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Abstract: - In this paper, we propose a software implementation to solve the mathematical problem of 
optimal placement of cargo units on the territory of a multimodal transport and logistics center. Warehouse 
management in intermodal and multimodal transportation is complicated by the problem of selecting an 
assortment of cargo in conditions of limited storage space. The solution to this problem should be 
mathematically correct, automatizable, and scalable, since different types of warehouses and different 
transport systems are concentrated in the territory of multimodal transport and logistics centers. We propose 
to apply the genetic algorithm as a mathematical apparatus for solving the above problem and a ready-made 
software implementation for the optimal placement of cargo units. The algorithm determines the optimal 
subset of cargo units that can be placed in the warehouse taking into account the weight and value priority 
constraints of the selected cargo units. 
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1   Introduction 
Combinatorial optimization is a field of 
mathematical optimization that deals with the search 
for the best combinations of elements from a given 
set to achieve a certain goal. From the mathematical 
point of view, the search includes maximization or 
minimization of some function associated with these 
elements. In logistics as well as in other fields 
combinatorial optimization is applied in goal 
setting, planning, and resource allocation. Finding 
optimal solutions under constraints makes this area 
of mathematical optimization an important tool for 
improving the efficiency and productivity of 
logistics operations. 

A traditional problem for the formulation of the 
combinatorial optimization problem is the 
determination of the most efficient routes for cargo 
delivery, including for several directions. In 
particular, solutions for routing dependent or 
independent vehicles are proposed, considering the 
limits of their capacity and the length of the route 

with some number of locations for stops [1], as well 
as taking into account the state of traffic in real-
time, [2]. The complexity of solving such problems 
is increased by introducing additional parameters, 
such as heterogeneity of the fleet of vehicles and 
warehouses, and the presence of time windows in 
the process of picking and delivery of cargo, [3], 
[4]. 

Popular for implementation are solutions for 
finding the time-optimal route of one or several 
agents between objects, [5], and the problem can be 
complicated by the associated operations of 
delivery, placement of cargo in the warehouse, 
packing, packaging with changing the format, 
weight, and size of the cargo unit, [6]. Of high 
practical significance are the solutions to the multi 
transportation problem of a traveling customer who, 
in addition to determining the optimal route, faces 
the problem of planning purchases at markets, [7]. 

Common in these solutions is the search for the 
optimum with the lowest system cost. But since the 
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optimal cost of the combinatorial solution should 
tend to zero, its obtaining turns out to be eventually 
impossible under the existing constraints. Therefore, 
the search for the optimum involves such additional 
aspects as reducing the complexity of the solution 
process, speed of finding a solution, compliance 
with constraints and practical applicability. 

The factors of intermodality and multimodality 
of transportation seriously complicate the problem 
of combinatorial optimization. At the same time, 
less attention is paid to the problems of optimization 
of warehouse space management in transport and 
logistics centers than, for example, to the search for 
optimal selection of transport modes involved in 
intermodal or multimodal transportation. When 
designing for several modes of transport a network 
of circulation service of the territory, [8] or in 
network optimization models for determining the 
order and placement of materials at production 
facilities, [9] the focus of attention is on routing - 
the solution should provide maximum throughput, 
minimize waiting time and storage costs. 

It is not possible to use off-the-shelf 
combinatorial optimization solutions for transport 
routing in warehouse management systems. Off-the- 
shelf solutions are oriented to agents engaged in 
transportation or ordering transportation, but not to 
warehouse logistics agents. Warehouse logistics has 
its own specifics. There is a fleet of material 
handling equipment - cranes, industrial forklifts, 
conveyors, conveyors, and others - all in a single 
mutually determined complex relationship. There is 
the warehouse space, which can vary in warehouse 
type, capacity, specifics of placement, movement, 
and storage of cargo units. 

To present the scope of the specific features of 
the warehouse management system, we give a 
classification of one of the types of warehouse - a 
tiered warehouse is subdivided into the following 
subtypes: 
• high-bay warehouse; 
• ceiling rack warehouse; 
• pallet racking warehouse; 
• cantilever racking warehouse; 
• cellular warehouse; 
• through-racked warehouse; 
• drive-through racking warehouse; 
• a warehouse with circulating racks. 

On the territory of a multimodal transport and 
logistics center there may be several types of 
warehouses or several sub-types of warehouse. And 
their management from the point of view of a 
complex system requires multi-criteria and complex 
solutions. This becomes obvious if we take into 
account that a multimodal transport and logistics 

center is located in a network-wide (multimodal) 
transport hub and serves several modes of transport 
when combining the technology of cargo processing 
at the terminals included in its composition, [10]. 

In comparison with intermodal transportation, 
the multimodal type of transportation is complicated 
precisely by the level of responsibility of the 
operator, who controls all stages of warehousing and 
internal movement. The operator of a multimodal 
transport and logistics center provides a full cycle of 
basic and end-to-end physical processes in the 
warehouse, and operations related to the use of 
different modes of transport. For example, cargo 
arrives by rail to the warehouse (in bulk), then it is 
processed, reloaded, and packed (transshipment), 
followed by loading on a sea vessel and shipment of 
cargo. 

Specialized warehouses for cargo storage and 
processing in the architecture of a multimodal 
transport and logistics center are independent 
clusters united in a single network topology. For the 
effective functioning of the entire network of 
warehouses, it is necessary that the work of each 
cluster is organized optimally. 

Thus, there is a space for the action of 
optimization models and there is a need for solutions 
to combinatorial optimization problems. We see the 
main task as the development of a solution that 
optimizes the management of warehouse space 
within a separate cluster in the territory of a 
multimodal transport and logistics center. The 
complexity of the problem is increased by taking 
into account the parameters characterizing the cargo 
units placed in the warehouse. 

If we qualify the problem in mathematical terms, 
we are dealing with an NP-complete problem. We 
assume that for a task from the class NP, it is 
possible to reduce any other task from this class to it 
in polynomial time. This means that if a polynomial 
algorithm is found for an NP-complete problem, 
then all problems from the NP class can also be 
solved in polynomial time. Thus, the complexity 
bounds of the sought algorithm are defined. 

The combinatorial optimization algorithms 
associated with the problem are NP-complete in 
nature, which makes it appropriate to investigate 
ways to speed up and simplify the procedures for 
solving these problems. The proposed research 
includes material describing and justifying the 
application of an approximate combinatorial 
optimization algorithm, the genetic algorithm, to 
solve the problem at hand. The software 
implementation of the application of genetic 
algorithm for optimization of warehouse space 
management is developed. The presented research 
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results effectively fulfill the requirements to reduce 
the complexity of the solution process, take into 
account the constraints to avoid the algorithm hitting 
the local optimum, and have practical significance. 
The performance is experimentally evaluated using 
machine experiment results. The posed problem can 
be transformed by introducing new parameters or 
horizontal scaling to additional clusters of a 
multimodal transport and logistics center. 

 
 

2 Approaches and Algorithms for 

 Optimization of Warehouse 

 Processes 
The need to optimize various aspects of the 
warehouse management system is great. The subject 
area of optimization can be physical processes and 
warehouse operations in aggregate or individually. 
However, the local optimum found for a warehouse 
operation or even a process is limited to a local 
search. And this, on the one hand, does not allow us 
to be sufficiently confident in the convergence of the 
solution, and on the other hand, the result based on 
the local search can not be extended to global 
warehouse processes. Hence the a need to design 
and implement solutions based on globally optimal 
algorithms. 

Methods that generate a population consisting of 
samples of points in parameter space, perform a 
parallel evaluation of their proximity to a target, and 
then recombine them in some way to bring the 
population to a global optimum have been known 
for a long time and have not lost their relevance, 
[11], [12], [13]. An overview of the methods used to 
achieve local or global optima is presented with 
more objectivity in academic publications, [14], 
[15], [16] and abstract studies, [17], [18], [19], [20]. 
However, selecting and justifying the application of 
mathematical apparatus and methods to solve the 
problem at hand is a necessary step in conducting 
the study. For this purpose, it was necessary to 
define both the subject area of the research and 
objectify its choice taking into account the 
implementation requirements (including software 
implementation) and limitations associated with the 
initial data. Otherwise, the result of determining the 
global optimum by one or several methods will be 
unavailable for machine experimentation. 

For this study the subject area was chosen as the 
problems of optimization of cargo placement in the 
warehouses of a multimodal transport and logistics 
center. 

Limited storage space creates variability in the 
placement of cargo units, so the prioritization should 

be based on some parameters. In the conditions of 
specificity of intermodal and multimodal 
transportation such parameter is the value of cargo 
unit, and the integer value can be taken into account 
as a qualitative or quantitative attribute. Another 
parameter is the weight of a cargo unit, which is a 
classical approach to the organization of 
warehousing, and the parameter is accepted by us 
from the consideration that on the territory of a 
multimodal transport and logistics center, there may 
be warehouses of different types, in the management 
of which there is something in common. 

If we simplify as much as possible the 
combinatorial optimization problem about the 
placement of cargo units in the warehouse, we 
obtain the classical “knapsack problem” - it is 
necessary to put a certain number of items in it, 
having at our disposal data on the parameters of 
knapsack and the items themselves, [21]. 

Despite the different properties of the problem 
and its wide application in various fields ranging 
from linguistics to cryptography, it is formally 
solved by the method of enumeration, [22]. 
Hypothetically, each item can end up in a knapsack, 
and therefore the selection of a set of items is done 
by taking into account certain inputs. In our case, 
these are the value and weight parameters of the 
cargo units. 

The Knapsack Problem has several varieties, 
each with different conditions and constraints: 
1. 0-1 Knapsack Problem. This is the basic form of 

the Knapsack Problem in which: each item can 
be either included in the knapsack (value 1) or 
excluded (value 0). The goal is to maximize the 
total value of the selected items, provided that 
their total weight does not exceed a given 
knapsack capacity. 

2. Bounded Knapsack Problem. In this variation, 
each item can be selected a limited number of 
times (e.g., no more than 3). This allows for 
cases where items are available in limited 
quantities. 

3. Unbounded Knapsack Problem. In this version, 
each item can be selected an unlimited number 
of times. This is suitable for situations where 
items can be reused or ordered in large 
quantities. 

4. Multi-dimensional Knapsack Problem. This 
problem includes several constraints (e.g., 
weight and volume), which makes it more 
complex. Each item has multiple weights 
corresponding to different constraints. The goal 
is to maximize the total value while satisfying 
all constraints. 

5. Multiple Knapsack Problem. Here there are 
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multiple knapsacks, each with a different 
capacity. The problem is to distribute items 
among multiple knapsacks to maximize the total 
value. 

6. Multiple-Choice Knapsack Problem. In this 
variation, items are divided into groups, and you 
must choose exactly one item from each group. 
This adds an extra level of difficulty to the 
problem. 
Of all the varieties of problem statements, we 

chose the one that best lends itself to further 
transformation of the conditions imposed on the 
warehouse space - the “0-1 Knapsack Problem”. 
Besides, it has a clear structure and conditions, 
which makes it a universal tool, as we do not limit 
the possibility of implementing the obtained solution 
in any of the MTLC warehouses. But, if we take into 
account the mechanism of pre-sorting before 
placement in one of the MTLC warehouses, then the 
mathematical apparatus of the solution should be 
based on the “Multiple Knapsack Problems” variety. 
The variety “Multi-dimensional Knapsack Problem” 
is redundant for the current formulation of the 
problem, since the parameter “value” already has a 
complex character and includes the cost of 
placement in the territory of the warehouse. 

Accordingly, the basic condition is defined as 
follows: a cargo unit can be either taken in its 
entirety or not taken at all. 

In warehouse logistics, goods can also have 
different parameters such as turnover, shelf life, and 
storage condition requirements. This information 
can be integrated into the model of the knapsack 
problem, allowing us to take into account not only 
physical constraints but also economic aspects of 
goods storage and handling. 

The resulting solution can be further 
complicated by selecting the “Multi-dimensional 
knapsack problem” condition, adding the “loading 
time” parameter, or the “Multiple Knapsack 
Problem” condition, if it is necessary to solve the 
problem for several adjacent warehouses within a 
multimodal transport and logistics center. 

The brute-force method is used in a number of 
algorithms that can be compared to each other. For 
example, the brute-force method and the dynamic 
programming method are both exact algorithms 
whose operation leads to an exact solution. 
However, while the complexity of the brute-force 
method is O(n!), the complexity of the dynamic 
programming method is O(w*n). Despite the 
simplicity of implementation and independence from 
the type of input data, the brute-force method is 
time-consuming. In addition, we assume that the 
number of possible solutions to the problem is large, 

so the brute-force method is not applicable to this 
study. The method of dynamic programming has the 
same advantages, but there is no universal algorithm 
for its application, and obtaining an accurate result 
requires a large amount of computational work. The 
method of branches and bounds by analogy with the 
method of complete enumeration has the same 
mechanism of work and can reduce time costs, but it 
is very sensitive to the initial data. 

Among the algorithms that do not provide a 
single correct solution but offer approximate 
accuracy are the greedy algorithm and the genetic 
algorithm. Greedy algorithms take locally optimal 
solutions at each step, hoping that the final solution 
will also be optimal. However, they do not always 
lead to a globally optimal solution, especially in 
complex problems such as the traveling salesman 
problem or the graph partitioning problem. Genetic 
algorithms are stochastic methods that utilize the 
mechanisms of natural selection and mutation to find 
solutions. They can find good approximate solutions 
in complex search spaces, but do not guarantee to 
find the optimal solution. 

The greedy algorithm, having complexity 
O(n*log(n)), is simple enough in realization and can 
work with large values of n, but its essential 
disadvantage for application in the chosen subject 
area is that the convergence of the solution is 
conditioned mainly by the value parameter of the 
cargo unit, and the warehouse parameters are 
derived in calculations. In the long run, this may 
lead to inefficient solutions to the problem at hand. 

Thus, if in the structure of requirements for the 
choice of algorithm a combination of solution speed, 
insensitivity to the initial data, the ability to work 
with several factors, and average computational 
power is stated, then the optimal option is the choice 
of genetic algorithm. The genetic algorithm has high 
speed, can handle large values of n, is independent 
of the type of input data, and does not require 
significant computational power. And, although the 
algorithm does not guarantee finding the only 
correct solution, it always finds the best result 
among the possible ones, [23]. 

The genetic algorithm uses a stochastic 
approach, which allows it to find good solutions in a 
reasonable amount of time even when the size of the 
input data increases significantly. The genetic 
algorithm works based on a population of possible 
solutions, which allows it to explore the solution 
space more efficiently. Unlike deterministic methods 
that can get stuck in local minima, genetic 
algorithms use selection, crossover, and mutation 
mechanisms to create new solutions. This helps 
avoid premature convergence and contributes to 
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finding better solutions. A genetic algorithm can 
easily adapt to different problem conditions. The 
user can change parameters such as population size, 
mutation probability, and selection methods, which 
allows optimizing the search process depending on 
the specific requirements of the problem. All these 
aspects and the results of comparison with other 
methods are the basis for choosing a genetic 
algorithm as a tool for solving the problem. 

 
 

3   The Nature and Stages of a Genetic 

 Algorithm 
The genetic algorithm belongs to a group of 
evolutionary computation methods that combine 
various applications of evolutionary principles. 
John Holland proposed the concept of encoding 
solutions in the form of “chromosomes”, applying 
crossing and mutation operators to create new 
solutions, and evaluating and selecting these 
solutions based on their relevance. He explored 
their potential for solving complex optimization 
problems and developing adaptive systems, [24]. 

The operation of the algorithm consists of 
searching for elite instances in the population, and 
the evolutionary process ends with finding a 
satisfactory solution. Of course, many evolutionary 
simulations with increasing instances in the 
population will require an increase in 
computational resources. But in the case of the 
problem we are solving, we operate not with 
individual cargo units, but with groups of them 
formed according to the chosen value and weight 
parameters. 

The main stage of genetic algorithm operation 
is a cyclic sequence. 

Population initialization. The genetic algorithm 
starts by creating an initial population consisting of 
randomly generated individuals. Each individual is 
represented as a chromosome that encodes a 
potential solution to the problem (1 for a usable 
cargo unit and 0 for a non-usable one). A solution 
in the population is a set of such chromosomes - a 
genome. 

Evaluation of adaptability. The fitness function 
is usually determined on a task-specific basis - all 
necessary requirements are considered to find the 
“optimality” of the solution. Each individual in a 
population is assessed by an adaptation function, 
which measures how well an individual solves a 
problem. This determines which individuals are 
more “successful” than others and therefore have a 
better chance of survival and reproduction. The 
higher the value of the fitness function, the better 

the solution. This allows the best-adapted solutions 
to be selected to pass on their characteristics to the 
next generation of the population. 

Once the population is evaluated, individuals 
are selected for crossover to create a new 
generation. The genetic algorithm allows the use of 
different selection methods (e.g., roulette or 
tournament selection) and different crossover 
strategies (single, double, etc.), allowing you to 
experiment with approaches to achieve the best 
results. 

Selection. Based on the values of the fitness 
function, individuals are selected to create the next 
generation. There are various selection methods 
such as rank selection, and tournament selection 
(roulette wheel selection), that help to retain the 
best-adapted individuals while maintaining the 
diversity of the population. 

Crossbreeding (crossover). Selected individuals 
are crossed to create offspring. This process 
involves combining the genetic information of the 
two parents to create new individuals with 
characteristics of both parents. Crossover occurs by 
combining the genetic components of the parental 
individuals, resulting in offspring with new 
combinations. There are several methods of 
crossover, including single-point and multi-point 
crossover. This allows you to introduce diversity 
into a population and explore different 
combinations of genetic components to find the 
best solutions for a particular problem. 

Mutation. To allow new solutions to appear in 
the population (increase genetic diversity) and 
prevent premature convergence of the algorithm, a 
mutation operation is used. This is a random change 
in the genetic components of an individual (one or 
more genes in a chromosome) that can lead to new 
solution variants - potentially more successful 
solutions. This helps to explore a wider search 
space. 

To tune the mutation parameters in a genetic 
algorithm used to optimize the placement of cargo 
units in a warehouse, it is important to consider 
several key aspects. The optimal mutation 
percentage typically ranges from 1% to 10% of the 
total number of genes in a chromosome. A low 
percentage can lead to a lack of diversity, while too 
high can disrupt useful combinations of placement 
in limited warehouse space. 

Different types of mutational operations can be 
applied: a) random exchange: the exchange of two 
randomly selected genes; b) random permutation: 
random rearrangement of the gene sequence; c) 
inversion: inverting the order of a particular 
segment of the chromosome. The inversion type is 
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used to solve the problem at hand because this 
operation introduces the least entropy into the 
research process. After crossing and mutation, a 
new generation is created, which replaces the 
previous generation. 

Population replacement. The new individuals 
created by crossover and mutation replace the old 
population, and the process repeats. This cycle 
continues until an optimal or near-optimal outcome 
is achieved (depending on the stipulated stopping 
condition). Examples of a stopping condition 
include, but are not limited to, a maximum number 
of generations, the achievement of a given level of 
adaptability, or the achievement of a certain level of 
stability of strong solutions. 

The operators of the genetic algorithm work 
together to provide an efficient search for optimal 
solutions through a combination of selecting the 
best individuals, creating new offspring through 
interbreeding, and maintaining diversity through 
mutation. 

The benefits and experience in implementing 
the results of optimization problem- solving drew 
attention to the genetic algorithm, expanding its 
field of application. Since then, the number of 
publications and interest in this field has increased 
significantly, opening new perspectives with the 
application of artificial intelligence, [25]. However, 
a genetic algorithm is not a panacea for solving all 
optimization problems, like any algorithm, it should 
be applied consciously and reasonably. 
 
 
4  Description of the Logic of Genetic 

 Algorithm Application 
Genetic algorithms can get stuck in a local optimum 
for reasons related to their mechanism of operation 
and population structure. The influence of factors 
contributing to this phenomenon should be avoided, 
since their manifestation may distort or reduce the 
efficiency of genetic algorithm application. 

A lack of diversity in the population under study 
should be avoided. A population that is close to 
homogeneity will cause the algorithm to explore a 
limited solution space. As a result, individuals may 
get stuck in local optima because there are no 
alternative paths to explore. In the current study, this 
factor is offset by the diversity of cargo unit types 
that can potentially fill the storage space. 

Strong selection, in turn, may result in the 
algorithm being unable to explore a wider range of 
solutions, getting stuck in a local optimum. In the 
practical domain, if individuals are selected too 
aggressively based on their fitness, there is a risk 

that less fit but potentially more promising solutions 
will be weeded out. This factor is considered a 
moderate risk, which is managed by dynamically 
tracking and changing the value parameter of the 
cargo unit when necessary. 

A small number of mutations is a factor that 
limits the possibility of finding new solutions. The 
frequency with which a mutation is applied during 
evolution is also important. If the mutation 
probability is low, new genetic combinations appear 
rarely, which can also contribute to getting stuck in 
local optima. This factor qualifies as a significant 
risk in the current study, and its management has 
two trajectories - risk acceptance and splitting the 
group of cargo units into smaller batches. The choice 
of trajectory is determined by the value parameter - 
the group of cargo units with higher value relative to 
the groups in the random population is split into 
parts in the proportion of 2:3:5, and the group with 
lower value remains within the boundaries of the 
natural mutation process. This approach allows the 
algorithm to utilize computational resources 
efficiently. Groups with different adaptability can 
generate a variety of solutions, which increases the 
chances of finding an optimal solution without 
significant computation time. 

Thus, groups with higher value (50%) are 
labeled as highly adapted, this preserves diversity 
but prevents premature convergence to local 
minima. Theoretically, the application of a 1:1:1:1 
proportion provides equal access to selection for all 
individuals, regardless of their level of adaptation, 
but the choice of this proportion will not allow for 
differences in cargo value. 

In addition, it was decided to apply mutation 
only in every second or third iteration in order to 
maintain population stability and avoid excessive 
variability. 

The structure of the target function is also a 
limiting factor for the genetic algorithm. If the target 
function has many local optima, the genetic 
algorithm may get stuck in one of them. The 
influence of this factor is reduced by entering into 
the work of the research mechanism those data that 
were obtained earlier for the warehouse space under 
study, or the data of comparable warehouse space on 
the territory of a multimodal transport and logistics 
center. 

Problems with crossover refer to vulnerabilities 
in the very workings of the research mechanism. If 
the logic of crossover implementation does not 
ensure the mixing of genetic information, it leads to 
the fact that new individuals of a random population 
will be too similar to their parents and will not be 
able to explore new solution areas. In this study, the 
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potential problems of crossover performance are 
addressed by preserving the replacement history of 
the population and introducing crossover re- 
execution functions if the similarity between 
generations is above a limit value of 0.75. 

A value of 0.75 represents a compromise 
between the speed of convergence and exploration 
of the solution space. Too low a convergence value 
can slow down the process because new generations 
will be significantly different from previous 
generations, which can lead to the loss of good 
solutions already found. On the other hand, a value 
of 0.75 preserves a sufficient number of good genes 
from previous generations, which contributes to 
faster finding of optimal solutions. Similarity within 
0.75 allows the efficient use of selection and 
crossover methods and indicates that the progeny of 
the new generation should be sufficiently different 
from their ancestors. This avoids premature 
convergence to local minima and helps to maintain 
diversity in the population. If the similarity between 
generations is too high (e.g., 0.9 or higher), it may 
cause the algorithm to get stuck in the same solution 
without exploring other possible options. 

The described factors of algorithm closure in 
local optimums and solutions to contain their 
influence emphasize the importance of maintaining 
diversity in the population, proper choice of 
selection and mutation operators, and consideration 
of the structure of the target function when using 
genetic algorithms to minimize risks and manage 
risks efficiently.  

 
 

5   Building a Mathematical Model 
Within the warehouse operation optimization 
problem, a genetic algorithm is used to minimize the 
cost of allocating cargo units in a constrained 
warehouse space. Each chromosome represents a 
sequence of warehouse operation execution for 
allocation. The process of solving the problem of 
placing cargo units in the warehouse space taking 
into account the given cargo parameters on the basis 
of a genetic algorithm consists of several steps: 

1. Generation of the initial population. Randomly 
generate an initial population of sets of cargo 
units, where each set represents a possible 
solution (combination of cargo units to be 
placed in the warehouse space). 

2. Adaptability Assessment. Each set of cargo 
units is assigned an adaptability value 
according to a target function - the total value 
of the cargo units in the set. 

3. Selection. From the initial population, “parents” 
are randomly selected to create a new 

population based on their fitness values.4. 
Crossbreeding. The selected parents are 
combined to create new offspring. A crossover 
operator will be used, where breakpoints in the 
sets of parents are randomly selected and the 
offspring inherit parts of items from each 
parent. 

5. Mutation. A random chromosome representing 
the order of the cargo units is selected from the 
current population. Next, the order of a 
particular segment of the chromosome is 
inverted. Sequentially, a mutation occurs, 
making random changes to the set of cargo 
units - randomly adding or removing cargo 
units from the set. After the mutation step, the 
new chromosome can lead to a change in 
fitness (placement cost), which forms the best 
solution to the optimization problem. 

6. Reproduction. A new population is formed by 
combining selected, crossed, and possibly 
mutated sets of cargo units. 

7. Evaluation of the new population. The cycle 
procedures, from evaluation of fitness to 
reproduction, are repeated until the stopping 
criterion is reached. Stopping will occur when a 
sufficient level of stability of strong solutions is 
achieved. 

8. Completion. The expected outcome of the 
genetic algorithm is the optimal set of cargo 
units from the last population. This set will 
represent the optimal solution to the warehouse 
space allocation problem, given the value and 
weight constraints of the cargo units. 

To solve the problem of optimization of 
warehouse operations on the basis of a genetic 
algorithm, the mathematical apparatus with the 
problem formulation “0-1 Knapsack Problem” was 
used. This formulation is an important example of an 
optimization problem with constraints. The problem 
illustrates the basic principles of resource selection 
and allocation in the presence of constraints and is 
the basis for the development of various algorithms 
for solving such problems. It consists of selecting a 
set of items with given weights and values so as to 
maximize the total value of the items placed in a 
backpack without exceeding its maximum capacity. 
Understanding this problem helps in further studying 
more complex optimization problems and 
developing efficient algorithms to solve them. 

There is a warehouse with bounded space C and 
a set of n cargo units, each of which has a certain 
weight wi and value vi. It is necessary to choose such 
cargo units that their total weight does not exceed 
the volume of the warehouse space, and the total 
value is maximized. 
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Let: n be the number of cargo units, wi be the 
weight of cargo unit i, vi be the value of cargo unit 
i, C be the maximum warehouse space, xi be a 
variable that takes the value 1 if cargo unit i is 
placed in the warehouse and 0 otherwise. 

Given the “0-1 Knapsack Problem” condition, 
the problem is formulated as follows: maximize 

 under the constraints: 
 

≤ C, xi ∈ {0, 1}, 
i = 1, …, n. 

 
This constraint ensures that the total weight of 

the selected items does not exceed the capacity of 
the backpack. 

In this formulation, the problem is represented 
as follows: 

Target function:  
 
The constraint ≤ C reflects the 

physical constraints and guarantees that the total 
weight of the selected items does not exceed the 
capacity of the backpack. 

Binary variables: xi ∈ {0, 1}, meaning that each 
item can either be included in the backpack (xi = 1) 
or excluded (xi = 0). This makes the problem 
discrete and allows combinatorial optimization 
methods to be used to solve it. 
 

 
6 Applying a Genetic Algorithm to 

 Solve a Problem 
In this section, a genetic algorithm will be 
implemented and a program will be written to run an 
application to find an optimal solution to the 
placement of cargo units in a limited warehouse 
space. The workflow of the software duplicates the 
steps of the genetic algorithm. 
The BackpackItem class represents a cargo unit in 
the optimal warehouse occupancy problem. The 
following fields of this class are highlighted: 
• Name: a string field designed to store the 

name of the cargo item. 
• Weight: an integer field representing the 

weight of the cargo unit. 
• Worth: An integer field representing the value 

or cost of the cargo unit. 

    internal class BackpackItem 
    { 
        /// <summary> 
        /// Name, weight and value. 
        /// </summary> 
        public string Name; 
        public int Weight; 
        public int Worth; 
 
        /// <summary> 
        /// Class constructor that initializes object parameters. 
        /// </summary> 
        /// <param name="weigth"></param> 
        /// <param name="worth"></param> 
        /// <param name="name"></param> 
        public BackpackItem(int weigth, int worth, string name) 
        { 
            Weight = weigth; 
            Worth = worth; 
            Name = name; 
        }  

 
The BackpackGenome class describes a 

genome and represents a separate warehouse on the 
territory of a multimodal transport and logistics 
center for the work of the algorithm. If we refer to 
the terminology of genetic algorithm, the 
warehouse can be represented as a genome. Its 
description is represented by the following fields: 
• Fitness: a real field designed to store the 

fitness value of the genome. Fitness reflects 
the degree of suitability of an individual 
warehouse to accommodate and store the 
selected cargo item. 

• ItemsPicked: a list of objects of class 
BackpackItem representing cargo units 
selected for placement in this warehouse (in 
genetic algorithm terminology - for packing 
in this genome). This list of objects stores 
information about which cargo units were 
included in this optimal placement solution. 

• Parameter: an integer field representing the 
warehouse parameter as a number obtained 
by converting a string of string from a binary 
value to a decimal value. 

    internal class BackpackGenome 
    { 
        /// <summary> 
        /// The importance of genome adaptation and a list of selected subjects. 
        /// </summary> 
        public float Fitness; 
        public List<BackpackItem> ItemsPicked = new(); 
        /// <summary> 
        /// Genome parameter. 
        /// </summary> 
        public int Parameter; 
        /// <summary> 
        /// Class constructor that initializes genome parameters. 
        /// </summary> 
        /// <param name="parameter"></param> 
        public BackpackGenome(int parameter) 
        { 
            Parameter = parameter; 
            Fitness = 0; 
        }  
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The BackpackSolver class represents the 
genetic algorithm itself. The methods and variables 
used will be described below. 
• CrossOverProbability, MutationProbability, 

PopulationSize, GenerationCount - constants 
representing crossing and mutation 
probabilities, population size and number of 
generations. 

• MaxValue - genome capacity. 
• crossPoint, mutatePoint, child1, child2 - 

auxiliary variables for crossing and mutation. 
• NextGeneration and Solutions - lists of 

objects of BackpackGenome class to 
represent the next generation and current 
solutions. 

• bestFitness - a field to store the best genome 
with the best fitness. 

• crossedGenomes and crossoverPartner - 
fields for storing crossed genomes and 
crossing partner results. 

• RunGeneticAlgorithm - method to run the 
genetic algorithm. Outputs results to the 
console, including selected items, maximum 
weight, current weight, and current value. 

• Evolve - Method for evolving the genetic 
algorithm, including generating the next 
generation, crossbreeding, mutating, and 
selecting the best genomes. 

• CalculateFitness - A method for calculating 
genome fitness given the weight and value of 
items. 

• Crossover and Mutation - methods for 
performing genome crossover and mutation 
operations. 

• GenerateRandomSolutions - method for 
generating random genomes for an initial 
population. 
 
 

7 Generation of the Initial Population, 

 Generate Random Solutions 
When the user enters specific integer values into 
the fields of the BackpackItem class, the algorithm 
creates an initial population of random solutions. 
• populationSize - method parameter 

indicating how many genomes should be 
generated for the initial population. 

• temp - temporary list of genomes to be 
returned by the method. 

• Cycle for (i from 0 to populationSize - 1) to 
generate the required number of genomes. 

• new BackpackGenome(Rnd.Next(1, 
Int32.MaxValue)) - creation of a new 
genome using the constructor of 

BackpackGenome class. A random integer 
from 1 to Int32.MaxValue is passed to the 
constructor parameter. 

        public static List<BackpackGenome> GenerateRandomSolutions(int populationSize) 
        { 
            // Temporary list for storing generated genomes. 
            var temp = new List<BackpackGenome>(); 
            // Each item in the backpack is represented by one bit, the maximum value of the 
parameter is the number that has all bits set to 1. 
            int maxParameter = (1 << Selection.Count) - 1; 
            // Maximum number of attempts. 
            int maxAttempts = 1000; 
            for (var i = 0; i < populationSize; i++) 
            { 
                // Initialization, genome parameter = 0. 
                int randomParameter = 0; 
                // Remaining weight, initially = 0. 
                int remainingWeight = MaxValue; 
                // Attempt number. 
                int attempts = 0;  
 

 

8 Adaptability Function, 

 Calculate Fitness 
The implementation of the genome fitness 
function by the CalculateFitness method is done as 
follows: 
• Summarizing the value of the selected items in 

the Fitness property of the genome. 
• Calculating the penalty for exceeding the 

maximum weight - the penalty is calculated 
based on the difference between the total 
weight of the selected items and the maximum 
payload value to limit decisions that lead to 
overloading. 

• Once the accommodation is calculated, a 
check is performed. If the fitness value is found 
to be less than 1, it is corrected and set to 1. 
This ensures that the genome's fitness is not 
negative. 

        public static void CalculateFitness(BackpackGenome genom) 
        { 
            // Summarizing the value of selected items. 
            genom.Fitness += genom.ItemsPicked.Sum(t => t.Worth); 
        } 
        /// <summary> 
        /// Genetic crossbreeding. 
        /// </summary> 
        /// <param name="parent1"> Parent 1.</param> 
        /// <param name="parent2"> Parent 2.</param> 
        /// <returns></returns> 
        public static int[] Crossover(BackpackGenome parent1, BackpackGenome parent2) 
        { 
            _crossPoint = Rnd.Next(1, Selection.Count - 1); 
            // Create a mask that contains 1's in all bits up to (and including) the breakpoint and zeros 
afterward. 
            int mask = (1 << _crossPoint) - 1; 
            // Bits before the breakpoint from one parent and bits after the breakpoint from the other 
parent are taken. 
            _child1 = (parent1.Parameter & ~mask) | (parent2.Parameter & mask); 
            _child2 = (parent2.Parameter & ~mask) | (parent1.Parameter & mask); 
            // Repeat the crossover if both descendants are 0 
            if (_child1 == 0 && _child2 == 0) 
            { 
                return Crossover(parent1, parent2); 
            } 
            // The array is returned as the result of a crossover operation. 
            var crossedGenomes = new int[2]; 
            crossedGenomes[0] = _child1; 
            crossedGenomes[1] = _child2; 
            return crossedGenomes; 
        }  
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9  Sort 
The application of a genetic algorithm is intended 
as an expected result to obtain an optimal solution 
to the problem of placing the selected cargo units in 
the warehouse, taking into account the criteria of 
weight and value. For this purpose, the Sort method 
is implemented in the algorithm. 

Cycle for (i from 0 to Selection.Count - 1) to 
enumerate all cargo units in the Selection list. int 
check = temp & 1 << i - creation of the check 
variable, which checks whether the bit in the i-th 
position in the warehouse parameter (temp) is set. if 
(check == (1 << i)): check the condition that the bit 
in the i-th position is set. If the condition is met, the 
cargo unit with index i is added to the list of cargo 
units selected for placement in the warehouse - the 
genome.ItemsPicked list (genom.ItemsPicked). 

Thus, the Sort method looks at each bit of the 
genom parameter and, if the bit is set, adds the 
corresponding item to the genom's list of selected 
items. This method is used to restore the order of 
the selected cargo items to be placed in the 
warehouse based on the warehouse parameter, but 
taking into account the results of the sort. 
public static void Sort(BackpackGenome genom) 
        { 
            //  Temporal variable temp, binary representation of the genome. 
            int temp = genom.Parameter; 
            //  Cycle through all items in the item list.  
            for (var i = 0; i < Selection.Count; i++) 
            { 
                // The bit at position i in the temp variable is checked. If the bit is equal to 1, the check 
will be equal to 1 << i, otherwise it will be equal to 0. 
                int check = temp & 1 << i; 
                // If the item has been selected (the bit at position i is 1), the item is added to the 
ItemsPicked list of the genom object. 
                if (check == (1 << i)) 
                { 
                    genom.ItemsPicked.Add(Selection[i]); 
                } 
            }  

 
 

10 Breeding and Crossbreeding 

 Through the Breaking Point, 

 Crossover 
Next, the algorithm implements its inherent 
evolution functions with respect to a randomly 
generated initial population of objects - new 
BackpackGenome(Rnd.Next(1, Int32.MaxValue)), 
but after it has been checked for adaptability and 
sorted. 

The function returns an array that necessarily 
contains exactly two descendants of the genome. 
First, a breakpoint is defined that will be used to 
separate the genes of the parents. This point cannot 
be the first or last element to ensure that the parent 
and descendant genes are distinct. 

Then two descendants are created. Each 
descendant receives a copy of the range of elements 
from the corresponding parent up to the breakpoint. 

The loop then processes all elements from the 
second parent and adds them to the offspring1, in 
case the current gene in question is not already 
present in the offspring. The same is done for the 
offspring offspring2. Finally, the function returns 
an array containing the two offspring resulting from 
the cross. 

If suddenly both descendants are 0, the 
crossover is executed again to avoid the situation 
where the descendants are completely absent. In 
this way, the consistency of the algorithm is 
ensured by the controlled evolution of the 
population over several generations. 

        public static int[] Crossover(BackpackGenome parent1, BackpackGenome parent2) 
        { 
            _crossPoint = Rnd.Next(1, Selection.Count - 1); 
            // Create a mask that contains 1's in all bits up to (and including) the breakpoint and zeros 
afterward. 
            int mask = (1 << _crossPoint) - 1; 
            // Bits before the breakpoint from one parent and bits after the breakpoint from the other 
parent are taken. 
            _child1 = (parent1.Parameter & ~mask) | (parent2.Parameter & mask); 
            _child2 = (parent2.Parameter & ~mask) | (parent1.Parameter & mask); 
            // Repeat the crossover if both descendants are 0 
            if (_child1 == 0 && _child2 == 0) 
            { 
                return Crossover(parent1, parent2); 
            } 
            // The array is returned as the result of a crossover operation. 
            var crossedGenomes = new int[2]; 
            crossedGenomes[0] = _child1; 
            crossedGenomes[1] = _child2; 
            return crossedGenomes; 
        }  

 
 

11    Mutation 
Population mutation is also a variant of controlled 
population evolution. The method returns a new 
genome obtained by changing the state of a random 
bit. It is mandatory to check whether mutation leads 
to exceeding the storage capacity. 

First, a random mutation point is defined, 
represented by the mutatePoint variable. Then a bit 
mask temp is created that inverts the bit at the 
specified point. 

It is then checked to see if inverting the 
selected bit  causes  the  maximum  storage  
capacity  to  be exceeded. If the new genome 
complies with the limits, the result of the inversion 
is returned, otherwise the original genome is 
returned. 

        public static int Mutation(BackpackGenome genom) 
        { 
            // Index of a random item in the Selection list. 
            _mutatePoint = Rnd.Next(0, Selection.Count + 1); 
            // Create a mask by setting the bit according to the index.  
            int temp = (1 << _mutatePoint); 
            // We check whether the genome weight after mutation does not exceed the maximum 
allowable weight. 
            if (GetWeight(genom.Parameter ^ temp) <= MaxValue) 
            { 
                // Bringing back the mutated genome. 
                return genom.Parameter ^ temp; 
            } 
            else 
            { 
                // Returning the original genome. 
                return genom.Parameter; 
            } 
        }  
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12    Evolve 
This method combines adaptation calculation, 
crossbreeding, mutation, and selection of the best 
genomes: 
• items - list of genomes of the current 

generation. 
• Solutions and NextGeneration - lists of 

BackpackGenome class cargo units for the 
current generation and the next generation. 

• Cycle for (i from 0 to 
GENERATIONCOUNT - 1) - evolution of 
the genetic algorithm over several 
generations. 

• Sort(Solutions[k]) and 
CalculateFitness(Solutions[k])  to   sort   
items   in a knapsack and calculate genome 
fitness. 

• Solutions.OrderByDescending(t => t.Fitness) 
to sort genomes by descending fitness. 

• minimalFitness - calculation of the minimum 
fitness value. 

• While loop - iterations of the loop add 
genomes to the next generation through 
crossbreeding and mutation. Then the best 
genome is updated based on the adaptability 
of the current generation and the best genome 
is returned. 

                while (NextGeneration.Count < POPULATIONSIZE) 
                { 
                    // Cycle to process each genome in the current population. 
                    for (int m = 0; m < Solutions.Count; m++) 
                    { 
                        if (NextGeneration.Count < POPULATIONSIZE) 
                        { 
                            // Checking whether genome fitness meets the requirements to participate in 
crossover. 
                            if (Solutions[m].Fitness >= minimalFitness && Rnd.NextDouble() <= 
CROSSOVERPROBABILITY) 
                            { 
                                // If a crossover partner is not identified, the current genome becomes the 
partner. 
                                if (_crossoverPartner == null) 
                                { 
                                    _crossoverPartner = Solutions[m]; 
                                } 
                                // If a partner has already been identified, crossover between the current 
genome and the partner occurs. 
                                else 
                                { 
                                    _crossedGenomes = Crossover(_crossoverPartner, Solutions[m]); 
                                    // Create new genomes based on values from the array  
_crossedGenomes. 
                                    // Going through each new genome. 
                                    foreach (var genome in _crossedGenomes.Select(child => new 
BackpackGenome(child))) 
                                    { 
                                        // If the weight of a new genome does not exceed the maximum 
allowable weight, that genome is added to the next generation. 
                                        if (GetWeight(genome.Parameter) <= MaxValue) 
                                        { 
                                            NextGeneration.Add(genome); 
                                        } 
                                    } 
                                } 
                            } 
                            // Probability of genome mutation. 
                            if (Rnd.NextDouble() <= MUTATIONPROBABILITY) 
                            { 
                                NextGeneration.Add(new BackpackGenome(Mutation(Solutions[m]))); 
                            }  

 
Before the function is completed, the output of 

the received data is performed. The user gets all the 
information he needs: value and weight of each 

cargo unit in the warehouse, maximum weight, 
current weight, current value, the weight of all cargo 
units, and value of all cargo units. 
Output results to the console. 
            generationCallback?.Invoke("Selected items:"); 
            generationCallback?.Invoke(""); 
            foreach (BackpackItem t in Result.ItemsPicked) 
            { 
                generationCallback?.Invoke(t.Name + "  " + "\t" + " (Value:" + t.Worth + ") " + 
                                  "\t" + "(Вес:" + t.Weight + ")"); 
            } 
            generationCallback?.Invoke(""); 
            generationCallback?.Invoke("Maximum weight: " + MaxValue); 
            generationCallback?.Invoke("Current weight: " + Result.ItemsPicked.Sum(t => 
t.Weight)); 
            generationCallback?.Invoke("Current value: " + Result.ItemsPicked.Sum(t => t.Worth)); 
            generationCallback?.Invoke(""); 
            generationCallback?.Invoke("Weight of all items: " + Selection.Sum(t => t.Weight)); 
            generationCallback?.Invoke("The value of all items: " + Selection.Sum(t => t.Worth)); 
        }  

 
As a result, the algorithm selects the most 

adaptive placement solutions for the selected cargo 
units at each step in the evolution of the generated 
random solutions to result in an optimal placement 
solution. 

 
 

13    Application Architecture 
The application is divided into several parts with 
different areas of responsibility. 
Interaction with the menu and initialization of 
instances of classes that solve the tasks is performed 
in Program.cs. 

The BackpackSolver class is responsible for 
solving the problem of filling the warehouse with an 
optimal selection of cargo units. For more 
convenient data visualization and structuring of 
calculations, BackpackGenome, which stores 
information about the warehouse, and 
BackpackItem, which represents a cargo unit in the 
warehouse, are also used. 

 
The application uses: 
• interface. The BackpackSolver class 

implements the IGeneticAlgorithm interface. 
• Delegates. The GenerationCallback delegate 

is used to output the program operation data, 
which is passed when class instances are 
initialized. 

• exceptions. Exceptions are used to handle 
incorrect user input to better explain the error. 

• Enumerations. MenuOption.cs is an 
enumeration of menu states that is used to 
trigger the necessary actions when an item is 
selected. 

• LINQ. LINQ is used to simplify the handling 
of collections for sorting, mutation, and other 
operations in BackpackSolver. 
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14    Machine Experiment 
To develop and test the program that implements the 
optimal solution for placing the selected cargo units, 
an experiment was conducted. An experiment plan 
with the definition of parameters, testing scenario, 
and expected results was made in advance. When the 
program is run, the problem is solved using the 
genetic algorithm, or the program is exited. The 
purpose of the experiment included a) checking the 
correctness of data input by the user; b) checking the 
correctness of error case processing; c) evaluating 
the functionality of the program at different data 
inputs. 

The input data included: a) warehouse capacity: 
positive integer; b) number of cargo units: positive 
integer; c) for each cargo unit weight: positive 
integer (can be integer or fractional); d) for each 
cargo unit value (equivalent to placement cost): 
positive integer (can be integer or fractional). 

Error conditions were defined as follows: a) 
input of negative numbers or zero for capacity and 
number of cargo units; b) incorrect input format (e.g. 
letters instead of numbers); c) weight and cost of 
cargo units should be positive. The testing scenario 
included: a) testing of correct input; b) testing of 
incorrect input for capacity; c) testing of incorrect 
input for number of cargo units; d) testing of 
incorrect input for weight and cost; e) testing on 
boundary values. 

The following methods of results evaluation 
were chosen: a) checking the presence of error 
messages in case of incorrect input; b) confirmation 
of successful program completion in case of correct 
data input; c) analysis of program response time to 
user input. 

The obtained results of the test scenario 
implementation corresponded to the expected 
results: 

a) the program successfully accepts input 
without errors; b) in case of incorrect input - an error 
message and a repeated request. No changes in the 
program were required after the test scenario was 
executed. 

The program implements the developed 
algorithm as follows: it requests from the user the 
warehouse capacity and the number of cargo units, 
then after receiving this information the program 
requests information on each cargo unit in turn: 
weight and cost. In case of non-compliance with the 
task conditions (entering a smaller number or an 
incorrect format), the corresponding error is 
displayed and the quantity is requested again. 

 
The test parameters took the following values: 
1. Warehouse capacity: minimum value: 0 (a 

warehouse cannot have a negative capacity); 
maximum value: set depending on the specifics 
of the task (e.g., 1000 units). 

2. Number of cargo units: minimum value: 1 (there 
must be at least one cargo unit); maximum 
value: 100 cargo units. 

3. Weight of cargo units: minimum value: 0.1 
(cargo cannot have zero weight); maximum 
value: 500 kg. 

4. Value of cargo units: minimum value: 0 (the 
value cannot be negative); maximum value: 
100000 conventional monetary units. 

 
The parameters of the experiment included the 
following test sample (variances): 
1. Population size: population size of 50 to 200 

individuals to ensure diversity. 
2. Number of generations: 100 to 500 to ensure 

sufficient time for evolution of solutions. 
3. Mutation percentage: 5-10% to avoid premature 

convergence and maintain genetic diversity. 
4. Inbreeding percentage: at 70-90% to ensure an 

efficient combination of the best solutions. 
5. Elitism: 2 to 5% of the best-adapted individuals 

to be passed on to the next generation 
unchanged. 

6. Algorithm stopping criteria: a) stopping when 
the maximum number of generations is reached; 
b) stopping when a given level of adaptability is 
reached (if the best individual achieves fitness 
above a certain threshold); c) stopping when 
there is no significant change for several 
generations (20 generations). 
When correct values were entered, the program 

worked: the most suitable solutions for placing the 
selected cargo units were selected. The selected 
cargo units (their value and weight), maximum 
warehouse capacity, weight, and value of all cargo 
units were displayed. 

The warehouse operator uses the obtained data 
to decide on the order of filling the warehouse space. 

 
 

15   Conclusion 
The genetic algorithm has shown its ability to 
process data, as well as demonstrated a high rate of 
convergence to optimal solutions in comparison with 
classical oversampling methods. When selecting the 
genetic algorithm as a mathematical apparatus for 
solving the problem of placement in the warehouse 
of a multimodal transport and logistics center of an 
optimal selection of cargo units, their flexibility and 
applicability to a variety of problems were revealed. 
As a result, it was possible to obtain a software tool 
for effective management of the placement of cargo 
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units taking into account their weight and value and 
under conditions of limited warehouse capacity. This 
creates opportunities for practical application of the 
proposed results and makes them promising for 
solving a wide range of optimization problems in the 
warehouse management system. 

The possibilities for further development in this 
area are the deepening of research in optimizing the 
parameters of genetic algorithms to improve their 
efficiency and accuracy on different types of 
warehouse management problems. It is also worth 
considering combining genetic algorithms with other 
optimization methods to create more efficient hybrid 
approaches. In addition, research in parallel and 
distributed computing is expected to significantly 
improve the speed of genetic algorithms and their 
applicability to even more complex multimodal 
transportation and logistics center optimization 
problems. 

 
 

Declaration of Generative AI and AI-assisted 

Technologies in the Writing Process 

During the preparation of this work the authors used 
Perplexity.AI in order to correct errors and optimize 
machine code. After using this tool/service, the 
authors reviewed and edited the content as needed 
and takes full responsibility for the content of the 
publication. 
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