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Abstract:- An efficient and punctual monitoring of air pollutants is very useful to evaluate and prevent possible 

threats to human beings’ health. Especially in areas where such pollutants are highly concentrated, an accurate 

collection of data could suggest mitigation actions to be implemented. Moreover, a well-performed data 

collection could also permit the forecast of future scenarios, in relation to the seasonality of the phenomenon. 

With a particular focus on COVID pandemic period, several literature works demonstrated a decreasing of 

pollutant concentrations in air of urban areas, mainly for NOx, while CO and PM10, on the opposite, has been 

observed to remain still, mainly because of the intensive usage of heating systems by the people forced to stay 

home (on specific regions). With the present contribution the authors here present an application of Time Series 

analysis (TSA) approach to pollutants concentration data of two Italian cities during first lockdown (9 march – 

18 may 2020), demonstrating the possibility to predict pollutants concentration over time. 
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1 Introduction 
Among all the environmental hazards, air pollutants 
are the most dangerous, and represent a serious 
threat to people’s health, especially in areas where 
such pollutants are highly concentrated, [1]. 
Constantly high levels of pollutants can lead, in fact, 
to severe cardiovascular and respiratory problems 
and mortality, both in short-mid then in long term, 
[2].  To preserve inhabitants’ health, it is then 

mandatory to implement large, effective and prompt 

monitoring networks to control and register 

pollutants’ concentration over time, [3]. With an 

accurate data collection it is possible to calibrate and 

validate models able to predict pollution severity 

and immediately alert the population, take actions 

and controls on pollutants sources, and track 

changes in relation to the seasonality, [4], [5], [6]. A 

prompt identification of pollutants’ concentration is, 

on the other side, crucial for whatever effective 

mitigation action to be implemented, [7].   

Many scientific works have covered the subject, 

and lately literature has focused the attention on the 

COVID pandemic period, [8], [9], observing a 

general decrease of pollutants in the air of urban 

areas, mainly for NOx. CO and PM10, on the 

opposite, have been observed to remain still, mainly 

because of the intensive usage of heating systems of 

people forced to stay home (in specific regions). 

Nevertheless, the mentioned studies offer a deep and 

yet retrospective statistical analysis of the 

phenomenon. Other noticeable works present the 

application of ARIMA models and other deep 

learning models to implement a pollutant prevision 

in Bangladesh, [10], and in Turkey, [11].  

With the present contribution, the authors 

propose the results obtained by applying the “Time 

Series Analysis” (TSA) approach to pollutants 

concentration data of two Italian cities during the 

first lockdown (9 March – 18 May 2020), when we 

observed an unpredictable situation regarding air 

pollutants.  

The aim of this study is twofold: on one hand, to 

compare the observed concentrations of pollutants 

with respect to concentrations measured in the same 

months of 2018 and 2019; on the other hand, to 

provide a reliable model to forecast the pollutant in 
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urban area by analyzing previously measured 

concentrations of the same pollutant. The combined 

effect of the continuous monitoring and the forecast 

could then provide a secure monitoring network, to 

profit from the implementation of early decisions 

regarding the principal pollutants emitters (cars, 

industries). Collected data have been described in 

detail, then compared with the values of previous 

years and finally used to calibrate a predictive 

model. The TSA approach applied on such datasets 

is widely documented in literature, [12], [13], [14], 

[15], assuring the goodness of the adopted 

methodology. A preliminary analysis of the datasets 

and the models used in this paper has been 

published in [16]. In this paper, the complete 

validation of the models, as well as the forecast and 

the residuals analysis, will be presented. 
 
 
2 Material and Methods 
Basically, the analysis of a Time Series is the 
observation and study of the slope of a selected 
variable over time, in terms of trend and seasonal 
patterns. Since these techniques can be applied only 
to continuous datasets, if any problem occurs during 
the measurements, resulting in a hole in the time 
series, it’s necessary to impute the missing data. The 
imputation can be performed in many ways. In 
particular, the most used are related to regression 
techniques or modelling imputation, as reported in 
[17]. Whereas the variable is the only one present, 
the time series is called univariate, and the most 
used approaches are based on a deterministic 
decomposition or on Auto-Regressive Integrated 
Moving-Average (ARIMA) procedures, [18], [19]. 
The ARIMA(p,d,q) general formula is reported in 
equation 1: 
 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑  𝑌𝑡 =  𝜃𝑞(𝐵) 𝑒𝑡 (1) 
 
where Yt is the observed variable, B the delay 
operator, 𝜙p the autoregressive polynomials, θq the 
moving average polynomials, et the residual 
(difference between the observed values and the 
predicted ones at time t). p, d and q are the model 
hyperparameters, being respectively the 
autoregression, differentiation and moving average 
orders.  

In this paper, the calibration and validation of 
two ARIMA models applied on air pollutants 
concentrations data is presented. Hyperparameters 
and coefficient estimation has been performed with 
“R” software, [20], [21], by means of Akaike 
Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) criteria optimization. 
These criteria optimize the balance between 
likelihood maximization and number of parameters 
minimization, in order to fulfil the parsimony 
principle. The AIC and BIC are defined respectively 
in equations 2 and 3: 
 

𝐴𝐼𝐶 = −2 ln(𝐿) + 2(𝑘) (2) 
  

𝐵𝐼𝐶 = −2 ln(𝐿) + ln (𝑛) ∙ (𝑘) (3) 
 
where L is the likelihood function, k is the number 
of estimated parameters in the model and n is the 
sample size. 

 
 

3 Case Studies and Dataset 

Presentation 
The case studies presented in this paper are the two 
Italian cities of Nocera Inferiore and Solofra, both of 
them in the Campania region (Fig. 1). Data used in 
the application was obtained from two fixed 
monitoring stations settled and maintained by 
ARPAC (Agenzia Regionale per la Protezione 

dell’Ambiente Campania, i.e. Regional Agency for 
Environmental Protection in Campania) - which is 
the regional agency taking care of environmental 
protection. The pictures of external and internal 
views of the stations are reported in Figure 2.  

ARPAC recently announced that the 
dissemination of air quality data, in the form of 
daily bulletins, has been resumed on the agency 
website. The publication of the bulletin, in its 
traditional form, had been suspended following the 
hacker attack that hit the Agency's servers in August 
2022. However, a periodic summary of the data was 
published uninterruptedly, and the monitoring 
stations continued to operate, without any loss of 
data, even during the months when the daily bulletin 
was not published. 
 

 
Fig. 1: Sites location highlighting the Campania 
region (in red) and the provinces, [16]. 
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Fig. 2: External, [22], and internal, [23], views of 
the monitoring stations installed by ARPAC. 
 

The two selected monitoring stations 

continuously record levels of Benzene, NO2, SO2, 

PM10, PM2.5 and CO, together with values of 

humidity and temperature.  

The first monitoring station is positioned in 

Solofra, in the province of Avellino, which is a city 

having a long history of leather production and 

tanning, with many industries present and active. As 

known, leather production and processing, 

especially tanning processes, involve a massive 

production of pollutants: Volatile Organic 

Compounds (VOCs), Particulate Matter (PM), 

Hydrogen sulphide (H2S) - responsible for the 

peculiar bad smell. On the other hand, such 

industries also engender CO and NOx, and that’s 

because of the large amount of hot water needed to 

ensure the tanning procedure. Finally, pollutants 

coming from industrial sources must be obviously 

summed to the ones coming from the surrounding 

sources – private properties, other factories, road 

traffic. 

The monitoring station of Nocera Inferiore is, on 
the opposite, situated near to a highway and some 
city roads having high car presence, therefore 
primarily collecting road traffic pollution levels. In 
such regard, it is worthy to point out that Nocera 
Inferiore is one of the most polluted cities of the 
Campania Region: in 2020, for instance, PM10 
concentrations exceeded the allowed threshold 67 
times over the 35 permitted by law, [24]. The 
monitoring station is positioned on a residential 

downtown, also having many houses and buildings 
in the surroundings. 

From both the monitoring stations authors have 
collected, for the presented analysis, PM10 and CO 
daily concentrations, in a timespan going from 
February to May 2020.  

According to the study on the air quality over the 
time span 2015-2021, provided by ARPAC in 2022, 
[25], in Campania region PM10 concentrations are 
mainly due to non-industrial combustion plants that 
contribute more than 67% in 2016. Transport roads 
account for about 13% of PM10 emissions. The 
agriculture sector is responsible for more than 9% of 
emissions and Industrial processes without 
combustion for about 4%. A non-negligible 
contribution comes from forest fires, with a 3% 
share.  

As for CO, the same document, [25], reports that 
the main carbon monoxide emissions in Campania 
region are from vehicle exhausts, while other 
emission sources are heating systems and industrial 
processes. However, the continuous development of 
the technologies has made it possible to minimise 
the presence of this pollutant in the air. In 2016, 
emissions of CO were mainly due to the road 
transport sector for over 48% and non-industrial 
combustion plants for about 45%. 

At first, the selected datasets for PM10 and CO 
levels have been compared with those measured in 
the same time span of 2018 and 2019. To visualize 
the trends, data were organized using a bar plot after 
aggregating them by month of collection (Fig. 3). A 
line plot has been subsequently plotted, with 
aggregation by week (Fig. 4). In detail, the authors 
highlighted in green the period of public restrictions, 
going from the 4th of March when public schools 
were closed and the first phase of lockdown started, 
up to the 17th of May. 

For a better comprehension of the succession of 
events during the mentioned period, the dates and 
description of containment measures imposed by 
law on the Italian population during COVID 
pandemic burst are reported in Table 1. 

In Figures 3 and 4 it can be noticed that, even if 

during lockdown road traffic drastically decreased, a 

substantial lowering of pollutant concentration has 

not been recorded for CO and PM10. The reason is 

maybe due to the fact that people forced to stay 

home extensively used heating systems, contributing 

to a higher level of CO. All the people staying 

home, in fact, by using boilers, which are often 

based on old functioning systems, with large 

emissions and gas consumption, increased the 

absolute value of pollution sources. 
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Fig. 3: Average monthly levels of PM10 and CO registered in Nocera Inferiore and Solofra from 

February to May 2018, 2019 and 2020. 

 

 
 

Fig. 4: Average daily levels of PM10 and CO registered in Nocera Inferiore and Solofra from February 
to May 2018, 2019 and 2020 with evidence of the different restriction phases. The red dashed line in 
PM10 plots is the threshold for daily concentration that the Italian regulation allows to overcome 35 

days per year. 
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Table 1. Timeline of the Italian governmental restriction from February to May 2020 

Phase Decree of the Government  Adopted containment measures 
1 4th of March 2020 Suspension of all educational activities (all levels schools and universities) 
1bis 8th of March 2020 Total lockdown of all the cities 
1ter 23rd of March 2020 Closure of all activities excepted essential industrial and commercial ones 
2 17th of May 2020 End of restriction on displacement among cities and regions 

 
During the same periods of 2018 and 2019 large 

part of the population was in working places and 
schools, which are energetically more efficient, 
from the pollution point of view, than private 
residential units. As an example, University of 
Salerno uses photovoltaic roofs and plants to 
produce 30% of the energy needed for daily 
activities of the about 1000 professors and 
researchers, 500 technicians and administrative 
staff, plus all the people working in the lab and the 
35000 students, [26].  

For the aforementioned reasons the authors 
decided to calibrate and test (validate) the chosen 
model with the datasets on CO for the city of 
Solofra and on PM10 datasets for Nocera Inferiore. 

Two different approaches have been used for 
imputing missing data: for CO datasets we choose to 
impute with mean value between precedent and 
successive values. For PM10 we used, instead, the 
“cold neck” technique, meaning that missing values 
have been substituted with the values coming from 
concentrations observed in the same period of 
previous years. In such a way we were able to 
preserve the mean and the standard deviation of the 
whole data distribution, as visible in Tables 2 and 3. 

 
 

4 Results and Discussion 
In this work, the authors implemented three TSA 
models, which have been tuned and validated in “R” 
software. All the models are based on ARIMA, and 
they have been calibrated by minimizing AIC and 
BIC criteria, according to the parsimony principle. 

 
4.1 PM10 Concentrations in Nocera Inferiore 
After checking the autocorrelation and partial 
autocorrelation (Fig. 5), an AR(1) model is 
suggested for the PM10 concentrations in Nocera 
Inferiore, having only order 1 autoregressive 
component. Moreover, the routine “auto.arima” 
implemented in the forecast package of “R” 
software, also hinted at such a choice. 

Figure 6 shows the existing overlap between 
PM10 values measured and simulated, observing a 
one-day delay in the prediction. 

 

Figure 7, instead, reports on the left a scatter plot 
correlating observed and simulated level of PM10 
concentrations. It is remarkable that 80.2% of the 
simulations lie in the area determined by average of 
the observation  one standard deviation. Especially 
in the low concentration range, the plot shows a 
certain number of overestimations in the simulated 
values of PM10, while in the high concentration 
range underestimated simulated values are present. 
On the right side of Figure 7, the histogram of the 
residuals of the model, i.e. the difference between 
observed and simulated values, is plotted, while the 
summary statistics of the distribution of the 
residuals are reported in Table 4. The obtained 
kurtosis index is a positive value, which indicates 
that the distribution is leptokurtic. This is consistent 
with what can be discerned by observing the 
histogram: the trend of the residuals has a more 
“pointed” shape than a normal Gaussian 
distribution. Furthermore, the positive skewness 
index is properly substantiated by the evidence that 
a rightward tail is present in the histogram. 
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Table 2. Summary statistics of the CO concentrations measured in Solofra. 

Calibration dataset Mean 
[mg/m3] 

Std. Dev.  
[mg/m3] 

Median  
[mg/m3] 

Skew Kurt 

Observed  0.45 0.32 0.33 0.71 -0.77 
Reconstructed  0.45 0.32 0.35 0.72 -0.79 

 
Table 3. Summary statistics of the PM10 concentrations measured in Nocera Inferiore. 

Calibration dataset Mean  
[µg/m3] 

Std. Dev.  
[µg/m3] 

Median  
[µg/m3] 

Skew Kurt 

Observed  33.44 17.13 29.75 0.81 0.23 
Reconstructed  33.53 17.04 29.50 0.80 0.19 
 

 
Fig. 5: Autocorrelation and Partial autocorrelation for PM10 observed in Nocera Inferiore, [16]. 

 

 
Fig. 6: Plot of observed and simulated PM10 concentrations in Nocera Inferiore in the calibration 

phase.  
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Fig. 7: Scatterplot of observed and simulated PM10 concentrations in Nocera Inferiore in the calibration phase 
and histogram of the residuals. 

 
Table 4. Summary statistics of the residuals of AR(1) model for PM10 concentrations - Nocera Inferiore 

 Mean  
[µg/m3] 

Std. Dev.  
[µg/m3] 

Median  
[µg/m3] 

Skew Kurt 

Residuals AR(1) -0.25 13.99 -2.22 0.62 0.36 
 

4.2 CO Concentrations in Solofra 
The same analysis implemented for PM10 

concentration in Nocera Inferiore has been 

produced by using the data of CO concentration in 

Solofra, obtaining the same graphs.  

The series generated with this dataset is 
nonstationary, thus a differentiation became 
necessary in order to work with a smoother time 
series. By looking at the autocorrelation and the 
partial autocorrelation plots (Fig. 8) the authors 
decided to choose a ARIMA(14,1,14) model, 
which was tested together with the ARIMA(0,1,1) 
simple model suggested by the BIC criterion (a 
ranking has been obtained with the “arimaId” 
function of the “ast” package in the “R” software). 
Figure 9 shows the slope of the measured CO 
concentrations overlapped with the two ARIMA 
models results. Both the models are good enough in 
fitting CO concentrations curve, but ARIMA(0,0,1) 
has a certain delay in the process. 
ARIMA(14,1,14), on the contrary, does not exhibit 
the delay, but its implementation requires a higher 
computational effort due to the large number of 
parameters. In Figure 10 it can be appreciated how 
the entirety of the simulations obtained both with 
ARIMA(0,1,1) and ARIMA(14,1,14) have a high 
level of accuracy, since they are in the region 
outlined by average of the observation  one 
standard deviation. 

The summary statistics of the distribution of 
residuals for both models are reported in Table 5 
and their histograms are plotted in Figure 11.  

 
In the ARIMA(0,1,1) model, both the skewness 

index and the kurtosis index are positive values. 
Indeed, this model can be described as a 
leptokurtic-type distribution of residuals, with 
positive skewness. In the ARIMA(14,1,14) model, 
on the other hand, the negative skewness index and 
positive kurtosis index identify a leptokurtic 
distribution, but with negative skewness. 
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a)  

b)  
Fig. 8: Autocorrelation and Partial autocorrelation for CO a) observed series and b) differenced 

series in Solofra, in calibration phase, [16].  
 

 
Fig. 9: Plot of observed and simulated CO concentrations in Solofra, with ARIMA(0,1,1) and 

ARIMA(14,1,14) during the calibration phase. 
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Fig. 10: Scatter plot of observed and simulated CO concentrations in Solofra, during the calibration 

phase, with ARIMA(0,1,1) on the left, and ARIMA(14,1,14) on the right. 
 

 
Fig. 11: Histograms of the residuals of the ARIMA(0,1,1) model on the left and the ARIMA(14,1,14) 

model on the right for CO concentrations – Solofra. 
 

Table 5. Summary statistics of the ARIMA(0,1,1) and ARIMA(14,1,14) models residuals for CO 
concentrations – Solofra. 

 Mean  
[mg/m3] 

Std. Dev.  
[mg/m3] 

Median  
[mg/m3] 

Skew Kurt 

Residuals ARIMA(0,1,1) -0.01 0.13 -0.01 0.51 3.45 
Residuals ARIMA(14,1,14) -0.02 0.1 -0.02 -0.31 1.56 
 

5 Forecast Results 
The ARIMA models can be used to forecast future 
variations of the analyzed pollutants, to be then 
compared with actual collected data. By accurately 
choosing hyperparameters p, d and q, in section 4 
different models were found to describe PM10 and 
CO time slope. Thus, hereafter the procedure and 
results of forecasting on the same pollutants by 
using the selected models, are reported.  

5.1 AR(1) Model Forecast for PM10 
The forecast of PM10 values in Nocera Inferiore has 
been generated for the 10 days after the last day 
used for calibration (31st of May). This interval has 
been selected since it ensures a quite large time 
range for possible mitigation actions. The forecasts, 
in fact, can be used to support policy makers and 
local governments in the decision process, allowing 
to prevent large numbers of exceedances of the safe 

thresholds. In Figure 12 a forecast plot is 
represented, showing PM10 concentration as a 
function of “future” days. 

The forecasted values strictly lie above the 
measurements, indicating a general overestimation 
of the model. This is confirmed by the statistical 
values of the errors reported in Table 6. Even if this 
slight overestimation could be interpreted as a 
limitation of the model, in a practical application, 
overestimating a pollutant is a safe approach, since 
the possible mitigation actions driven by such 
forecasts would follow a precautionary principle. 

 
5.2 ARIMA Models Forecasting for CO 
Data of CO values recorded in Solofra have also 
been forecasted for the first ten days after 31st of 
May 2020, i.e. the days immediately subsequent to 
the removal of lockdown restrictions. Again, the 
forecast interval has been chosen to provide useful 
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information on the pollutant concentration slope 
over time. A 10 days’ time range is large enough to 
observe the increasing or decreasing trend in the 
data and to decide if any intervention is needed. 

Results of both ARIMA(0,1,1) and ARIMA 
(14,1,14) are reported respectively in Figure 13. In 
this case the predicted values provided by both 
models exhibit a general underestimation, even 
though the increasing trend is detected by the 
ARIMA(14,1,14). The error summary statistics are 
reported in Table 7.  

The good agreement shown by both the models 
at the very first periods (2 days) suggests that these 
models can be used to provide useful information 
for the decision process of the policy makers in a 
short time range. The continuous measurements 
collected by the monitoring stations allow to 
recalibrate the models day by day, making it 
possible to test the daily forecast and to move 
further the predictions. 

 

 
Fig. 12: Plot of observed and forecasted PM10 
concentrations in Nocera Inferiore. 

Table 6. Summary statistics of the errors of AR(1) 
model for PM10 concentrations - Nocera Inferiore. 

Errors Mean  
[µg/m3] 

Std. Dev.  
[µg/m3] 

Median  
[µg/m3] 

AR(1) 5.83 2.00 6.06 
 

 
Fig. 13: Plot of observed and simulated CO 
concentrations in Solofra in the forecast phase, for 
ARIMA(0,1,1) model (green line) and 
ARIMA(14,1,14) model (red line). 

Table 7. Summary statistics of the errors of 
ARIMA(0,1,1) and ARIMA(14,1,14) models for 

CO concentrations - Solofra. 

Errors Mean  
[mg/m3] 

Std. Dev.  
[mg/m3] 

Median  
[mg/m3] 

ARIMA(0,1,1) 0.07 0.07 0.05 
ARIMA(14,1,14) -0.10 0.06 0.12 

 
 

6 Conclusions 
Italy has been hardly affected by COVID-19 
explosion, and was one of the first nations to 
implement a drastic containment policy to limit 
virus spread and contagion. Trying to mitigate the 
pandemic, in fact, many governmental restrictions 
were adopted starting from February 2020.  

By analysing the outcomes of such restrictions, 
the presented work investigated the variations of 
CO and PM10 levels in the Campania region and 
how ARIMA models could perform good 
simulation of data. In order to compare how 
governmental restrictions altered such pollutants’ 
concentrations, two selected cities of the region 
were chosen. The first is Solofra, in the province of 
Avellino, an industrial city where leather tanning 
processing daily takes place. The second one is 
Nocera Inferiore, in the province of Salerno, which 
has a high population density (about 2200 
inhabitants/km2) and a widespread and busy road 
network (also a highway barrier). By choosing the 
two presented cities the authors wanted to evaluate 
how the pandemic affected two main sources of 
pollution: the industrial activities and the road 
traffic together with the population activities 
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(Nocera Inferiore is also characterized by the close 
presence of residential areas, schools, shops, 
highways and small industries). 

To evaluate the pollution variations in the 
considered areas, data recorded from two 
environmental monitoring stations have been used, 
and data of the February-May period over three 
different years have been compared: 2018, 2019, 
2020. By using proper physic-mathematical 
models, the variation of the temporal trend of 
pollutants before (2018, 2019) and during COVID-
19 lockdown (2020) has been assessed through the 
calibration and validation of models on interesting 
selected series: CO for Solofra and PM10 for 
Nocera Inferiore. ARIMA models applied showed 
good performance in the simulation of data. As a 
result, the authors observed how restriction policies 
did not significantly contribute to reducing PM10 
and CO concentrations in air, also compared to 
previous years. ARIMA models also permit to 
implement a prediction of the pollutants levels over 
time, and the authors specifically performed a 10-
days forecast of both PM10 and CO concentrations, 
respectively in Nocera Inferiore and Solofra. 
ARIMA models selected for the forecasting gave 
results approximately good in a very short 
prediction range, as documented in literature.  

The main limitation of this study relies on the 

fact that going further from the start of the forecast 

period, the simulated concentrations start to be 

significantly different from the observed values. 

This means that a possible improvement can be the 

automatic recalibration of the model, day by day, 

taking into account the latest measurements of the 

pollutants under study and their possible slope 

variations. In future works, a parameter sensitivity 

analysis could be performed to achieve an 

estimation of the maximum range of prediction that 

can be used before the need to recalibrate the 

model. Once the optimal time range is set, the 

recalibration procedure will provide a reliable 

predictive model, constantly updated, that could 

help decision makers in implementing temporary or 

permanent actions to mitigate the pollutants 

concentrations, to fulfil the thresholds imposed by 

the national regulations and to protect human 

beings’ health. 
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