Measuring the Efficiency of Public Transport Lines in Albania using DEA Model

MARIANA NIKOLLA¹, JONA MULLIRI¹, ARTUR RIBAJ^{2*}, ALBA TEMA³ ¹Department of Mathematics and Informatics, Faculty of Economics and Agribusiness, Agricultural University of Tirana, Tirana,

ALBANIA

²Faculty of Economics, LOGOS University College, University of Tirana, Tirana, ALBANIA

³Faculty of Economics and Agribusiness, Agricultural University of Tirana, Tirana, ALBANIA

*Corresponding Author

Abstract - Public transport is considered important to reduce air pollution. For this reason, it is very important to have efficient public transport lines. The purpose is to analyze 15 public transport lines in Albania by using the DEA model. The analysis is based on information about citizens' perceptions of five attributes (frequency, cleanliness, possibility to find a seat, punctuality, and ticket price) of public transport lines. The information is provided by conducting a survey of 120 users of public transport lines. The results indicate that it's important to improve some attributes to increase the use of public transport.

Key-words: DEA Model, public transport, efficiency, input, output

Received: October 5, 2022. Revised: February 12, 2023. Accepted: March 8, 2023. Published: April 10, 2023.

1 Introduction

Environmental pollution is one of the critical issues the world is facing nowadays. Albania is one of the countries with the highest levels of pollution, where air pollution is present and very concerning. According to the polluted countries map published by the World Health Organization (2022), Albania has the highest level of pollution among the Western Balkan Countries. Also, according to, [1], air quality in Albania didn't meet World Health.

Fig. 1: Death rate from air pollution, Albania, 1990 to 2019. Death rates are given as the number of attributed deaths from pollution per 100,000 populations.

Source: IHME, Global burden of disease [2019]

The full dataset used in Fig. 1 is at the Appendix section. These rates are age-standardized, meaning they assume a constant age structure of the population: this allows for comparison between countries and over time.

Organization guidelines for acceptable PM2.5 exposures. The observed average of PM2.5 exposures in Albania for the present year is 15.4 $\mu g/m3$ while the acceptable annual average according to WHO should not exceed 10 µg/m3. Air pollution is the result of many factors such, as the reduction of urban green spaces, non-efficient waste management, or the use of non-conventional fuel. However, the main reason for air pollution in Albania seems to be vehicle emissions, where old diesel vehicles remain problematic. Different ways have been explored to reduce air pollution, especially in urban areas. One of these ways is encouraging citizens to use public transport, [2]. However, in Albania and especially in the capital city of Tirana. There is a very high level of use of private cars. In 2020, Tirana is ranked first, among the European capital with the most polluted air, [3]. This is also confirmed by the measurements of NO2 concentration. The main purpose article analyzes the efficiency of 15 public transport lines and identifies the factors that would improve their performance. The efficiency analysis is conducted by using the DEA mathematical model, which consists of the results of the relative efficiency of similar units that use some inputs and produce some inputs, [4]. To estimate the pollution from public transportation, we will use the Statistics in Tirana's SDS indicate that 36% of residents are active users of public transport; 27% use their private cars; and the rest are classified as using alternatives, such as bicycles, motorcycle, and walking, [5]. The actual public transport fleet consists of 305 buses, out of which only 65 buses comply with Euro-V/VI standards on combustion emissions. According to data provided by the Municipality of Tirana, the combined public transport capacity (seats and standing volume) is 30,365 passengers, with only 31% of this capacity consisting.

2 Literature Review

To investigate the urban public route's efficiency utilizing the "data envelopment analysis (DEA)" technique. To analyze route performance, DEA is using, and performance measures including route design, cost, service, operation, and comfort efficiency. Transit performance was studied by many transportations, [6], showing that the DEA application is very significant in the urban transport area. Moreover, [7], applied a non-parametric DEA procedure to estimate the productive efficiency of a transit system. Furthermore, [8], used DEA to assess the US transit systems' efficiency for five years; they found the existence of positive relations between efficiency and effectiveness Transit system produces multiple outputs consuming multiple inputs. There had been a debate about which of those parameters defines the overall performance of public transit. [9], used operation time, round-trip distance, and the number of the bus stop as inputs to measure operational efficiency whereas commuters who use buses, population 65 and older, and persons with disabilities were used as inputs to measure spatial effectiveness. [10], used fuel consumption, number of full-time workers, and number of operating buses as the input variables. [11], used average travel time per round trip, number of vehicles, operators, and the total number of stops in the round trip as input variables. Input variables can be modified by the researchers as per the requirements and scope of their study as long as they include the major operating and maintenance cost of the system. [12], used output variables: total average number of passengers per day as an effective measure and vehicle km per day as an efficiency measure. The main purpose of this article is to analyse the efficiency of 15 public transport lines and to identify the factors that would improve their performance. The efficiency analysis is conducted by using the DEA mathematical model, which consists of the results of the relative efficiency of similar units that use some inputs and produce some outputs. DEA can employ various output variables as performance indicators as per the scope of the study. Choosing the input and output variables as being a critical state, special attention should be given considering the direction of the study. The model DEA not only enables us to measure the performance of urban lines in the study, but it also shows us the way to improve the efficiency of the transport lines, which during the study, resulted in relatively low performance. The aim is of course to increase competition between urban lines and encourage them to satisfy and fulfill the needs and expectations of the population. The results of the study serve as feedback to improve the quality of public transport in the referred lines and throughout the country.

3 Methodology

The DEA is a non-parametric method applied to compare the efficiency measurement of several units

with the same objectives using linear programming. It gives an image of a general measure performance of different units. Firstly, [13], introduced it, and later, [14], extended this technique. A key advantage of DEA was by handled multiple inputs and outputs; this gives comprehensive consideration for analysis units. The inputs and outputs of units depend on the properties of the system analyzed. When the DEA model is used, some limitations of the model must be taken into account, which are: the number of units must be at least twice the sum of the input and output variables; it is a good method to compare a unit with other similar units in the selection, not compared to a "theoretical maximum". Some features that make DEA a very popular and used technique are:1. It enables the use of analyzes with several inputs and several outputs; 2. It does not require any assumption about the functional form connecting inputs and outputs; 3. Units are directly comparable to another unit or a combination of the unit's others; 4. Inputs and outputs can be measured in different measurement units.

DEA is a linear programming problem as formulated in the equation below to determine the efficiency score.

4 Case Study Albania Public Transport Lines (The Number of Lines n = 15)

The Sample that is taken is 120 users of public transport lines n = 120. The information used to conduct the analysis consists of primary data. This information was provided through a questionnaire focused on questions that tend to measure the above attributes (on a scale of 1 to 10, where 1 is the maximal satisfaction and 10 is the minimal level of satisfaction) for 15 public transport lines. The transport lines are¹: These line are shown in Table 1.

Table 1.	The numb	er of trans	port line

The number of transport	Transport Lines
lines	
1	Kombinat-Kinostudio
2	Kruje-Tirane
3	Kamez- Qender
4	New Tirana
5	Laprake-Tirane
6	Tirane-Diber
7	Fier-Tirane
8	Fier- New Seman
9	Qyteti Studentit-Jordan Misja
10	Institut – Qender
11	Fushe Kruje-Tirane
12	Kruje-Fushe Kruje
13	Kashar -Yzberisht –Qender
14	Porcelan – Qender
15	Lac-Tiranë

The majority of the respondents are young, which is part of the population which uses more public transport, but there are also respondents of different ages. While in terms of gender, 66% of respondents are female and 34% are male. Regarding employment status 50.4% are employed and 28% are students, while the rest are retirees and unemployed.

Input Variables	Output Variables
1. Frequency	1. Public transport
Refers to the frequency of lines in	quality perception
stations, [15].	Level of satisfaction of
On a scale of 1 to 10	citizens using public
	transport, [17].
	On a scale of 1 to 10
2. Punctuality	
Refers to the opportunity to access	
the service in the timetable, [16].	
On a scale of 1 to 10	
3. Cleanliness	
Level of cleanliness and presence	
of garbage in the busses, [16].	
On a scale of 1 to 10	
4. Ticket price	
Structure of the prices of different	
ticket types, [15].	
On a scale of 1 to 10	
5. Possibility to find a seat	
The possibility of the passengers	
taking a seat on the bus, [19].	
On a scale of 1 to 10	

*Note: Table 2 created by the authors

 ¹ 1. Kombinat-Kinostudio, 2. Kruje-Tirana, 3. Kamez -Center, 4. New Tirana, 5 Laprake-Tirane, 6 Tirane-Diber,
 7 Fier-Tirane, 8 Fier- New Seman 9. Student City -Jordan Misja, 10. Institute-Center, 11. Fushë Krujë -Tirana 12. Krujë - Fushë Krujë, 13. Kashar - Yzberisht -Center, 14. Porcelan – Center, 15. Lac - Tirana

To measure the efficiency of public transport lines is used the input-oriented DEA model (Table 2).

DEA calculates the efficiency of a unit compared to all units in analysis, choosing the best possible alternative. Technical efficiency in DEA in the presence of some inputs and outputs is determined as the weighted sum of outputs divided by the weighted sum of inputs. The set of weights for a unit should be solved in a way that gives the greatest possible value of technical efficiency information for that unit, meanwhile, the values of the efficiency indicator of other units, for the same set of weights are between 0 and 1. Efficient units have a technical efficiency indicator value of 1, while units that have an indicator value of less than 1 are inefficient, [19], [20]. The efficiency of the unit assessed (U_0) using DEA, is given by the formula:

$$h_{0}(u,v) = \frac{weighted sum of unit output U_{0}}{weighted sum of inputs unit U_{0}} = \frac{\sum_{r=1}^{s} y_{r0} \times u_{r}}{\sum_{i=1}^{m} x_{i0} \times v_{i}}$$
(1)

Then is set objective function $Max: \sum_{r=1}^{s} y_{r0} \times u_r$ (2)

With necessary constraints for each analyzed unit:

1.
$$\sum_{r=1}^{s} y_{r_0} u_r - \sum_{i=1}^{m} x_{i_0} v_i \le 0$$

2. $\sum_{i=1}^{m} x_{i_0} v_i = 1$
3. $u_r \ge 0 \text{ and } v_i \ge 0, \forall r, \text{ and } i.$
(3)

If this coefficient is equal to 1, the analyzed unit is considered efficient, while if it is smaller than 1, then the analyzed unit is considered relatively inefficient, [19], [20].

4.1 Data Analysis of Case Study

The linear Programming problem for the study unit is as follows:

Max: $5u_1$ output per unit weight of 1. Conditions:

$$\begin{cases} 5u_1 - 5v_1 - 9v_2 - 1v_3 - 1v_4 - 1v_5 \le 0 \quad \text{condition of efficiency of unit 1} \\ 6u_1 - 4v_1 - 4v_2 - 6v_3 - 4v_4 - 5v_5 \le 0 \quad \text{condition of efficiency of unit 2} \\ 5u_1 - 6v_1 - 9v_2 - 5v_3 - 7v_4 - 1v_5 \le 0 \quad \text{condition of efficiency of unit 3} \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ 8u_1 - 5v_1 - 7v_2 - 3v_3 - 4v_4 - 8v_5 \le 0 \quad \text{condition of efficiency of unit 15} \\ u_1, v_1, v_2, v_3, v_4 \ge 0 \quad \text{conditions not negativity} \end{cases}$$

The problem is solved using the computer program Excel (Data, Solver Solution), [18], [19], [20], [21]. Table 3 are presented the results of the DEA analysis of efficiency for unit 1 and other units. Based on this solution we identify the efficient transport lines, which are Kombinat-Kinostudio, Krujë-Tirana, Kamëz-Center, Fier-New Seman, Qyteti Studentit-Jordan Misja, Fush Krujë-Center, Lac-Tirana, and Porcelan- Center, while other transport lines have resulted inefficient. Problemsolving is done by a

 Table 3. The results of the DEA analysis for the study units

Unic		output1	inputi	nput2	inputs -	input4	nputo	Pesha	Hesha	Liberenca	Liea
DMI	Linjat e transportit	allësisë së	ia per tu	Pasterti a	Penpikan eria	Cmini I biletes	hpeshtesi	Output	Inpute	ß	Eliçenca
1	Konbinst-Kinestudio	5	5	9	1	1	1	1.000	100	1.000	MX
2	knje-Tirae	6	4	4	i	4	5	1200	1516	-0.36	10X
52	Kance-Bender	5	6	9	5	ĩ	1	1000	152	-152	MX
4	TranseRe	2	1	4	2	5	1	0.400	0710	-1.30	61X
5	Lapake-Trave	9	5	10		9	8	1800	2559	-1,739	Τīx
6	Tiraxe-Diber	8	1	6	i	ĩ	3	1600	1901	1.000	101
1	Fie-Tinae	4	2	1	1	9	2	0300	0845	-1.045	101
8	Fie-Senairi	5	5	5	1	2	5	1000	1237	-1,237	101
9	Bytefi Studentik-Jordan We	5	1	1	5	5	4	1000	1519	-059	101
10	lestitet - Beeder	1	1	1	1	1	1	0200	128	-1.098	75x
1	Feste Grije-Tirace	4	4	3	1	9	2	0800	1348	-1.048	100
12	Knje-Feshe Knje	4	5	6	2	4	ĩ	0800	1127	-1.527	68x
18	Kalar-Yabeisht-Gerder	4	5	1	2	2	1	0300	0.976	-01%	31X
14	Poroska - Gender	5	1	8	1	2	1	1000	1000	1,000	100
б	lacTinač	8	5	1	1	ų.	8	1600	1900	1.000	MX
				-						-	
1	Peshat	0200	1025	0075	0.127		0171				
			-			_					
			_		SerCel				Variable	Cells	
				<i>′</i>		Mar Ch					
	Uni	1				Nánchor	et-021#01				
	Output	1.00				kushtet:	Ω14				
	họi	101		Const	raint Cells	(21822:=0				
)	0601 (*1				
		Fornalat e	pērdotura	pêr zgidej	en e problem	nit DEA					
	Qeliza	Formula				Rangu ku i	topjohet F	ornula			
	8	SUMPRODUCT	CHC4,9CQ	214C421			MB				
	8	SUMPRODUCT	04;#4,\$D\$	2144421			JA.J8				
	K4	8-8					K4K8				
	C26	NCEX(HII),C25,	1								
	C37	NCEX(44,18)C2	51								

*Note: Table 3 created by the authors, n=15

The results of the DEA analysis for the study units are presented in Table 3. Also, the model provides the opportunity to improve efficiency for inefficient transport lines, showing the best combination of inputs that increase the level of satisfaction of public transport users. To apply this, we will take into analysis 12 units that have resulted inefficient. Firstly, we have applied for the DEA for the KrujëFush Krujë transport line. Unit 12, Krujë-Fush Krujë resulted from less efficiency than other units of the group, respectively $h_0(u, v) = 68\%$. Then we select the option Sensitivity Report in the Solver Results dialog box. In the results of the Sensitivity Report, the absolute value of shadow prices in the column "Difference", are weights of the composed unit.

Table 4. The results of DEA analysis for the Krujë-	
Fushe Kruië transport line.	

		Acres	1.0	1	1. 19	10.00	112	104.0.0.0	Mar 11	40	
虚.		0.0001	iqui	1002	Inputs	1002H	100D	NHEI	報告	USEBBIOE	16
DA.	Transportiones	Palai tangan palai pengrina	Reability to Tel a seat	Cestines	kachadh	Tidetpice	hapang	Output	hpit	\$	Efficient
1	Kenting Anstyle	5	5	-	1	t	1	0.850	0520	初	185
1	lituje-Trase	ĥ	4	4	1	4	5	1000	2020	-100	1005
1	रेक्ट-देखे	5	6	1	5	1	1	0.850	2.080	-1230	1005
ŧ.	Tauck	2	3	4	1	ł	1	0.340	0.850	-8538	628
5	Lapsie-Trave	9	9	1	1	9	8	1.530	3.020	-1朝	75%
6	TrateOder	8	1	6	1	1	3	1380	2,150	-1300	10%
1	Ferfrae	4	2	1	1	9	2	0.680	0.780	-0100	1005
8	Ferletani ti	5	5	5	1	2	5	0.850	1220	-6310	105
1	Cyres Dudents-Ionian Milja	5	3	1	5	5	4	0.850	1540	-100	1335
10	lestbd - Center	1	10	1	1	1	1	0,170	0.360	-119	758
11	Fade traje-Trane	4	4	1	1	9	2	0.680	1.080	-0.400	1305
12	linje Fishe linje	4	5	1	2	4	1	0.680	1.000	-0.320	685
В	Tastar Toberitt - Jenier	4	5	1	2	2	1	0.680	LIN	4390	978
ų	Porcelan-Qender	5	8	I.	1	2	<u></u> (†	0.850	0,850	0.000	1305
5	la-liné	1	5	1	3	4	8	1380	1380	0.000	10%
	Wegts	0130		0070	1290	1000					
				4	Set Cel		_	_	Veriable	(els	
	Dat	1		1.51		Vat	Q5		-		
	Output:	15				100	Tanables (21:421				
	kpat	100		<u>}</u> (08	traint Cell	5	CILICO CILICO MANDE	a 134 14)			

*Note: Table 4 created by the authors

The results of DEA analysis for the Krujë-Fushe Krujë transport line is presented in Table 4. The hypothetical unit produces output equivalent to the output of the unit under study seeking smaller amounts or equivalent to those used by inefficient units.

Table 5. The results of the sensitivity of unit 12 Microsoft Excel 15.0 Sensitivity Report

Worksheet: Sheet2

Variable Cells

Constrainte

57534 Durket Respective Latticity of Assessment A17 0	4	16430	
plott kezebilul Holesise as pauzbount – n'ti – n			
\$D\$21 Peshat Mundesia per tu ukur 0 -0.12	- 0	0.12	1E+30
SES21 Peshat Pastertia 0.07 0	0	1	0.10619469
SFS21 Peshat Perpikmeria 0.29 0	0	0.13483146	0.333333333
\$6521 Peshat Cmimil blietes 0 -0.8	0	0.8	1E+30
SH521 Peshat Shpeshtesia 0 -1.4	0	1.4	1E+30

		Final	Shadow	Constraint	Allowable	Allowable
0el	Rame	Value	Price	R.H. Side	increase	Decrease
\$C\$27	Input Perceptimi i cilësisë së transportit	1	0.68	1	1E+30	1
\$K\$4	Kombinat-Kinostudio 90	-0.07	0.000	0	1E+30	0.07
\$8\$5	Kruje-Tirane s0	-1	0.000	0	1E+30	1
\$856	Kamez- Qender s0	-1.23	0.000	0	1E+30	123
\$K\$7	Trana e Ré ≤0	-0.52	0.000	0	1E+30	0.52
\$858	Laprake-Ticane s)	-1.49	0.000	0	1E+30	1,49
5859	Trare-Ober s0	-0.8	0.000	0	1E+30	0.8
\$8\$10	Fier-Tirane s0	-01	0.000	0	1E+30	0.1
\$K\$11	Fier-Seman I ri s0	-0.37	0.000	.0	1E+30	0.37
\$1512	Qyteti Studentit-Iordan Misja 외	-1.09	0.000	0	15+30	1.09
\$1513	i hstitut – Qender ≤0	-0.19	0.000	0	1E+30	0.19
\$8514	i Fushe Kruje-Tirane s0	-0,4	0.000	0	1E+30	0.4
\$8\$15	Knije-Fushe Knije sl	-0.32	0.000	0	1E+30	0.32
\$8\$16	Kashar -Yzberisht -Qender 90	-0.39	0.000	0	1E+30	0.39
\$\$\$17	Porcelan – Qender s0	0	0.160	0	0.06034483	0.5
58518	Lac-Tirané s0	D	0.400	0	0.4	0.7

*Note: Table 5 created by the authors

Table 6 is presented the best combination of inputs that make unit 12 efficient by DEA.

iht		Citição	input1	input2	inputS	Input4	had5	Weight
DMI	Transport Lines	Public transport quality perception	Possibility to find a seat	Cleanines	Punctuality	Ticket price	Requercy	Composition weights
1	Kontinet-Knostudio	5	5	9	1	1	1	0.000
2	Kruje-Trane	6	4	4	6	4	5	0.000
3	Kanez-Qender	5	6	9	5	1	1	0.000
4	Trana e Re	2	3	4	2	5	1	0.000
5	Laprake-Triare	9	9	10	8	9	8	0.000
6	Trare-Diber	8	1	6	6	1	3	0.000
1	Fer-Trave	4	2	1	1	9	2	0.000
8	Fer-Senanini	5	5	5	3	2	5	0.000
9	Qyteti Studentik-Jordan Wisja	5	3	1	5	5	4	0.000
10	linstitut - Qender	1	1	1	1	1	1	0.000
11	Fishe Kruje-Tirane	4	4	3	3	9	2	0.000
12	Kraje-Fashe Kraje	4	5	8	2	4	1	0.000
13	Kashar • Tisberisht - Qender	4	5	1	2	2	1	0.000
14	Poncelan - Gender	5	8	8	t.	2	1	0.160
15	lac-Troné	8	5	1	3	4	8	0.400
	Composition values	4	3.28	4.08	1.36	1.92	3.36	
	Extra inputs used	-3.000	-2.280	-3.080	-0.360	-0.920	-2360	

Table 6. The Composite unit values for unit 12.

*Note: Table 6 created by the authors

The improved DEA efficiency for unit 12 is shown in Table 7. As we see, it is very important to improve attributes such as punctuality, ticket price, cleanliness, or frequency.

Table 7. Improved DEA efficiency for unit 12

))		Detpet1	inati	1932	hat3	inst	intif	制度	light	Difference	(H
M	Transportilines	Addictionsport quality perception	Pesabilitytu Andaseat	Geanines	Portaily	Tichet price	Frequency	Output	inputs	g	Stéen
1	Kontinet-Kinestudo	5	5	\$	1	1	1	1250	1250	0.000	1025
1	inje Trave	8	4	÷.	6	ŧ.	ş	1500	1.582	-0.92	100%
1	lanes-Gerder	5	ŧ.	9	÷.	1	1	1250	2102	482	100%
ł.	Traise Re	2	1	4	2	50	-1	0.500	1.190	顿	625
5	LapakeTrane	8	1	单	8	\$.	1	1250	3.158	-1308	75%
6	Trave-Ober	1	1	ţ.	6	1	1	2,000	2.000	0.000	100%
1	Reflax	4	Ž	1	1	ĝ.	2	1.000	1.999	-0.999	100%
8	Re-Senan in	- 5	5	\$	1	2	ş	1,250	1323	-465	100%
9	Qiteti Rudenti-Jordan Mişa	5	1	1	5	5	4	1250	1.902	初辺	100%
10	hattat-Gender	1	1	1	1	1	1	0250	0.353	-0.08	75%
11	Forte Angle-Totante	4	4	1	3	ş.,	2	100	1.655	-465	100%
12	Knje-Fashe Knje	4	12	4篇	12	懴	13	1,000	1.000	0.000	625
13	Rehar-Yobersht-Gender	- 4	5	T	2	2	-1	1.000	1.190	-0.190	515
ļį.	Avtalan - Gender	5	1	8	1	2	1	1,250	1250	0.000	100%
5	lan kané	8	5	1	3	4	I	2,000	2.000	0.000	100%
	ustalac.	0.150		4.911	4051		DEX.				
	negio	0000		WHE	Wax	7	ULIO	-			
			-	-	SetCell	_		\rightarrow	Verable	68	
	ini	12				Mar. Varia	MarcOS Variables (01:401				
	Output	1.00	-			Com	traine: (2):	4			
	lapat	100		y Con	anint Cells		(2)-H21 82-618	ন বা	-		

*Note: Table 7 created by the authors

5 Conclusion and Recommendations

Environmental issues, especially air pollution is one of the most concerning issues in Albania.

It is considered important to use public transport as a way to reduce the high level of emissions of private cars. We have taken in to analyze the efficiency of 15 public transport lines. To conduct the analysis, we have used the input-oriented DEA model, which calculates the efficiency of a unit compared to all units in the analysis, choosing the best possible alternative. The analysis resulted in some efficient transport lines such as Kombinat-Kinostudio, Kruje-Tirana, Kamez-Qender, Fier-New Semani, Qyteti Studentit-Jordan Misja, Fushe Kruje-Qender, Lac-Tirana, and Porcelan-Qender.

We used Solver to improve the efficiency of the Kruje-Fushe Kruje transport line.

For inefficient units exists a linear combination of efficient units that results in a composite unit, which produces at least the same output using the same or fewer inputs than the inefficient unit as in the case of unit 12.

From the efficiency analysis (referring to the result of the sensitivity report), the absolute value of the shadow prices (Shadow Prices), are the weights of the composite unit, which is more efficient than the unit under study 12.

The average of the weights is approximately 40% for unit 15 (Lac-Tirana with 1 efficiency result) and 16% for unit 14 Porcelan-Center with 1 efficiency result) from the composite unit (assumed). This hypothetical unit resulted in the same output as the output of unit 12 but reduced the input perceptions.

6 Recommendation

A recommendation for future research could be the increase of included attributes in the study. Also, a larger sample and extension in other lines could provide an in-depth understanding of the public transport efficiency in Albania.

This study can be used to increase the performance of transport lines to increase the use of public transport.

References:

- [1] Berkeley Earth 2022. Regional Average Particulate Air Pollution
- [2] NUMBEO, 2019 Cost of living index by city 2019
- [3] Farrell, M.J. (1957) The Measurement of Productive Efficiency. Journal of the Royal Statistical Society, 120, 253-290. https://doi.org/10.2307/2343100
- [4] Sustainable Urban Mobility Plan for the City of TIRANA, July 2020, <u>https://tirana.al/en/uploads/2020/12/20201210</u> <u>161709_sump_tirana-volume-ii_theplan_200724.pdf</u>
- [5] Marcius Carvalho, Takao Syguiy, Daniel Nithack e Silva (2015). Efficiency and Effectiveness Analysis of Public Transport of Brazilian Cities Journal of Transport Literature 9(3):40-44
- [6] Agarwal S (2009) Measuring the efficiency of public transport sector in India: an application of data envelopment analysis. In: Proceedings of the conference in Philadelphia, USA]
- [7] R Liu, X Guo, TT Lao, (2017). A critical review on compression textiles for compression therapy: Textile-based compression interventions for chronic venous

insufficiency The German RAL-GZ387/1 78 and British UK BS 6612 79 models are currently the most widely used guidelines in practical application

- [8] Sunil Sujakhu, Wenquan Li. (2020) Journal of Transportation Technologies, Vol. 10 No.02(2020), Public Transit, Performance Evaluation Using Data Envelopment Analysis and Possibilities of Enhancement
- [9] I. M. García Sánchez, (2009).Technical and Scale Efficiency in Spanish Urban Transport: Estimating with Data Envelopment Analysis
- [10] Mohammad Nuru Hassan, Yaser E. Hawas Munjed A. Maraqa. (2012). Accident Analysis & PreventionVolume 45, Pages 554-564 A holistic approach for assessing traffic safety in the United Arab Emirates
- [11] A.Charnes W.W. Cooper, E. Rhodes. (1978).
 European Journal of Operational Research Volume 2, Issue 6, Pages 429-444.ö Measuring the efficiency of decision making units
- [12] Bian, Y., & Yang, F. (2010). Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon's entropy. *Energy Policy*, 38(4), 1909-1917.
- [13] Van Lierop, D., Badami, M., & El Geneidy A. (2018). What influences satisfaction and loyalty in public transit? A critical review of the literature. Transport Reviews, 38(1), 52 -72
- [14] Diana, M. (2012). Measuring the satisfaction of multimodal travellers for local transit services in different urban contexts. Transportation Research Part A: Policy and Practice, 46(1), 1-11
- [15] De Oña, J., Estévez, E., & de Oña, R. (2020). Perception of public transport quality of service among regular private vehicle users in Madrid, Spain. Transportation research record, 2674(2), 213-224.
- [16] Ragsdale, C. T. (2008). Modeling and decision analysis: revised.
- [17] Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software (Vol. 2, p. 489). New York: Springer.
- [18] Sharma, K. R., Leung, P., & Zane, L. (1999). Performance measurement of Hawaii state public libraries: An application of Data Envelopment Analysis (DEA). Agricultural and Resource Economics Review, 28(2), 190-198.

- [19] M. Nikolla, E. Kukali. (2017). Academic Journal of Business, Administration, Law and Social Sciences.3(3):112-120
- [20] Banushi, B., Cinaj, V., & Ribaj, A. (2021). The Role of Good Governance in the Performance of a Public Entity (The Case of ARDA). WSEAS Transactions on Environment and Development, 17, 636-647.

Contribution of Individual Authors to the Creation of a Scientific Article (Ghostwriting Policy)

The authors equally contributed in the present research, at all stages from the formulation of the problem to the final findings and solution

Sources of Funding for Research Presented in a Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflict of interest to declare that is relevant to the content of this article.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0 <u>https://creativecommons.org/licenses/by/4.0/deed.en</u> <u>US</u>

APPEDIX

These rates are age-standardized, meaning they assume a constant age structure of the population: this allows for comparison between countries and over time.

Entity	Code	Year	Deaths - C	Deaths - C	Deaths - C	Deaths - C
Albania	ALB	1990	97.25	46.45	146.67	4.79
Albania	ALB	1991	98.11	46.05	147.35	4.36
Albania	ALB	1992	93.29	43.29	139.73	4.07
Albania	ALB	1993	88.01	40.64	131.59	3.9
Albania	ALB	1994	81.51	37.55	121.62	3.67
Albania	ALB	1995	81.76	37.77	121.65	3.42
Albania	ALB	1996	80.92	38.59	121.18	3.08
Albania	ALB	1997	76.98	39.24	117.78	3.02
Albania	ALB	1998	72.16	40.06	113.53	2.6
Albania	ALB	1999	68.41	41.24	110.85	2.2
Albania	ALB	2000	63.7	41.54	106.44	1.8
Albania	ALB	2001	57.58	40	98.9	1.7
Albania	ALB	2002	56.16	41.6	99.31	1.99
Albania	ALB	2003	55.71	44.2	101.61	2.26
Albania	ALB	2004	51.97	44.43	98.06	2.29
Albania	ALB	2005	47.44	43.65	92.59	2.08
Albania	ALB	2006	41.52	41.61	84.49	1.8
Albania	ALB	2007	36.13	40.09	77.55	1.7
Albania	ALB	2008	33.03	40.89	75.18	1.56
Albania	ALB	2009	29.49	40.45	71.06	1.4
Albania	ALB	2010	27.01	40.05	67.93	1.14
Albania	ALB	2011	25.55	40.04	66.38	1.08
Albania	ALB	2012	24.11	39.41	64.31	1.09
Albania	ALB	2013	22.96	38.89	62.67	1.08
Albania	ALB	2014	22.1	38.83	61.76	1.06
Albania	ALB	2015	21.27	38.83	60.8	0.87
Albania	ALB	2016	20.2	38.32	59.14	0.78
Albania	ALB	2017	19.24	37.83	57.63	0.69
Albania	ALB	2018	18.35	37.36	56.23	0.64
Albania	ALB	2019	17.54	36.93	54.94	0.57