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Abstract:  A multi-task 2D CNN model is designed for integrated monitoring stress and damage in concrete specimens utilizing the raw 
impedance signatures of capsule-like smart aggregated (CSA). The fundamental theory of CSA-based EMI method is presented to describe 
how the sensor responds to compressive loads. Next, compression tests on a CSA-embedded concrete cylinder are conducted to record the 
stress-damage EMI responses of CSA sensor under applied stresses. The multi-task 2D CNN model learned the impedance signals for 
predicting the concrete stress and damage is constructed. Consequently, the generalization and robustness of the developed model are tested 
against noise and untrained data. 
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1. Introduction 

Concrete structures play a vital role in civil infrastructure 
due to their adaptability and cost-effectiveness. After a 
prolonged operation period, key components in concrete 
structures experience degradation and damage from 
continuous stress. In recent studies, the CNN-based regression 
algorithms have been integrated with EMI techniques for 
stress estimation of concrete structures. Nguyen et al. 
employed a 1D CNN algorithm to learn damage-sensitive 
EMI features for monitoring damage in prestressed concrete 
girders [1]. Ta et al. [2,3] developed an impedance-based 1D 
CNN regression model  for stress monitoring in concrete using 
raw EMI data from SA and CSA sensors. The stress in the 
investigated concrete structure could be automatically 
estimated with high accuracy, even under noise effects and 
missing data. The mentioned works demonstrated the 
accuracy of the deep learning method in stress estimation in 
concrete structures even in the presence of noise and missing 
data. 

CNN-based classification algorithms have also been 
integrated with EMI techniques for damage identification in 
concrete structures. An impedance-based 1D CNN deep 
learning approach was proposed to detect bolt loosening in 
steel structures using raw EMI data [4]. Another study by 
Nguyen et al. employed the 1D CNN model to detect damage 
in PZT transducers [5]. Yan et al. [6] proposed a 1D CNN 
integrated with EMI data to evaluate the early-age hydration 
of cement mortar, outperforming traditional machine learning 
methods in quantifying EMI response changes. 

Despite previous research efforts, existing CNN deep 
learning models could handle stress estimation and damage 
detection tasks separately using either CNN-based regression 
or CNN-based classification. The status of the concrete 
structures under compression has not been fully explored. To 
address these gaps, this paper introduces a multi-task 2D CNN 
model that integrates regression and classification, enabling 
the simultaneous monitoring of concrete stress and damage 
using CSA-based EMI responses. 

This study presents a multi-task 2D CNN model for 
integrated monitoring stress and damage in concrete 
specimens utilizing the raw impedance signatures of capsule-

like smart aggregated (CSA). The fundamental theory of 
CSA-based EMI method is presented to describe how the 
sensor responds to compressive loads. Next, compression tests 
on a CSA-embedded concrete cylinder are conducted to 
record the stress-damage EMI responses of the CSA sensor 
under applied stresses. The multi-task 2D CNN model learned 
the impedance signals for predicting the concrete stress and 
damage is constructed. Consequently, the generalization and 
robustness of the developed model are tested against noise and 
untrained data. 

 

2. CSA-based EMI 

Measurement Technique 

The CSA sensor prototype for the EMI measurement 
technique is shown in Fig. 1. The CSA sensor is fabricated by 
attaching a PZT patch onto an aluminium interface, which is 
covered by a hollow aluminium capsule. The dimensions of 
the CSA prototype are L × W × H = 25 × 25 × 11 mm [7]. The 
aluminium interface plate considers the CSA capsule's wall as 
fixed ends protected and is allowed to vibrate freely. The 
thickness of 2 mm of vibrating plate is chosen to pre-
determine the sensitive frequency band of the CSA sensor [8]. 

 

 
Fig. 1. Prototype of capsule-like smart aggregate (CSA) 

Figure 2 shows a model of CSA-based impedance 
monitoring for concrete structures. When stress is applied, the 
CSA sensor embedded in the concrete structure experiences 
compressive stress (σN) along with the vertical direction (i.e., 
z-direction). At the same time, the other CSA's surfaces (i.e., 
y-direction and x-direction) are subjected to tension stress (σT) 
due to Poisson's effect (see Fig. 2a). As a result, the vibrating 
plate undergoes expansion under the tensile stress in both the 
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y-direction and x-direction. The CSA's deformation affects the 
structural state of the vibrating plate and impedance responses 
of the PZT attached to it (see Fig. 2b and 2c). 

 

 
a) CSA in structure under compression 

   
 b) Section B-B  c) Changes in EMI responses 

Fig. 2. Behavior of EMI responses of CSA embedded in concrete structure 
under applied stress in z-direction 

When the applied stress (e.g., σN + ΔσN) increases and 
reaches the yield condition of the concrete material, the local 
damage may occur. When the damage occurs, the tensile stress 
on the vibrating plate is released rapidly, leading to abrupt 
changes in the EMI responses [7,9], as shown in Fig. 2c. 

 

3. Experimental Test 

3.1 Fabrication of CSA-Embedded Concrete 

Cylinder 

Figure 3 presents the fabrication procedure for a CSA-
embedded concrete cylinder. A CSA sensor was strategically 
placed in a cylinder mold measuring 100 × 200 mm. The CSA 
was positioned 140 mm from the bottom of the cylinder mold. 
To secure the CSA sensor within the mold, plastic wires and 
a steel bar (2 mm in diameter and 150 mm in length) were 
utilized. After 28 days of the curing process, the concrete 
cylinder embedded with CSA sensor was used for the 
impedance test. 

 

 
Fig. 3. Fabrication of CSA-embedded concrete cylinder 

3.2 Experimental Setup 

The experimental setup for compression test of concrete 
cylinder is presented in Fig. 4. The MTS servo-hydraulic 
materials testing system (version 793) was employed for the 
compression test. The compression force of system was real-
time monitored by a load cell with a capacity of up to 500 kN. 
An impedance analyzer (HIOKI 3532) was utilized to capture 
stress-damage EMI signals from the CSA sensor, while a 
KYOWA EDX-100A measured the ambient temperature. 

 

     
 a) Compression test setup  b) Compressive loading scenario 

Fig. 4. Experimental setup for compression test of concrete cylinder 

EMI responses were measured in frequency range of 15 
kHz to 26 kHz using 224 intervals. The notable peaks in EMI 
responses in this range could be used to assess the sensitivity 
of the embedded CSA sensor to compressive loading. The 
recorded EMI responses, along with corresponding structural 
attributes (i.e., stress levels and concrete damage levels), were 
compiled to create a stress-damage EMI dataset for the 2D 
CNN deep regression and classification model. The measured 
temperature ranged between 22°C and 23°C. Due to the minor 
variation of 1°C, the temperature effect on the EMI responses 
was considered negligible. 

Figure 4b shows six loading scenarios (S0 = 0 MPa to S5 = 
12.68 MPa) introduced to the CSA-embedded cylinder. The 
stress was applied in constant increments of 2.54 MPa within 
2.5 minutes, maintaining a consistent loading rate of 0.0113 
MPa/s. Following each increment, the stress increment was 
paused for 4.5 minutes to obtain EMI responses. 

 

3.3 Stress-Damage EMI Signatures of CSA-

Embedded Concrete Cylinder 

Figure 5 plots the EMI responses collected in six stress 
levels (i.e., S0 to S5). As the applied stress increased, both the 
frequency and magnitude of the resonant peak exhibited a 
downward trend. The variation in peak frequency and peak 
magnitude were potentially caused by the high compressive 
stress on the CSA sensors during concrete strength 
development. The corresponding visual observation of the test 
specimen under applied stresses S0-S5 is shown in Fig. 6. At 
loading level S3, initial crack imitation was observed. As 
loading progressed to level S4, crack propagation and concrete 
spalling were noted. Ultimately, concrete damage continued 
to develop, leading to failure at loading level S5. 

 

 
Fig. 5. Impedance responses of CSA sensor under S0-S5 
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Fig. 6. Obsever concrete damage of test specimen under S0-S5 

 

4. Evaluation of Multi-task 

2D CNN-based Deep Regression and 

Classification Model 

4.1 Design of Multi-task 2D CNN Model 

Figure 7 illustrates the architecture of a multi-task 2D 
CNN deep learning model using raw EMI responses of CSA 
sensor. The model employs regression learning for stress 
estimation and classification learning for damage 
identification in concrete structures. The parameters and 
hyperparameters of the model are selected based on previous 
studies [10,11] and practical guidelines [12]. 

 
Fig. 7. Architecture of 2D CNN deep regression and classification model 

The model includes three convolutional (Conv) layers, 
three ReLU layers, two Maxpool layers, a global average 
pooling (GAP) layer, two fully connected (Fc) layers, and 
separate Regression and Classification output layers. The 
multi-task 2D CNN model generates two outputs: "Stress 
estimation" handled by regression learning, and "Damage 
identification" handled by classification learning. 

 

4.2 Stress and Damage Monitoring for Noise-

Contaminated Stress-Damage EMI Data 

1) Data Preparation 
 The measured EMI data from the CSA-embedded concrete 
cylinder and corresponding assigned labels (i.e., "stress" and 
"damage level") is listed Table 1. The stress level S0 (0 MPa) 
was excluded from the model configuration due to the 
uncertainty in experimental measurements. For regression 
learning, compression forces ranging from 2.53 MPa to 12.68 
MPa (interval of 2.53 MPa) were labelled with five stress levels 
(S1 to S5). For classification learning, the damage severity of test 
specimen (i.e., "No damage," "Crack initiation,” "Crack 
propagation and spalling," and "Failure") was labelled with four 
levels "DL0," "DL1," "DL2," and "DL3," respectively. 

 In the compressive test of concrete specimen, the EMI 
signals were measured with four ensembles for each applied 
stress level, resulting in a total of 20 signals across five stress 
levels. Gaussian noise was employed to enrich the databank 
and to investigate the generalization and robustness of the 
multi-task 2D CNN model on noise contamination. The 

training dataset was generated by adding six Gaussian noise 
levels (0-5%) with four iterations to the first two ensembles at 
each stress level. It resulted in a total of 240 EMI signals 
generated for five applied stress levels. The third ensemble 
from each level was used to construct the validation set, which 
consisted of five EMI signals in total. Similar for the testing 
dataset, noise levels ranging from 1% to 5% (in 1% 
increments) were applied to the last ensemble, generating ten 
new EMI signals per stress level. This resulted in 250 
additional EMI signals across all noise levels. Combined with 
the five original EMI signals, the testing dataset comprised a 
total of 255 signals. The validation set takes the third ensemble 
of data collected at each stress level, resulting in five signals 
in total. 

TABLE I.  ASSIGNED LABELS OF STRESS-DAMAGE EMI DATA FOR 
MULTI-TASK 2D CNN MODEL 

Stress 

level 
Observed concrete damage 

Assigned label 

Stress 

(MPa) 

Damage 

level 

S1 No damage 2.53 DL0 
S2 No damage 5.07 DL0 
S3 Crack initiation 7.61 DL1 
S4 Crack propagation and 

spalling 
10.15 DL2 

S5 Failure 12.68 DL3 
 

The training set is visualized in Fig. 8. Each EMI signal 
was labelled with its corresponding stress level and damage 
status. With 225 data points for each EMI signal, a total of 
10,800 data points were obtained for each stress level. For five 
stress levels, the total number of data points was 54,000. 
Examples of noise-contaminated stress-damage EMI signals 
are shown in Fig.9. 

 

 
Fig. 8. Visualization of training set of multi-task 2D CNN model 

 
 a) 4% noise b) 5% noise 

Fig. 9. Visualization of noise-contaminated EMI signals 

 
2) Training Results 
Figure 10 plots the loss values of the 2D CNN model over 

100 training epochs. Overall, both the training and validation 
losses showed fluctuations and generally followed a 
decreasing trend as training progressed. The 2D CNN model, 
consisting of 6,143 training parameters, required 35.1 seconds 
to complete the training process. 
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Figure 11 shows two representative results of investigating 
the effects of noises on the stress estimation and damage 
identification of the multi-task 2D CNN model. For stress 
estimation, the accuracy of the model decreased as the levels 
of noise increased. The relationship between the RMSE index 
and noise levels is illustrated in Figure 12a. For damage 
identification, the model maintained performance with no 
false predictions at noise levels up to 4%. Misclassifications 
began to occur at a noise level of 5%, leading to an increase in 
the false discovery rate to 2.5%, as shown in Figure 12b. 

 

 
Fig. 10. Loss values of 2D CNN model after 100 epochs 

  
a) 4% noise 

  
b) 5% noise 

Fig. 11. Stress prediction and damage identification by 2D CNN model 

  
 a) RMSE  b) False discovery rate 

Fig. 12. Stress estimation and damage identification performance of 2D 
CNN model 

 

 

4.3 Stress and Damage Monitoring for 

Untrained Stress-Damage EMI Data 

3) Data Preparation 
To assess the performance of the multi-task 2D CNN 

model under missing data conditions, the EMI signals 
corresponding to stress level S2 were excluded from the 
training and validation sets. This led to the removal of 48 
signals from the training set and one signal from the validation 
set. As a result, the training and validation sets consisted of 192 
signals and four signals, respectively (see Fig. 13). The testing 
set had a total of 255 signals for five applied stress levels.  

 

 
Fig. 13. Visualization of partial untrained training set for 2D CNN model  

4) Training Results 

Figure 14 plots the training process of the multi-task 2D CNN 
model using the designed dataset. It is observed that the 
training loss gradually converged, while validation loss 
fluctuated during the whole training process (100th epoch).  

 

 
Fig. 14. Loss values of 2D CNN model with partial untrained databank 

Figure 15 shows presentative results of stress estimation and 
damage identification with partial untrained databank. For 
stress estimation, the predicted stress levels showed 
consistency with actual stress, achieving an RMSE value of 
0.57. The prediction error for the untrained stress level S2 was 
within 30% at a noise level of 5%. The relationship between 
RMSE and noise levels is shown in Fig. 16a, where RMSE 
values increased as noise levels increased. For damage 
identification, some misclassifications occurred for the 
partial untrained damage level DL0. The overall prediction 
accuracy was 84% at a noise level of 5%. The false discovery 
rate for damage identification across six noise levels is 
summarized in Fig. 16b. 
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Fig. 15. Stress estimation  and damage identification of 2D CNN model with 
partial untrained databank 

 
 a) RMSE  b) False discovery rate 

Fig. 16. Stress estimation and damage identification performance of 2D 
CNN model with partial untrained databank 

 
5) Discussion on Damage Identification 

Results 
Figure 17 shows the probability assessment of damage 

identification results of damage level "DL0" with partial 
untrained databank. A portion of "DL0" data, corresponding 
to stress level S2, was excluded from the training and 
validation phases. The x-axis in the figure represents the four 
damage levels ("DL0"–"DL3"), while the left and right y-axes 
denote the predicted value and standard distribution, 
respectively. 

The shaded area indicates the range within one standard 
deviation (σ) from the mean (μ), encompassing 68.8% of the 
predicted values around the central tendency. For all three 
noise levels (i.e., 0%, 3%, and 5%), the shaded region 
indicated damage levels "DL0" and "DL1". The mean value 
was balanced between "DL0" and "DL1" at 0% and 3% noise 
levels, and it shifted toward "DL0" at noise level 5%.  

 

 
a) Noise 0% 

 
 b) Noise 3% c) Noise 5% 
Fig. 17. Probability assessment of damage identification results with partial 
untrained databank 

 

5. Concluding Remarks 

In this study, the multi-task 2D CNN model was developed 
for integrated monitoring stress and damage in concrete 
specimens utilizing the raw impedance signatures of capsule-
like smart aggregated (CSA). The fundamental theory of 
CSA-based EMI method was presented to describe how the 
sensor responds to compressive loads. The compression tests 
on a CSA-embedded concrete cylinder were conducted to 
record the stress-damage EMI responses of CSA sensor under 
applied stresses. The multi-task 2D CNN model learned the 
impedance signals for predicting the concrete stress and 
damage was constructed. The generalization and robustness of 
the developed model were validated against noise and 
untrained data. 
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