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Abstract: This paper presents, aerodynamics coefficients calculation (Lifting & drag coefficients, pressure central 
location) of Trapeze wing shape configurations for different aspect ratios (ARs) values by using improved vortex 
lattice method (VLM), compared with finite-wing and slender body theories. The planar wing was divided into
N panels of the size: 6X6 with trapezoid shape panels. As expected, for high ARs the VLM solution for the lifting 
coefficient is coincided with the finite wing theory whereas for small ARs (<1) it is coincided with the slender 
body theory (~1). Afterwards, we obtained that the calculated VLM induced drag becomes closer to the finite-
wing theory as the AR value is increased. 
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1  Introduction 

In this current study, VLM (Vortex lattice 
method) theory is applied on Trapeze wing 
shape configurations for different aspect 
ratios (ARs) values by using improved 
vortex lattice method (VLM), compared 
with finite-wing and slender body theories. 
This study continues the previous author 
study and VLM model [1] by improving it, 
using the leading edge suction analogy that 
considers the suction force and explains 
analytically the vortex-lift theory. In the 
past the leading edge suction analogy was 
proposed by Polhamus [2, 3], applied on 
Delta wings, and later extended by Traub 
[4]. Advanced numerical analysis of 
aerodynamics properties due to wing 
geometry shape and different geometry 
wing angles that includes different 
geometry manipulations in order to achieve 
the optimal aerodynamic flight have been 
studied over the two decades. For instance, 
studies concerning swept and semi-slender 
wings for blunt leading edge shape [5], flap 
and aileron deflection [6], flapping wings in 
a hover [7], various leading edge shape [8, 
9], morphing wings [10] and recently non-
slender delta wings [11] have been studied. 
Finally, classic experimental and theoretical 
work was performed over the years by [12-
16]. 

2 Improved VLM analytic model 

 The improved model [30] includes the 
calculated suction coefficient (based on Fig. 
2) as: 
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while the wing perpendicular velocity 
generates an axial force which is the leading 
edge suction force. Note that according to 
Katz & Plotkin [17], the calculation is only 
considering the cells trailing vortices 
without their bound vortex. Additionally, 
according to Moran [18] for specific cell 
along with the symmetric cell in the other 
side – the calculation only considers the 
trailing vortices, similarly to Katz & Plotkin 
[17].  However, according to Moran [18], 
the other cells should be considering all the 
other vortices. Similar way, appears in 
Margason & Lamar [19]. Since we concern 
here a trapezoidal wing geometry shape; 
then the attack and flow leading edges are 
located on straight lines, therefore the 
adjacent vortices of all the cells in the whole 
framework are located along the projection 
wingspan. In other words, an adjacent 
vortex will contribute infinity induced 
velocity on each cell located further along 
the projection wingspan such as singularity 
is obtained using methods [18, 19]. 
Although method [17] might be used (no-
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singularity), however, inaccuracy might be 
generated due to the negligence the adjacent 
vortices. Hence, we will use a different 
method, based on induced velocity 
calculation on each cell, only the adjacent 
vortices will be calculated without the 
vortices located on the same straight line 
such as accurate improved calculation will 
be resulted for [17].  
  Next, measuring length chord and 
calculating wing trapezoid surface area, 
averaged aerodynamic chord together with 
rearward sweep angle, we have obtained the 
following geometrical parameters: 
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   (2) 
while , ,root tipc c  and b are the root chord, 
tip chord, sweep angle calculated and 
spanwise length geometry parameters (see 
Fig. 4 in [1]). Additionally, the total 
rearward sweep angle is dependent on y

coordinate only. As a result, the angle 
calculation was based on simple triangle 
calculation. From here, Finite wing theory 
will be brought about by the current context. 
Note that calculation was performed 
according to Fig. 1 around the theoretical 
point – wing apex (0, 0). 
 

 
Fig. 1  Extension wing with vortex and  
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       Half infinity vortex from the left side 

 Half infinity vortex from the right side 
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collocation points partition

 

Fig. 2  Description of cross flow and 
induced velocity including suction force. 

3 Finite wing and slender body theories 

 In the first step, finite-wing theory 
assumptions which are based on lifting line 
theory are presented in [1]. However, lift-
curve slope in case of swept wing is given 
by Kuchemann [20]: 
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According to the slender-body theory [21]: 
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We will also define the errors, such as: 
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which present the lifting coefficient errors 
for the finite wing ( 1 ) and slender body (

2 ) theories, respectively.  
 
 The center of pressure of the finite wing 
and slender body theories will be calculated 
by: 

 
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Here, the difference value root tipc c  for all 
wing configurations will be equal to 0.75. 
Thus, the center of pressure will be 
calculated in relative to the average 
aerodynamic chord ( 1CpX ) and the wing 
root chord ( 2CpX ).   
 
 The induced drag coefficient will be 
calculated for the finite wing theory by the 
following form:   
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 In similar way, the slender body induced 
drag will be: 
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while the induced drag errors for both 
theories will be defined as: 
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Next section, final results and comparison 
to finite-wing and slender body theories 
will be presented and discussed. 

4 Results & Discussion 

Comparisons between VLM specific 
aerodynamics parameters for different aspect ratio 
values, Finite-Wing and Slender body theories are 
presented in Table 1 alongside Figs. 3-5. 
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Fig. 3 Lifting coefficients comparison for different AR values: VLM calculation vs. Finite wing and 

Slender Body theories. 

 
Fig. 4 Center of pressure location comparison for different AR values: VLM calculation vs. Finite 

wing and Slender Body theories. 
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Fig. 5 Induced drag comparison for different AR values: VLM calculation vs. Finite wing and Slender 
Body theories. 

Table 1. Aerodynamics parameter comparisons 
between VLM, Finite-Wing and Slender body
 theories. 

 
 Examining Table 1 alongside with Figs. 
3-5 leads to the following comprehensions 
about VLM obtained results compared to 
the finite-wing and slender body theories. 
One might observe that for AR ~1, the 
VLM lifting coefficient calculated value 
becomes closer to the slender body theory, 
whereas for exceeding ARs value (>1) 
becomes closer to finite wing theory (Fig. 

3). In addition, for relatively high ARs, the 
VLM center of pressure location value 
becomes closer to the Finite-Wing theory, 
whereas the comparison with the slender 
body theory is unclear (Fig. 4). Finally, it 
was revealed that for relatively high ARs, 
the VLM induced drag calculated value 
becomes closer to the Finite-Wing theory 
parameter value, whereas the error between 
the slender body theory and VLM is 
relatively increasingly high (Fig. 5). 

5 Conclusion 

In this study we have calculated 
numerically (improved VLM model) the 
aerodynamics properties (Lifting & drag 
coefficients, pressure central location) of 
Trapeze wing shape configurations for 
different aspect ratio values, compared with 
finite-wing and slender body theories. The 
wing was divided into

N

 planar trapezoid 
shape panels of the size: 6X6. As expected, 
for high ARs the VLM solution for the 
lifting coefficient was coincided with the 
finite wing theory whereas for small ARs 
(<1) it was coincided with the slender body 

DESIGN, CONSTRUCTION, MAINTENANCE 
DOI: 10.37394/232022.2022.2.14 Jacob Nagler

E-ISSN: 2732-9984 95 Volume 2, 2022



theory (~1). Afterwards, we obtained that 
the calculated VLM induced drag had 
become closer to the finite-wing theory as 
the AR value was increasing. 
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