm could be followed. With the difficulty
of understanding "for" loops highlighted,
curriculum changes or teaching techniques, such as
visual aids, more gradual progression from simple
to complex loops, or integrating eye-tracking data
to create adaptive learning systems that detect and
respond to student stress in real-time could also be
used and integrated into the teaching practices.

Therefore, we consider potential broader
applications of eye-tracking for programming
education. For example, tracking eye behavior
could allow educators to detect problem areas in
other programming topics, like recursion or array
handling, enhancing pedagogical approaches across
different programming concepts. It can mainly be
used to identify common misconceptions by
explicitly stating the areas of the code that were
consistently misunderstood by participants, as
indicated by eye-tracking data. Based on the
identified misconceptions, concrete teaching
strategies that could be implemented to address
those issues could be studied and proposed. For
example, teachers could emphasize the importance
of breaking down nested loops into smaller, more
manageable steps, or integrate visual aids and
animations to improve students' understanding of
some concepts and structures.

5 Conclusions and Future Work
This study analyzed students’ difficulties with the
”for” loops of the Python language using an eye-
tracker. The results indicate that a large proportion
of students do experience difficulties when
interpreting the loops for various reasons. The main
difficulty pointed out is the language itself, going
beyond the loop. Some students’ lack of sufficient
knowledge of the language’s syntax could lead to
inconclusive results. Among those who knew the
syntax, the lack of practice and the difficulty of the
codifications themselves were also problems
pointed out by the participants. These results
contribute to understanding the origin of this
difficulty and reflecting on solutions. In this sense,

it is essential to understand the reasons for the
student's difficulties with the code in order to come
up with new teaching strategies. In this case, the
study was done with ”for” loops, which are basic
instructions in any programming language. From
the data analyzed, it can be seen that the ”for” loop
causes high levels of stress in the participants,
causing complications when it comes to their
answers. This may, however, come from the lack of
experience that many of the subjects demonstrated
and reported, often coming from flaws in the
teaching methods on such topics. However, we
recognize the study’s limitations. This is because
all kinds of students were involved, aged between
16 and 28, and some didn’t have a solid
programming background. However, we found that
everyone had the minimum knowledge to
participate in the study in an intellectually honest
way. This is an important subject and further
research on the subject is strongly recommended in
order to achieve a more effective way of teaching
and educating about programming and, in
particular, Python - as it is one of the most versatile
programming languages used worldwide.

In conclusion, teaching practices can have
some flaws that lead to minor errors on the part of
students or even a general lack of knowledge of
programming. In this sense, there is an urgent need
to adopt new teaching strategies to make learning
more efficient and effective. Frequent revision of
basic programming concepts before moving on to
more advanced conditions, the application of these
concepts in exercises carried out in the classroom,
and the appropriate monitoring by the teacher are
fundamental for greater understanding and better
results. With these changes, a new generation of
programmers will be created who are much better
trained and prepared for the evolution of
technology.

Since this experiment opens up horizons for
many more successors, it encourages the repetition
of this experiment with a larger population and
greater diversity, tests using other styles of
alternative protocols and the inclusion of other
Python concepts, or even other languages (C, C++,
JavaScript...), enabling to compare the difficulties
demonstrated by the participants observed.

Acknowledgment:
The authors would like to thank all the students who
participated in the experiments.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.10 Ana Rita Teixeira, Sónia Brito-Costa, Anabela Gomes

E-ISSN: 2415-1521 100 Volume 13, 2025

Declaration of Generative AI and AI-assisted

Technologies in the Writing Process

During the preparation of this work, the authors didn´t
use any AI service/tool and take full responsibility for the
content of the publication.

References:
[1] C. S. Cheah. Factors contributing to the

difficulties in teaching and learning of
computer programming: A literature review.
Contemporary Educational Technology, vol.
12, no. 2, ep272, 2020.
https://doi.org/10.30935/cedtech/8247.

[2] Yizhou Qian and James Lehman, Students’
misconceptions and other difficulties in
introductory programming. ACM

Transactions on Computing Education, vol.
18, no 1, 1–24, October 2017.
https://doi.org/10.1145/3077618.

[3] Prather, Raymond Pettit, Kayla McMurry,
Alani Peters, John Homer, and Maxine
Cohen. Metacognitive difficulties faced by
novice programmers in automated
assessment tools. In Conference on

International Computing Education

Research, Espoo, Finland, pages 41–50.
ACM, August 2018.

[4] Kadar, R., Mahlan, S. B., Shamsuddin, M.,
Othman, J. & Wahab, N. A. (2022). Analysis
of Factors Contributing to the Difficulties in
Learning Computer Programming among
Non-Computer Science Students. In
Proceedings of the IEEE 12th Symposium on

Computer Applications & Industrial

Electronics (ISCAIE), pp. 89-94, Penang
Island, Malaysia. DOI:
10.1109/ISCAIE54458.2022.9794546.

[5] Kohn, Tobias. Teaching Python
programming to novices: Addressing
misconceptions and creating a development
environment. ETH Zurich, 2017. I. Cetin,
“Students’ understanding of loops and nested
loops in computer programming: An APOS
theory perspective,” Canadian Journal of

Science, Mathematics and Technology

Education, vol. 15, pp. 155-170, 2015.
https://doi.org/10.3929/ethz-a-010871088.

[6] Gomes, A., Wei, K., Lam, C.-T., Teixeira,
A., Correia, F., Marcelino, M. J. and Mendes,
A. J. (2019). Understanding Loops a Visual
Methodology. In Proceedings of IEEE

International Conference on Teaching,

Assessment and Learning for Engineering

(TALE), Yogyakarta, Indonesia, Dezembro,

2019. DOI:
10.1109/TALE48000.2019.9225951.

[7] Chinedu Wilfred Okonkwo, Abejide Ade-
Ibijola. Synthesis of nested loop exercises for
practice in introductory programming.
Egyptian Informatics Journal, vol. 24, no. 2,
2023, pp. 191-203,
https://doi.org/10.1016/j.eij.2023.03.001.

[8] Pedro, Madeira. Using eye-tracking data to

study models of attention and decision-

making. Master theses in Biomedical
Engineering, Universidade Nova de Lisboa,
2021.

[9] Jose Francisco. Development of an eye-

tracker for a HMD. Master theses in
Sciences, Universidade de Coimbra, 2017.

[10] Sharif, B., Shaffer, T. (2015). The Use of
Eye Tracking in Software Development. In:
Schmorrow, D.D., Fidopiastis, C.M. (eds)
Foundations of Augmented Cognition. AC
2015. Lecture Notes in Computer Science(),
vol 9183. Springer, Cham. DOI:
https://doi.org/10.1007/978-3-319-20816-
9_77.

[11] Spector RH. The Pupils. In: Walker HK, Hall
WD, Hurst JW, editors. Clinical Methods:
The History, Physical, and Laboratory
Examinations. 3rd edition. Boston:
Butterworths; 1990. Chapter 58, [Online].
https://www.ncbi.nlm.nih.gov/books/NBK38
1/ (Aaccessed Date: November 1, 2024).

[12] Layzer Yavin L, Shechter A, Rubinsten O.
Mathematical and Negative Information Are
Similarly Processed: Pupil Dilation as an
Indicator. J Intell. 2022 Oct 3;10(4):79. DOI:
10.3390/jintelligence10040079.

[13] van der Wel, P., van Steenbergen, H. Pupil
dilation as an index of effort in cognitive
control tasks: A review. Psychon Bull Rev.,
25, 2005–2015 (2018).
https://doi.org/10.3758/s13423-018-1432-y.

[14] Paprocki R, Lenskiy A. What Does Eye-
Blink Rate Variability Dynamics Tell Us
About Cognitive Performance? Front Hum

Neurosci., 2017 Dec 19;11:620.
doi:10.3389/fnhum.2017.00620.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.10 Ana Rita Teixeira, Sónia Brito-Costa, Anabela Gomes

E-ISSN: 2415-1521 101 Volume 13, 2025

https://doi.org/10.30935/cedtech/8247
https://doi.org/10.1145/3077618
https://doi.org/10.3929/ethz-a-010871088
https://doi.org/10.1016/j.eij.2023.03.001
https://doi.org/10.1007/978-3-319-20816-9_77
https://doi.org/10.1007/978-3-319-20816-9_77
https://www.ncbi.nlm.nih.gov/books/NBK381/
https://www.ncbi.nlm.nih.gov/books/NBK381/
https://doi.org/10.3758/s13423-018-1432-y

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed to the present
research at all stages, from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received to conduct this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.e
n_US

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.10 Ana Rita Teixeira, Sónia Brito-Costa, Anabela Gomes

E-ISSN: 2415-1521 102 Volume 13, 2025

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

