

Software Implementation of Genetic Algorithm for Optimization of

Cargo Placement in the Conditions of limited Warehouse Space

NATALIA MAMEDOVA1, YULIA KHIZHNYAKOVA2

1Basic Department of Digital Economy,
Plekhanov Russian University of Economics,

36, Stremyanny Lane, Moscow, 117997,
RUSSIA

2Development Department,

LAS LLC,
14k1, Murmansk passage, Moscow, 129075,

RUSSIA

Abstract: - In this paper, we propose a software implementation to solve the mathematical problem of
optimal placement of cargo units on the territory of a multimodal transport and logistics center. Warehouse
management in intermodal and multimodal transportation is complicated by the problem of selecting an
assortment of cargo in conditions of limited storage space. The solution to this problem should be
mathematically correct, automatizable, and scalable, since different types of warehouses and different
transport systems are concentrated in the territory of multimodal transport and logistics centers. We propose
to apply the genetic algorithm as a mathematical apparatus for solving the above problem and a ready-made
software implementation for the optimal placement of cargo units. The algorithm determines the optimal
subset of cargo units that can be placed in the warehouse taking into account the weight and value priority
constraints of the selected cargo units.

Key-Words: - Programming, genetic algorithm, warehouse management system, multimodal transport and

logistics center, functional requirements.

Received: May 14, 2024. Revised: December 11, 2024. Accepted: January 16, 2025. Published: April 2, 2025.

1 Introduction
Combinatorial optimization is a field of
mathematical optimization that deals with the search
for the best combinations of elements from a given
set to achieve a certain goal. From the mathematical
point of view, the search includes maximization or
minimization of some function associated with these
elements. In logistics as well as in other fields
combinatorial optimization is applied in goal
setting, planning, and resource allocation. Finding
optimal solutions under constraints makes this area
of mathematical optimization an important tool for
improving the efficiency and productivity of
logistics operations.

A traditional problem for the formulation of the
combinatorial optimization problem is the
determination of the most efficient routes for cargo
delivery, including for several directions. In
particular, solutions for routing dependent or
independent vehicles are proposed, considering the
limits of their capacity and the length of the route

with some number of locations for stops [1], as well
as taking into account the state of traffic in real-
time, [2]. The complexity of solving such problems
is increased by introducing additional parameters,
such as heterogeneity of the fleet of vehicles and
warehouses, and the presence of time windows in
the process of picking and delivery of cargo, [3],
[4].

Popular for implementation are solutions for
finding the time-optimal route of one or several
agents between objects, [5], and the problem can be
complicated by the associated operations of
delivery, placement of cargo in the warehouse,
packing, packaging with changing the format,
weight, and size of the cargo unit, [6]. Of high
practical significance are the solutions to the multi
transportation problem of a traveling customer who,
in addition to determining the optimal route, faces
the problem of planning purchases at markets, [7].

Common in these solutions is the search for the
optimum with the lowest system cost. But since the

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 245 Volume 13, 2025

optimal cost of the combinatorial solution should
tend to zero, its obtaining turns out to be eventually
impossible under the existing constraints. Therefore,
the search for the optimum involves such additional
aspects as reducing the complexity of the solution
process, speed of finding a solution, compliance
with constraints and practical applicability.

The factors of intermodality and multimodality
of transportation seriously complicate the problem
of combinatorial optimization. At the same time,
less attention is paid to the problems of optimization
of warehouse space management in transport and
logistics centers than, for example, to the search for
optimal selection of transport modes involved in
intermodal or multimodal transportation. When
designing for several modes of transport a network
of circulation service of the territory, [8] or in
network optimization models for determining the
order and placement of materials at production
facilities, [9] the focus of attention is on routing -
the solution should provide maximum throughput,
minimize waiting time and storage costs.

It is not possible to use off-the-shelf
combinatorial optimization solutions for transport
routing in warehouse management systems. Off-the-
shelf solutions are oriented to agents engaged in
transportation or ordering transportation, but not to
warehouse logistics agents. Warehouse logistics has
its own specifics. There is a fleet of material
handling equipment - cranes, industrial forklifts,
conveyors, conveyors, and others - all in a single
mutually determined complex relationship. There is
the warehouse space, which can vary in warehouse
type, capacity, specifics of placement, movement,
and storage of cargo units.

To present the scope of the specific features of
the warehouse management system, we give a
classification of one of the types of warehouse - a
tiered warehouse is subdivided into the following
subtypes:
• high-bay warehouse;
• ceiling rack warehouse;
• pallet racking warehouse;
• cantilever racking warehouse;
• cellular warehouse;
• through-racked warehouse;
• drive-through racking warehouse;
• a warehouse with circulating racks.

On the territory of a multimodal transport and
logistics center there may be several types of
warehouses or several sub-types of warehouse. And
their management from the point of view of a
complex system requires multi-criteria and complex
solutions. This becomes obvious if we take into
account that a multimodal transport and logistics

center is located in a network-wide (multimodal)
transport hub and serves several modes of transport
when combining the technology of cargo processing
at the terminals included in its composition, [10].

In comparison with intermodal transportation,
the multimodal type of transportation is complicated
precisely by the level of responsibility of the
operator, who controls all stages of warehousing and
internal movement. The operator of a multimodal
transport and logistics center provides a full cycle of
basic and end-to-end physical processes in the
warehouse, and operations related to the use of
different modes of transport. For example, cargo
arrives by rail to the warehouse (in bulk), then it is
processed, reloaded, and packed (transshipment),
followed by loading on a sea vessel and shipment of
cargo.

Specialized warehouses for cargo storage and
processing in the architecture of a multimodal
transport and logistics center are independent
clusters united in a single network topology. For the
effective functioning of the entire network of
warehouses, it is necessary that the work of each
cluster is organized optimally.

Thus, there is a space for the action of
optimization models and there is a need for solutions
to combinatorial optimization problems. We see the
main task as the development of a solution that
optimizes the management of warehouse space
within a separate cluster in the territory of a
multimodal transport and logistics center. The
complexity of the problem is increased by taking
into account the parameters characterizing the cargo
units placed in the warehouse.

If we qualify the problem in mathematical terms,
we are dealing with an NP-complete problem. We
assume that for a task from the class NP, it is
possible to reduce any other task from this class to it
in polynomial time. This means that if a polynomial
algorithm is found for an NP-complete problem,
then all problems from the NP class can also be
solved in polynomial time. Thus, the complexity
bounds of the sought algorithm are defined.

The combinatorial optimization algorithms
associated with the problem are NP-complete in
nature, which makes it appropriate to investigate
ways to speed up and simplify the procedures for
solving these problems. The proposed research
includes material describing and justifying the
application of an approximate combinatorial
optimization algorithm, the genetic algorithm, to
solve the problem at hand. The software
implementation of the application of genetic
algorithm for optimization of warehouse space
management is developed. The presented research

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 246 Volume 13, 2025

results effectively fulfill the requirements to reduce
the complexity of the solution process, take into
account the constraints to avoid the algorithm hitting
the local optimum, and have practical significance.
The performance is experimentally evaluated using
machine experiment results. The posed problem can
be transformed by introducing new parameters or
horizontal scaling to additional clusters of a
multimodal transport and logistics center.

2 Approaches and Algorithms for

 Optimization of Warehouse

 Processes
The need to optimize various aspects of the
warehouse management system is great. The subject
area of optimization can be physical processes and
warehouse operations in aggregate or individually.
However, the local optimum found for a warehouse
operation or even a process is limited to a local
search. And this, on the one hand, does not allow us
to be sufficiently confident in the convergence of the
solution, and on the other hand, the result based on
the local search can not be extended to global
warehouse processes. Hence the a need to design
and implement solutions based on globally optimal
algorithms.

Methods that generate a population consisting of
samples of points in parameter space, perform a
parallel evaluation of their proximity to a target, and
then recombine them in some way to bring the
population to a global optimum have been known
for a long time and have not lost their relevance,
[11], [12], [13]. An overview of the methods used to
achieve local or global optima is presented with
more objectivity in academic publications, [14],
[15], [16] and abstract studies, [17], [18], [19], [20].
However, selecting and justifying the application of
mathematical apparatus and methods to solve the
problem at hand is a necessary step in conducting
the study. For this purpose, it was necessary to
define both the subject area of the research and
objectify its choice taking into account the
implementation requirements (including software
implementation) and limitations associated with the
initial data. Otherwise, the result of determining the
global optimum by one or several methods will be
unavailable for machine experimentation.

For this study the subject area was chosen as the
problems of optimization of cargo placement in the
warehouses of a multimodal transport and logistics
center.

Limited storage space creates variability in the
placement of cargo units, so the prioritization should

be based on some parameters. In the conditions of
specificity of intermodal and multimodal
transportation such parameter is the value of cargo
unit, and the integer value can be taken into account
as a qualitative or quantitative attribute. Another
parameter is the weight of a cargo unit, which is a
classical approach to the organization of
warehousing, and the parameter is accepted by us
from the consideration that on the territory of a
multimodal transport and logistics center, there may
be warehouses of different types, in the management
of which there is something in common.

If we simplify as much as possible the
combinatorial optimization problem about the
placement of cargo units in the warehouse, we
obtain the classical “knapsack problem” - it is
necessary to put a certain number of items in it,
having at our disposal data on the parameters of
knapsack and the items themselves, [21].

Despite the different properties of the problem
and its wide application in various fields ranging
from linguistics to cryptography, it is formally
solved by the method of enumeration, [22].
Hypothetically, each item can end up in a knapsack,
and therefore the selection of a set of items is done
by taking into account certain inputs. In our case,
these are the value and weight parameters of the
cargo units.

The Knapsack Problem has several varieties,
each with different conditions and constraints:
1. 0-1 Knapsack Problem. This is the basic form of

the Knapsack Problem in which: each item can
be either included in the knapsack (value 1) or
excluded (value 0). The goal is to maximize the
total value of the selected items, provided that
their total weight does not exceed a given
knapsack capacity.

2. Bounded Knapsack Problem. In this variation,
each item can be selected a limited number of
times (e.g., no more than 3). This allows for
cases where items are available in limited
quantities.

3. Unbounded Knapsack Problem. In this version,
each item can be selected an unlimited number
of times. This is suitable for situations where
items can be reused or ordered in large
quantities.

4. Multi-dimensional Knapsack Problem. This
problem includes several constraints (e.g.,
weight and volume), which makes it more
complex. Each item has multiple weights
corresponding to different constraints. The goal
is to maximize the total value while satisfying
all constraints.

5. Multiple Knapsack Problem. Here there are

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 247 Volume 13, 2025

multiple knapsacks, each with a different
capacity. The problem is to distribute items
among multiple knapsacks to maximize the total
value.

6. Multiple-Choice Knapsack Problem. In this
variation, items are divided into groups, and you
must choose exactly one item from each group.
This adds an extra level of difficulty to the
problem.
Of all the varieties of problem statements, we

chose the one that best lends itself to further
transformation of the conditions imposed on the
warehouse space - the “0-1 Knapsack Problem”.
Besides, it has a clear structure and conditions,
which makes it a universal tool, as we do not limit
the possibility of implementing the obtained solution
in any of the MTLC warehouses. But, if we take into
account the mechanism of pre-sorting before
placement in one of the MTLC warehouses, then the
mathematical apparatus of the solution should be
based on the “Multiple Knapsack Problems” variety.
The variety “Multi-dimensional Knapsack Problem”
is redundant for the current formulation of the
problem, since the parameter “value” already has a
complex character and includes the cost of
placement in the territory of the warehouse.

Accordingly, the basic condition is defined as
follows: a cargo unit can be either taken in its
entirety or not taken at all.

In warehouse logistics, goods can also have
different parameters such as turnover, shelf life, and
storage condition requirements. This information
can be integrated into the model of the knapsack
problem, allowing us to take into account not only
physical constraints but also economic aspects of
goods storage and handling.

The resulting solution can be further
complicated by selecting the “Multi-dimensional
knapsack problem” condition, adding the “loading
time” parameter, or the “Multiple Knapsack
Problem” condition, if it is necessary to solve the
problem for several adjacent warehouses within a
multimodal transport and logistics center.

The brute-force method is used in a number of
algorithms that can be compared to each other. For
example, the brute-force method and the dynamic
programming method are both exact algorithms
whose operation leads to an exact solution.
However, while the complexity of the brute-force
method is O(n!), the complexity of the dynamic
programming method is O(w*n). Despite the
simplicity of implementation and independence from
the type of input data, the brute-force method is
time-consuming. In addition, we assume that the
number of possible solutions to the problem is large,

so the brute-force method is not applicable to this
study. The method of dynamic programming has the
same advantages, but there is no universal algorithm
for its application, and obtaining an accurate result
requires a large amount of computational work. The
method of branches and bounds by analogy with the
method of complete enumeration has the same
mechanism of work and can reduce time costs, but it
is very sensitive to the initial data.

Among the algorithms that do not provide a
single correct solution but offer approximate
accuracy are the greedy algorithm and the genetic
algorithm. Greedy algorithms take locally optimal
solutions at each step, hoping that the final solution
will also be optimal. However, they do not always
lead to a globally optimal solution, especially in
complex problems such as the traveling salesman
problem or the graph partitioning problem. Genetic
algorithms are stochastic methods that utilize the
mechanisms of natural selection and mutation to find
solutions. They can find good approximate solutions
in complex search spaces, but do not guarantee to
find the optimal solution.

The greedy algorithm, having complexity
O(n*log(n)), is simple enough in realization and can
work with large values of n, but its essential
disadvantage for application in the chosen subject
area is that the convergence of the solution is
conditioned mainly by the value parameter of the
cargo unit, and the warehouse parameters are
derived in calculations. In the long run, this may
lead to inefficient solutions to the problem at hand.

Thus, if in the structure of requirements for the
choice of algorithm a combination of solution speed,
insensitivity to the initial data, the ability to work
with several factors, and average computational
power is stated, then the optimal option is the choice
of genetic algorithm. The genetic algorithm has high
speed, can handle large values of n, is independent
of the type of input data, and does not require
significant computational power. And, although the
algorithm does not guarantee finding the only
correct solution, it always finds the best result
among the possible ones, [23].

The genetic algorithm uses a stochastic
approach, which allows it to find good solutions in a
reasonable amount of time even when the size of the
input data increases significantly. The genetic
algorithm works based on a population of possible
solutions, which allows it to explore the solution
space more efficiently. Unlike deterministic methods
that can get stuck in local minima, genetic
algorithms use selection, crossover, and mutation
mechanisms to create new solutions. This helps
avoid premature convergence and contributes to

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 248 Volume 13, 2025

finding better solutions. A genetic algorithm can
easily adapt to different problem conditions. The
user can change parameters such as population size,
mutation probability, and selection methods, which
allows optimizing the search process depending on
the specific requirements of the problem. All these
aspects and the results of comparison with other
methods are the basis for choosing a genetic
algorithm as a tool for solving the problem.

3 The Nature and Stages of a Genetic

 Algorithm
The genetic algorithm belongs to a group of
evolutionary computation methods that combine
various applications of evolutionary principles.
John Holland proposed the concept of encoding
solutions in the form of “chromosomes”, applying
crossing and mutation operators to create new
solutions, and evaluating and selecting these
solutions based on their relevance. He explored
their potential for solving complex optimization
problems and developing adaptive systems, [24].

The operation of the algorithm consists of
searching for elite instances in the population, and
the evolutionary process ends with finding a
satisfactory solution. Of course, many evolutionary
simulations with increasing instances in the
population will require an increase in
computational resources. But in the case of the
problem we are solving, we operate not with
individual cargo units, but with groups of them
formed according to the chosen value and weight
parameters.

The main stage of genetic algorithm operation
is a cyclic sequence.

Population initialization. The genetic algorithm
starts by creating an initial population consisting of
randomly generated individuals. Each individual is
represented as a chromosome that encodes a
potential solution to the problem (1 for a usable
cargo unit and 0 for a non-usable one). A solution
in the population is a set of such chromosomes - a
genome.

Evaluation of adaptability. The fitness function
is usually determined on a task-specific basis - all
necessary requirements are considered to find the
“optimality” of the solution. Each individual in a
population is assessed by an adaptation function,
which measures how well an individual solves a
problem. This determines which individuals are
more “successful” than others and therefore have a
better chance of survival and reproduction. The
higher the value of the fitness function, the better

the solution. This allows the best-adapted solutions
to be selected to pass on their characteristics to the
next generation of the population.

Once the population is evaluated, individuals
are selected for crossover to create a new
generation. The genetic algorithm allows the use of
different selection methods (e.g., roulette or
tournament selection) and different crossover
strategies (single, double, etc.), allowing you to
experiment with approaches to achieve the best
results.

Selection. Based on the values of the fitness
function, individuals are selected to create the next
generation. There are various selection methods
such as rank selection, and tournament selection
(roulette wheel selection), that help to retain the
best-adapted individuals while maintaining the
diversity of the population.

Crossbreeding (crossover). Selected individuals
are crossed to create offspring. This process
involves combining the genetic information of the
two parents to create new individuals with
characteristics of both parents. Crossover occurs by
combining the genetic components of the parental
individuals, resulting in offspring with new
combinations. There are several methods of
crossover, including single-point and multi-point
crossover. This allows you to introduce diversity
into a population and explore different
combinations of genetic components to find the
best solutions for a particular problem.

Mutation. To allow new solutions to appear in
the population (increase genetic diversity) and
prevent premature convergence of the algorithm, a
mutation operation is used. This is a random change
in the genetic components of an individual (one or
more genes in a chromosome) that can lead to new
solution variants - potentially more successful
solutions. This helps to explore a wider search
space.

To tune the mutation parameters in a genetic
algorithm used to optimize the placement of cargo
units in a warehouse, it is important to consider
several key aspects. The optimal mutation
percentage typically ranges from 1% to 10% of the
total number of genes in a chromosome. A low
percentage can lead to a lack of diversity, while too
high can disrupt useful combinations of placement
in limited warehouse space.

Different types of mutational operations can be
applied: a) random exchange: the exchange of two
randomly selected genes; b) random permutation:
random rearrangement of the gene sequence; c)
inversion: inverting the order of a particular
segment of the chromosome. The inversion type is

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 249 Volume 13, 2025

used to solve the problem at hand because this
operation introduces the least entropy into the
research process. After crossing and mutation, a
new generation is created, which replaces the
previous generation.

Population replacement. The new individuals
created by crossover and mutation replace the old
population, and the process repeats. This cycle
continues until an optimal or near-optimal outcome
is achieved (depending on the stipulated stopping
condition). Examples of a stopping condition
include, but are not limited to, a maximum number
of generations, the achievement of a given level of
adaptability, or the achievement of a certain level of
stability of strong solutions.

The operators of the genetic algorithm work
together to provide an efficient search for optimal
solutions through a combination of selecting the
best individuals, creating new offspring through
interbreeding, and maintaining diversity through
mutation.

The benefits and experience in implementing
the results of optimization problem- solving drew
attention to the genetic algorithm, expanding its
field of application. Since then, the number of
publications and interest in this field has increased
significantly, opening new perspectives with the
application of artificial intelligence, [25]. However,
a genetic algorithm is not a panacea for solving all
optimization problems, like any algorithm, it should
be applied consciously and reasonably.

4 Description of the Logic of Genetic

 Algorithm Application
Genetic algorithms can get stuck in a local optimum
for reasons related to their mechanism of operation
and population structure. The influence of factors
contributing to this phenomenon should be avoided,
since their manifestation may distort or reduce the
efficiency of genetic algorithm application.

A lack of diversity in the population under study
should be avoided. A population that is close to
homogeneity will cause the algorithm to explore a
limited solution space. As a result, individuals may
get stuck in local optima because there are no
alternative paths to explore. In the current study, this
factor is offset by the diversity of cargo unit types
that can potentially fill the storage space.

Strong selection, in turn, may result in the
algorithm being unable to explore a wider range of
solutions, getting stuck in a local optimum. In the
practical domain, if individuals are selected too
aggressively based on their fitness, there is a risk

that less fit but potentially more promising solutions
will be weeded out. This factor is considered a
moderate risk, which is managed by dynamically
tracking and changing the value parameter of the
cargo unit when necessary.

A small number of mutations is a factor that
limits the possibility of finding new solutions. The
frequency with which a mutation is applied during
evolution is also important. If the mutation
probability is low, new genetic combinations appear
rarely, which can also contribute to getting stuck in
local optima. This factor qualifies as a significant
risk in the current study, and its management has
two trajectories - risk acceptance and splitting the
group of cargo units into smaller batches. The choice
of trajectory is determined by the value parameter -
the group of cargo units with higher value relative to
the groups in the random population is split into
parts in the proportion of 2:3:5, and the group with
lower value remains within the boundaries of the
natural mutation process. This approach allows the
algorithm to utilize computational resources
efficiently. Groups with different adaptability can
generate a variety of solutions, which increases the
chances of finding an optimal solution without
significant computation time.

Thus, groups with higher value (50%) are
labeled as highly adapted, this preserves diversity
but prevents premature convergence to local
minima. Theoretically, the application of a 1:1:1:1
proportion provides equal access to selection for all
individuals, regardless of their level of adaptation,
but the choice of this proportion will not allow for
differences in cargo value.

In addition, it was decided to apply mutation
only in every second or third iteration in order to
maintain population stability and avoid excessive
variability.

The structure of the target function is also a
limiting factor for the genetic algorithm. If the target
function has many local optima, the genetic
algorithm may get stuck in one of them. The
influence of this factor is reduced by entering into
the work of the research mechanism those data that
were obtained earlier for the warehouse space under
study, or the data of comparable warehouse space on
the territory of a multimodal transport and logistics
center.

Problems with crossover refer to vulnerabilities
in the very workings of the research mechanism. If
the logic of crossover implementation does not
ensure the mixing of genetic information, it leads to
the fact that new individuals of a random population
will be too similar to their parents and will not be
able to explore new solution areas. In this study, the

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 250 Volume 13, 2025

potential problems of crossover performance are
addressed by preserving the replacement history of
the population and introducing crossover re-
execution functions if the similarity between
generations is above a limit value of 0.75.

A value of 0.75 represents a compromise
between the speed of convergence and exploration
of the solution space. Too low a convergence value
can slow down the process because new generations
will be significantly different from previous
generations, which can lead to the loss of good
solutions already found. On the other hand, a value
of 0.75 preserves a sufficient number of good genes
from previous generations, which contributes to
faster finding of optimal solutions. Similarity within
0.75 allows the efficient use of selection and
crossover methods and indicates that the progeny of
the new generation should be sufficiently different
from their ancestors. This avoids premature
convergence to local minima and helps to maintain
diversity in the population. If the similarity between
generations is too high (e.g., 0.9 or higher), it may
cause the algorithm to get stuck in the same solution
without exploring other possible options.

The described factors of algorithm closure in
local optimums and solutions to contain their
influence emphasize the importance of maintaining
diversity in the population, proper choice of
selection and mutation operators, and consideration
of the structure of the target function when using
genetic algorithms to minimize risks and manage
risks efficiently.

5 Building a Mathematical Model
Within the warehouse operation optimization
problem, a genetic algorithm is used to minimize the
cost of allocating cargo units in a constrained
warehouse space. Each chromosome represents a
sequence of warehouse operation execution for
allocation. The process of solving the problem of
placing cargo units in the warehouse space taking
into account the given cargo parameters on the basis
of a genetic algorithm consists of several steps:

1. Generation of the initial population. Randomly
generate an initial population of sets of cargo
units, where each set represents a possible
solution (combination of cargo units to be
placed in the warehouse space).

2. Adaptability Assessment. Each set of cargo
units is assigned an adaptability value
according to a target function - the total value
of the cargo units in the set.

3. Selection. From the initial population, “parents”
are randomly selected to create a new

population based on their fitness values.4.
Crossbreeding. The selected parents are
combined to create new offspring. A crossover
operator will be used, where breakpoints in the
sets of parents are randomly selected and the
offspring inherit parts of items from each
parent.

5. Mutation. A random chromosome representing
the order of the cargo units is selected from the
current population. Next, the order of a
particular segment of the chromosome is
inverted. Sequentially, a mutation occurs,
making random changes to the set of cargo
units - randomly adding or removing cargo
units from the set. After the mutation step, the
new chromosome can lead to a change in
fitness (placement cost), which forms the best
solution to the optimization problem.

6. Reproduction. A new population is formed by
combining selected, crossed, and possibly
mutated sets of cargo units.

7. Evaluation of the new population. The cycle
procedures, from evaluation of fitness to
reproduction, are repeated until the stopping
criterion is reached. Stopping will occur when a
sufficient level of stability of strong solutions is
achieved.

8. Completion. The expected outcome of the
genetic algorithm is the optimal set of cargo
units from the last population. This set will
represent the optimal solution to the warehouse
space allocation problem, given the value and
weight constraints of the cargo units.

To solve the problem of optimization of
warehouse operations on the basis of a genetic
algorithm, the mathematical apparatus with the
problem formulation “0-1 Knapsack Problem” was
used. This formulation is an important example of an
optimization problem with constraints. The problem
illustrates the basic principles of resource selection
and allocation in the presence of constraints and is
the basis for the development of various algorithms
for solving such problems. It consists of selecting a
set of items with given weights and values so as to
maximize the total value of the items placed in a
backpack without exceeding its maximum capacity.
Understanding this problem helps in further studying
more complex optimization problems and
developing efficient algorithms to solve them.

There is a warehouse with bounded space C and
a set of n cargo units, each of which has a certain
weight wi and value vi. It is necessary to choose such
cargo units that their total weight does not exceed
the volume of the warehouse space, and the total
value is maximized.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 251 Volume 13, 2025

Let: n be the number of cargo units, wi be the
weight of cargo unit i, vi be the value of cargo unit
i, C be the maximum warehouse space, xi be a
variable that takes the value 1 if cargo unit i is
placed in the warehouse and 0 otherwise.

Given the “0-1 Knapsack Problem” condition,
the problem is formulated as follows: maximize

 under the constraints:

≤ C, xi ∈ {0, 1},
i = 1, …, n.

This constraint ensures that the total weight of

the selected items does not exceed the capacity of
the backpack.

In this formulation, the problem is represented
as follows:

Target function:

The constraint ≤ C reflects the

physical constraints and guarantees that the total
weight of the selected items does not exceed the
capacity of the backpack.

Binary variables: xi ∈ {0, 1}, meaning that each
item can either be included in the backpack (xi = 1)
or excluded (xi = 0). This makes the problem
discrete and allows combinatorial optimization
methods to be used to solve it.

6 Applying a Genetic Algorithm to

 Solve a Problem
In this section, a genetic algorithm will be
implemented and a program will be written to run an
application to find an optimal solution to the
placement of cargo units in a limited warehouse
space. The workflow of the software duplicates the
steps of the genetic algorithm.
The BackpackItem class represents a cargo unit in
the optimal warehouse occupancy problem. The
following fields of this class are highlighted:
• Name: a string field designed to store the

name of the cargo item.
• Weight: an integer field representing the

weight of the cargo unit.
• Worth: An integer field representing the value

or cost of the cargo unit.

 internal class BackpackItem
 {
 /// <summary>
 /// Name, weight and value.
 /// </summary>
 public string Name;
 public int Weight;
 public int Worth;

 /// <summary>
 /// Class constructor that initializes object parameters.
 /// </summary>
 /// <param name="weigth"></param>
 /// <param name="worth"></param>
 /// <param name="name"></param>
 public BackpackItem(int weigth, int worth, string name)
 {
 Weight = weigth;
 Worth = worth;
 Name = name;
 }

The BackpackGenome class describes a

genome and represents a separate warehouse on the
territory of a multimodal transport and logistics
center for the work of the algorithm. If we refer to
the terminology of genetic algorithm, the
warehouse can be represented as a genome. Its
description is represented by the following fields:
• Fitness: a real field designed to store the

fitness value of the genome. Fitness reflects
the degree of suitability of an individual
warehouse to accommodate and store the
selected cargo item.

• ItemsPicked: a list of objects of class
BackpackItem representing cargo units
selected for placement in this warehouse (in
genetic algorithm terminology - for packing
in this genome). This list of objects stores
information about which cargo units were
included in this optimal placement solution.

• Parameter: an integer field representing the
warehouse parameter as a number obtained
by converting a string of string from a binary
value to a decimal value.

 internal class BackpackGenome
 {
 /// <summary>
 /// The importance of genome adaptation and a list of selected subjects.
 /// </summary>
 public float Fitness;
 public List<BackpackItem> ItemsPicked = new();
 /// <summary>
 /// Genome parameter.
 /// </summary>
 public int Parameter;
 /// <summary>
 /// Class constructor that initializes genome parameters.
 /// </summary>
 /// <param name="parameter"></param>
 public BackpackGenome(int parameter)
 {
 Parameter = parameter;
 Fitness = 0;
 }

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 252 Volume 13, 2025

The BackpackSolver class represents the
genetic algorithm itself. The methods and variables
used will be described below.
• CrossOverProbability, MutationProbability,

PopulationSize, GenerationCount - constants
representing crossing and mutation
probabilities, population size and number of
generations.

• MaxValue - genome capacity.
• crossPoint, mutatePoint, child1, child2 -

auxiliary variables for crossing and mutation.
• NextGeneration and Solutions - lists of

objects of BackpackGenome class to
represent the next generation and current
solutions.

• bestFitness - a field to store the best genome
with the best fitness.

• crossedGenomes and crossoverPartner -
fields for storing crossed genomes and
crossing partner results.

• RunGeneticAlgorithm - method to run the
genetic algorithm. Outputs results to the
console, including selected items, maximum
weight, current weight, and current value.

• Evolve - Method for evolving the genetic
algorithm, including generating the next
generation, crossbreeding, mutating, and
selecting the best genomes.

• CalculateFitness - A method for calculating
genome fitness given the weight and value of
items.

• Crossover and Mutation - methods for
performing genome crossover and mutation
operations.

• GenerateRandomSolutions - method for
generating random genomes for an initial
population.

7 Generation of the Initial Population,

 Generate Random Solutions
When the user enters specific integer values into
the fields of the BackpackItem class, the algorithm
creates an initial population of random solutions.
• populationSize - method parameter

indicating how many genomes should be
generated for the initial population.

• temp - temporary list of genomes to be
returned by the method.

• Cycle for (i from 0 to populationSize - 1) to
generate the required number of genomes.

• new BackpackGenome(Rnd.Next(1,
Int32.MaxValue)) - creation of a new
genome using the constructor of

BackpackGenome class. A random integer
from 1 to Int32.MaxValue is passed to the
constructor parameter.

 public static List<BackpackGenome> GenerateRandomSolutions(int populationSize)
 {
 // Temporary list for storing generated genomes.
 var temp = new List<BackpackGenome>();
 // Each item in the backpack is represented by one bit, the maximum value of the
parameter is the number that has all bits set to 1.
 int maxParameter = (1 << Selection.Count) - 1;
 // Maximum number of attempts.
 int maxAttempts = 1000;
 for (var i = 0; i < populationSize; i++)
 {
 // Initialization, genome parameter = 0.
 int randomParameter = 0;
 // Remaining weight, initially = 0.
 int remainingWeight = MaxValue;
 // Attempt number.
 int attempts = 0;

8 Adaptability Function,

 Calculate Fitness
The implementation of the genome fitness
function by the CalculateFitness method is done as
follows:
• Summarizing the value of the selected items in

the Fitness property of the genome.
• Calculating the penalty for exceeding the

maximum weight - the penalty is calculated
based on the difference between the total
weight of the selected items and the maximum
payload value to limit decisions that lead to
overloading.

• Once the accommodation is calculated, a
check is performed. If the fitness value is found
to be less than 1, it is corrected and set to 1.
This ensures that the genome's fitness is not
negative.

 public static void CalculateFitness(BackpackGenome genom)
 {
 // Summarizing the value of selected items.
 genom.Fitness += genom.ItemsPicked.Sum(t => t.Worth);
 }
 /// <summary>
 /// Genetic crossbreeding.
 /// </summary>
 /// <param name="parent1"> Parent 1.</param>
 /// <param name="parent2"> Parent 2.</param>
 /// <returns></returns>
 public static int[] Crossover(BackpackGenome parent1, BackpackGenome parent2)
 {
 _crossPoint = Rnd.Next(1, Selection.Count - 1);
 // Create a mask that contains 1's in all bits up to (and including) the breakpoint and zeros
afterward.
 int mask = (1 << _crossPoint) - 1;
 // Bits before the breakpoint from one parent and bits after the breakpoint from the other
parent are taken.
 _child1 = (parent1.Parameter & ~mask) | (parent2.Parameter & mask);
 _child2 = (parent2.Parameter & ~mask) | (parent1.Parameter & mask);
 // Repeat the crossover if both descendants are 0
 if (_child1 == 0 && _child2 == 0)
 {
 return Crossover(parent1, parent2);
 }
 // The array is returned as the result of a crossover operation.
 var crossedGenomes = new int[2];
 crossedGenomes[0] = _child1;
 crossedGenomes[1] = _child2;
 return crossedGenomes;
 }

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 253 Volume 13, 2025

9 Sort
The application of a genetic algorithm is intended
as an expected result to obtain an optimal solution
to the problem of placing the selected cargo units in
the warehouse, taking into account the criteria of
weight and value. For this purpose, the Sort method
is implemented in the algorithm.

Cycle for (i from 0 to Selection.Count - 1) to
enumerate all cargo units in the Selection list. int
check = temp & 1 << i - creation of the check
variable, which checks whether the bit in the i-th
position in the warehouse parameter (temp) is set. if
(check == (1 << i)): check the condition that the bit
in the i-th position is set. If the condition is met, the
cargo unit with index i is added to the list of cargo
units selected for placement in the warehouse - the
genome.ItemsPicked list (genom.ItemsPicked).

Thus, the Sort method looks at each bit of the
genom parameter and, if the bit is set, adds the
corresponding item to the genom's list of selected
items. This method is used to restore the order of
the selected cargo items to be placed in the
warehouse based on the warehouse parameter, but
taking into account the results of the sort.
public static void Sort(BackpackGenome genom)
 {
 // Temporal variable temp, binary representation of the genome.
 int temp = genom.Parameter;
 // Cycle through all items in the item list.
 for (var i = 0; i < Selection.Count; i++)
 {
 // The bit at position i in the temp variable is checked. If the bit is equal to 1, the check
will be equal to 1 << i, otherwise it will be equal to 0.
 int check = temp & 1 << i;
 // If the item has been selected (the bit at position i is 1), the item is added to the
ItemsPicked list of the genom object.
 if (check == (1 << i))
 {
 genom.ItemsPicked.Add(Selection[i]);
 }
 }

10 Breeding and Crossbreeding

 Through the Breaking Point,

 Crossover
Next, the algorithm implements its inherent
evolution functions with respect to a randomly
generated initial population of objects - new
BackpackGenome(Rnd.Next(1, Int32.MaxValue)),
but after it has been checked for adaptability and
sorted.

The function returns an array that necessarily
contains exactly two descendants of the genome.
First, a breakpoint is defined that will be used to
separate the genes of the parents. This point cannot
be the first or last element to ensure that the parent
and descendant genes are distinct.

Then two descendants are created. Each
descendant receives a copy of the range of elements
from the corresponding parent up to the breakpoint.

The loop then processes all elements from the
second parent and adds them to the offspring1, in
case the current gene in question is not already
present in the offspring. The same is done for the
offspring offspring2. Finally, the function returns
an array containing the two offspring resulting from
the cross.

If suddenly both descendants are 0, the
crossover is executed again to avoid the situation
where the descendants are completely absent. In
this way, the consistency of the algorithm is
ensured by the controlled evolution of the
population over several generations.

 public static int[] Crossover(BackpackGenome parent1, BackpackGenome parent2)
 {
 _crossPoint = Rnd.Next(1, Selection.Count - 1);
 // Create a mask that contains 1's in all bits up to (and including) the breakpoint and zeros
afterward.
 int mask = (1 << _crossPoint) - 1;
 // Bits before the breakpoint from one parent and bits after the breakpoint from the other
parent are taken.
 _child1 = (parent1.Parameter & ~mask) | (parent2.Parameter & mask);
 _child2 = (parent2.Parameter & ~mask) | (parent1.Parameter & mask);
 // Repeat the crossover if both descendants are 0
 if (_child1 == 0 && _child2 == 0)
 {
 return Crossover(parent1, parent2);
 }
 // The array is returned as the result of a crossover operation.
 var crossedGenomes = new int[2];
 crossedGenomes[0] = _child1;
 crossedGenomes[1] = _child2;
 return crossedGenomes;
 }

11 Mutation
Population mutation is also a variant of controlled
population evolution. The method returns a new
genome obtained by changing the state of a random
bit. It is mandatory to check whether mutation leads
to exceeding the storage capacity.

First, a random mutation point is defined,
represented by the mutatePoint variable. Then a bit
mask temp is created that inverts the bit at the
specified point.

It is then checked to see if inverting the
selected bit causes the maximum storage
capacity to be exceeded. If the new genome
complies with the limits, the result of the inversion
is returned, otherwise the original genome is
returned.

 public static int Mutation(BackpackGenome genom)
 {
 // Index of a random item in the Selection list.
 _mutatePoint = Rnd.Next(0, Selection.Count + 1);
 // Create a mask by setting the bit according to the index.
 int temp = (1 << _mutatePoint);
 // We check whether the genome weight after mutation does not exceed the maximum
allowable weight.
 if (GetWeight(genom.Parameter ^ temp) <= MaxValue)
 {
 // Bringing back the mutated genome.
 return genom.Parameter ^ temp;
 }
 else
 {
 // Returning the original genome.
 return genom.Parameter;
 }
 }

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 254 Volume 13, 2025

12 Evolve
This method combines adaptation calculation,
crossbreeding, mutation, and selection of the best
genomes:
• items - list of genomes of the current

generation.
• Solutions and NextGeneration - lists of

BackpackGenome class cargo units for the
current generation and the next generation.

• Cycle for (i from 0 to
GENERATIONCOUNT - 1) - evolution of
the genetic algorithm over several
generations.

• Sort(Solutions[k]) and
CalculateFitness(Solutions[k]) to sort
items in a knapsack and calculate genome
fitness.

• Solutions.OrderByDescending(t => t.Fitness)
to sort genomes by descending fitness.

• minimalFitness - calculation of the minimum
fitness value.

• While loop - iterations of the loop add
genomes to the next generation through
crossbreeding and mutation. Then the best
genome is updated based on the adaptability
of the current generation and the best genome
is returned.

 while (NextGeneration.Count < POPULATIONSIZE)
 {
 // Cycle to process each genome in the current population.
 for (int m = 0; m < Solutions.Count; m++)
 {
 if (NextGeneration.Count < POPULATIONSIZE)
 {
 // Checking whether genome fitness meets the requirements to participate in
crossover.
 if (Solutions[m].Fitness >= minimalFitness && Rnd.NextDouble() <=
CROSSOVERPROBABILITY)
 {
 // If a crossover partner is not identified, the current genome becomes the
partner.
 if (_crossoverPartner == null)
 {
 _crossoverPartner = Solutions[m];
 }
 // If a partner has already been identified, crossover between the current
genome and the partner occurs.
 else
 {
 _crossedGenomes = Crossover(_crossoverPartner, Solutions[m]);
 // Create new genomes based on values from the array
_crossedGenomes.
 // Going through each new genome.
 foreach (var genome in _crossedGenomes.Select(child => new
BackpackGenome(child)))
 {
 // If the weight of a new genome does not exceed the maximum
allowable weight, that genome is added to the next generation.
 if (GetWeight(genome.Parameter) <= MaxValue)
 {
 NextGeneration.Add(genome);
 }
 }
 }
 }
 // Probability of genome mutation.
 if (Rnd.NextDouble() <= MUTATIONPROBABILITY)
 {
 NextGeneration.Add(new BackpackGenome(Mutation(Solutions[m])));
 }

Before the function is completed, the output of

the received data is performed. The user gets all the
information he needs: value and weight of each

cargo unit in the warehouse, maximum weight,
current weight, current value, the weight of all cargo
units, and value of all cargo units.
Output results to the console.
 generationCallback?.Invoke("Selected items:");
 generationCallback?.Invoke("");
 foreach (BackpackItem t in Result.ItemsPicked)
 {
 generationCallback?.Invoke(t.Name + " " + "\t" + " (Value:" + t.Worth + ") " +
 "\t" + "(Вес:" + t.Weight + ")");
 }
 generationCallback?.Invoke("");
 generationCallback?.Invoke("Maximum weight: " + MaxValue);
 generationCallback?.Invoke("Current weight: " + Result.ItemsPicked.Sum(t =>
t.Weight));
 generationCallback?.Invoke("Current value: " + Result.ItemsPicked.Sum(t => t.Worth));
 generationCallback?.Invoke("");
 generationCallback?.Invoke("Weight of all items: " + Selection.Sum(t => t.Weight));
 generationCallback?.Invoke("The value of all items: " + Selection.Sum(t => t.Worth));
 }

As a result, the algorithm selects the most

adaptive placement solutions for the selected cargo
units at each step in the evolution of the generated
random solutions to result in an optimal placement
solution.

13 Application Architecture
The application is divided into several parts with
different areas of responsibility.
Interaction with the menu and initialization of
instances of classes that solve the tasks is performed
in Program.cs.

The BackpackSolver class is responsible for
solving the problem of filling the warehouse with an
optimal selection of cargo units. For more
convenient data visualization and structuring of
calculations, BackpackGenome, which stores
information about the warehouse, and
BackpackItem, which represents a cargo unit in the
warehouse, are also used.

The application uses:
• interface. The BackpackSolver class

implements the IGeneticAlgorithm interface.
• Delegates. The GenerationCallback delegate

is used to output the program operation data,
which is passed when class instances are
initialized.

• exceptions. Exceptions are used to handle
incorrect user input to better explain the error.

• Enumerations. MenuOption.cs is an
enumeration of menu states that is used to
trigger the necessary actions when an item is
selected.

• LINQ. LINQ is used to simplify the handling
of collections for sorting, mutation, and other
operations in BackpackSolver.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 255 Volume 13, 2025

14 Machine Experiment
To develop and test the program that implements the
optimal solution for placing the selected cargo units,
an experiment was conducted. An experiment plan
with the definition of parameters, testing scenario,
and expected results was made in advance. When the
program is run, the problem is solved using the
genetic algorithm, or the program is exited. The
purpose of the experiment included a) checking the
correctness of data input by the user; b) checking the
correctness of error case processing; c) evaluating
the functionality of the program at different data
inputs.

The input data included: a) warehouse capacity:
positive integer; b) number of cargo units: positive
integer; c) for each cargo unit weight: positive
integer (can be integer or fractional); d) for each
cargo unit value (equivalent to placement cost):
positive integer (can be integer or fractional).

Error conditions were defined as follows: a)
input of negative numbers or zero for capacity and
number of cargo units; b) incorrect input format (e.g.
letters instead of numbers); c) weight and cost of
cargo units should be positive. The testing scenario
included: a) testing of correct input; b) testing of
incorrect input for capacity; c) testing of incorrect
input for number of cargo units; d) testing of
incorrect input for weight and cost; e) testing on
boundary values.

The following methods of results evaluation
were chosen: a) checking the presence of error
messages in case of incorrect input; b) confirmation
of successful program completion in case of correct
data input; c) analysis of program response time to
user input.

The obtained results of the test scenario
implementation corresponded to the expected
results:

a) the program successfully accepts input
without errors; b) in case of incorrect input - an error
message and a repeated request. No changes in the
program were required after the test scenario was
executed.

The program implements the developed
algorithm as follows: it requests from the user the
warehouse capacity and the number of cargo units,
then after receiving this information the program
requests information on each cargo unit in turn:
weight and cost. In case of non-compliance with the
task conditions (entering a smaller number or an
incorrect format), the corresponding error is
displayed and the quantity is requested again.

The test parameters took the following values:
1. Warehouse capacity: minimum value: 0 (a

warehouse cannot have a negative capacity);
maximum value: set depending on the specifics
of the task (e.g., 1000 units).

2. Number of cargo units: minimum value: 1 (there
must be at least one cargo unit); maximum
value: 100 cargo units.

3. Weight of cargo units: minimum value: 0.1
(cargo cannot have zero weight); maximum
value: 500 kg.

4. Value of cargo units: minimum value: 0 (the
value cannot be negative); maximum value:
100000 conventional monetary units.

The parameters of the experiment included the
following test sample (variances):
1. Population size: population size of 50 to 200

individuals to ensure diversity.
2. Number of generations: 100 to 500 to ensure

sufficient time for evolution of solutions.
3. Mutation percentage: 5-10% to avoid premature

convergence and maintain genetic diversity.
4. Inbreeding percentage: at 70-90% to ensure an

efficient combination of the best solutions.
5. Elitism: 2 to 5% of the best-adapted individuals

to be passed on to the next generation
unchanged.

6. Algorithm stopping criteria: a) stopping when
the maximum number of generations is reached;
b) stopping when a given level of adaptability is
reached (if the best individual achieves fitness
above a certain threshold); c) stopping when
there is no significant change for several
generations (20 generations).
When correct values were entered, the program

worked: the most suitable solutions for placing the
selected cargo units were selected. The selected
cargo units (their value and weight), maximum
warehouse capacity, weight, and value of all cargo
units were displayed.

The warehouse operator uses the obtained data
to decide on the order of filling the warehouse space.

15 Conclusion
The genetic algorithm has shown its ability to
process data, as well as demonstrated a high rate of
convergence to optimal solutions in comparison with
classical oversampling methods. When selecting the
genetic algorithm as a mathematical apparatus for
solving the problem of placement in the warehouse
of a multimodal transport and logistics center of an
optimal selection of cargo units, their flexibility and
applicability to a variety of problems were revealed.
As a result, it was possible to obtain a software tool
for effective management of the placement of cargo

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 256 Volume 13, 2025

units taking into account their weight and value and
under conditions of limited warehouse capacity. This
creates opportunities for practical application of the
proposed results and makes them promising for
solving a wide range of optimization problems in the
warehouse management system.

The possibilities for further development in this
area are the deepening of research in optimizing the
parameters of genetic algorithms to improve their
efficiency and accuracy on different types of
warehouse management problems. It is also worth
considering combining genetic algorithms with other
optimization methods to create more efficient hybrid
approaches. In addition, research in parallel and
distributed computing is expected to significantly
improve the speed of genetic algorithms and their
applicability to even more complex multimodal
transportation and logistics center optimization
problems.

Declaration of Generative AI and AI-assisted

Technologies in the Writing Process

During the preparation of this work the authors used
Perplexity.AI in order to correct errors and optimize
machine code. After using this tool/service, the
authors reviewed and edited the content as needed
and takes full responsibility for the content of the
publication.

References:

[1] Sun J., Wang R., Multi-objective optimization
of a sustainable two echelon vehicle
routing problem with simultaneous pickup
and delivery in construction projects,
Journal of Engineering Research, In Press,
2023,
https://doi.org/10.1016/j.jer.2023.10.033.

[2] Liu W., Zhou Y., Liu W., Qiu J., Xie N.,
Chang X., Chen J., A hybrid ACS-VTM
algorithm for the vehicle routing problem with
simultaneous delivery & pickup and real-
time traffic condition, Computers &

Industrial Engineering, Vol. 162, 107747,
2021,
https://doi.org/10.1016/j.cie.2021.107747.

[3] Praxedes R., Bulhões T., Subramanian A.,
Uchoa E., A unified exact approach for a
broad class of vehicle routing problems with
simultaneous pickup and delivery,
Computers & Operations Research, Vol.
162, 106467, 2024,
https://doi.org/10.1016/j.cor.2023.106467.

[4] Liu S., Tang K., Yao X., Memetic search for

vehicle routing with simultaneous pickup-
delivery and time windows, Swarm and

Evolutionary Computation, Vol. 66,
100927, 2021,
https://doi.org/10.1016/j.swevo.2021.10092
7.

[5] Grabusts P., Musatovs J., Golenkov V., The
application of simulated annealing method for
optimal route detection between objects,
Procedia Computer Science, Vol. 149,
pp.95-101, 2019,
https://doi.org/10.1016/j.procs.2019.01.112.

[6] Ergüven E., Polat F., Relative distances
approach for multi-traveling salesmen
problem, Knowledge-Based Systems, Vol.
300, 112160, 2024,
https://doi.org/10.1016/j.knosys.2024.1121.

[7] Roy A., Maity S., Moon I., Multi-vehicle
clustered traveling purchaser problem using
a variable-length genetic algorithm,
Engineering Applications of Artificial

Intelligence, Vol. 123, Part B, 106351,
2023,
https://doi.org/10.1016/j.engappai.2023.1063
51.

[8] Yu Y., Machemehl R.B., Xie Ch., Demand-
responsive transit circulator service network
design, Transportation Research Part E:

Logistics and Transportation Review, Vol. 76,
pp.160-175, 2015,
https://doi.org/10.1016/j.tre.2015.02.009.

[9] Kerbache L., Smith J.MacG., Multi-
objective routing within large scale facilities
using open finite queueing networks,
European Journal of Operational Research,
Vol. 121, Issue 1, pp.105-123, 2000,
https://doi.org/10.1016/S0377-
2217(99)00018-1.

[10] Prokofieva T.A., Multimodal transport and
logistics centers as strategic points of growth
of the Russian economy, Part 1, In Center of

Economics, no. 2, pp. 10-19, 2021.
[11] Park Y.M., Park J.B., Won J.R., A hybrid

genetic algorithm/dynamicprogramming
approach to optimal long-term generation
expansion planning, International Journal of
Electrical Power & Energy Systems,
Volume 20, Issue 4, 1998, pp.295-
303, https://doi.org/10.1016/S0142-
0615(97)00070-7.

[12] Wang Q.J., Using genetic algorithms to
optimise model parameters, Environmental
Modelling & Software, Vol. 12, Issue 1,
1997, pp.27-34,
https://doi.org/10.1016/S1364-

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 257 Volume 13, 2025

https://doi.org/10.1016/j.jer.2023.10.033
https://doi.org/10.1016/j.cie.2021.107747
https://doi.org/10.1016/j.cor.2023.106467
https://doi.org/10.1016/j.swevo.2021.100927
https://doi.org/10.1016/j.swevo.2021.100927
https://doi.org/10.1016/j.procs.2019.01.112
https://doi.org/10.1016/j.knosys.2024.1121
https://doi.org/10.1016/j.engappai.2023.1063%2051
https://doi.org/10.1016/j.engappai.2023.1063%2051
https://doi.org/10.1016/j.tre.2015.02.009
https://doi.org/10.1016/S0377-%202217(99)00018-1
https://doi.org/10.1016/S0377-%202217(99)00018-1
https://doi.org/10.1016/S0142-0615(97)00070-7
https://doi.org/10.1016/S0142-0615(97)00070-7
https://doi.org/10.1016/S1364-%208152(96)00030-8

8152(96)00030-8.
[13] Chen J., Zhang Ch., Efficient Clustering

Method Based on Rough Set and Genetic
Algorithm, Procedia Engineering, Vol.15,
2011, pp.1498-1503,
https://doi.org/10.1016/j.proeng.2011.08.27
8.

[14] Kochenderfer M. J., Wheeler T. A.,
Algorithms for Optimization, MIT Press,
2019.

[15] Horn J., Goldberg D. E., Genetic Algorithm
Difficulty and the Modality of Fitness
Landscapes, Foundations of Genetic

Algorithms, Elsevier, Vol. 3, 1995, pp. 243-
269, https://doi.org/10.1016/B978-1- 55860-
356-1.50016-9.

[16] Kohenderfer M., Wheeler T., Ray K.
Algorithms for decision making / transl. from
Engl. V. S. Yatsenkov, Moscow, DMK Press,
p.684, 2023.

[17] Karp R. M., Reducibility among
Combinatorial Problems, In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds)
Complexity of Computer Computations,
The IBM Research Symposia Series,
Springer, Boston, MA, 1972,
https://doi.org/10.1007/978-1-4684-2001-
2_9.

[18] D’Angelo G., Palmieri F., GGA: A modified
genetic algorithm with gradient-based local
search for solving constrained optimization
problems, Information Sciences, Vol. 547,
2021, pp.136-162,
https://doi.org/10.1016/j.ins.2020.08.040.

[19] Dao S. D., Abhary K., Marian R., An
innovative framework for designing genetic
algorithm structures, Expert Systems with
Applications, Vol. 90, 2017, pp.196- 208,
https://doi.org/10.1016/j.eswa.2017.08.018.

[20] Mahmoodabadi M.J., Nemati A.R., A novel
adaptive genetic algorithm for global
optimization of mathematical test functions
and real-world problems, Engineering

Science and Technology, an International

Journal, Vol. 19, Issue 4, 2016, pp. 2002-
2021,
https://doi.org/10.1016/j.jestch.2016.10.012.

[21] Martello S., Toth P., Knapsack problems:

algorithms and computer implementations.
John Wiley & Sons, Inc., USA, 296 p., 1990.

[22] Wilbaut C., Hanafi S., Coelho I.M., Lucena
A., The Knapsack Problem and Its Variants:

Formulations and Solution Methods. In: Salhi,
S., Boylan, J. (eds) The Palgrave Handbook of
Operations Research, Palgrave Macmillan,

Cham, pp 105-151, 2022,
https://doi.org/10.1007/978-3-030-96935-6_4.

[23] Reeves C.R., Genetic Algorithms. In: LIU,
L., ÖZSU, M.T. (eds) Encyclopedia of

Database Systems, Springer, Boston,
MA, 2009, https://doi.org/10.1007/978-0-
387-39940- 9_562.

[24] Holland J.H., Genetic Algorithms and
Adaptation. In: Selfridge, O.G., Rissland,
E.L., Arbib, M.A. (eds) Adaptive Control of
Ill-Defined Systems, NATO
Conference Series, vol 16, Springer, Boston,
MA, 1984, https://doi.org/10.1007/978-1-
4684-8941- 5_21.

[25] Hnaien F., Delorme X., Dolgui A., Genetic
algorithm for supply planning in two-level
assembly systems with random lead times,
Engineering Applications of Artificial

Intelligence, Vol. 22, Issue 6, Pages 906-
915, 2009,
https://doi.org/10.1016/j.engappai.2008.10.01
2.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The author equally contributed to the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

The research was funded by the grant Russian
Science Foundation No.24-21-20089.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2025.13.23 Natalia Mamedova, Yulia Khizhnyakova

E-ISSN: 2415-1521 258 Volume 13, 2025

https://doi.org/10.1016/S1364-%208152(96)00030-8
https://doi.org/10.1016/j.proeng.2011.08.27%208
https://doi.org/10.1016/j.proeng.2011.08.27%208
https://doi.org/10.1016/B978-1-%2055860-356-1.50016-9
https://doi.org/10.1016/B978-1-%2055860-356-1.50016-9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/j.ins.2020.08.040
https://doi.org/10.1016/j.eswa.2017.08.018
https://doi.org/10.1016/j.jestch.2016.10.012
https://doi.org/10.1007/978-3-030-96935-6_4
https://doi.org/10.1007/978-0-387-39940-%209_562
https://doi.org/10.1007/978-0-387-39940-%209_562
https://doi.org/10.1007/978-1-4684-8941-%205_21
https://doi.org/10.1007/978-1-4684-8941-%205_21
https://doi.org/10.1016/j.engappai.2008.10.012
https://doi.org/10.1016/j.engappai.2008.10.012
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

