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Abstract: - In this article, coastal sea sediments from three different selected sites of Reggio Calabria and Vibo 
Valentia districts, Calabria region, Southern Italy, were picked up to quantify natural and anthropogenic 
radioactivity content and metal concentrations. The aim was to assess any possible radiological health hazard 
for human beings due to external exposure to gamma rays, as well as the level of pollution due to anthropic 
radionuclides and metals in the investigated area. To this purpose, High Purity Germanium (HPGe) gamma 
spectrometry was employed to quantify specific activities of 226Ra, 232Th, 40K, and 137Cs radioisotopes. The 
absorbed gamma dose rate in air (D), the annual effective dose equivalent (AEDE) outdoors, the external hazard 
index (Hex) and the excess lifetime cancer risk (ELCR) were also estimated to assess any possible radiological 
health risk for the population, mainly due to the use of coastal sea sediments for the beach nourishment. 
Moreover, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) measurements were carried out for the 
quantitative elemental analysis of the samples, to assess any possible chemical pollution by metals, that could 
be released into the environment by both natural and anthropogenic sources, through a comparison with the 
limits set by the Italian Legislation. Finally, the results reported in this paper can be used as a baseline for 
future investigations concerning a more complete mapping of the radioactivity levels in coastal sea sediments. 
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1   Introduction 
Naturally occurring radioisotopes from the Earth's 
crust and cosmic radiation, as well as artificially 
produced radionuclides from nuclear weapons 

experiments and nuclear facility failures, are a 
permanent environmental occurrence and constitute 
notable sources of radiation exposure for human 
beings, [1], [2], [3], [4], [5]. In particular, natural 
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radionuclides are uranium (238U and 235U) and 
thorium (232Th) decay chain products and 40K, 
primordial and with variable concentrations based 
on local geological landforms, [6]. Their 
significance resides in the fact that they account for 
more than half of the radioactive exposure to which 
the population is subjected, [7], [8]. Besides these 
natural radionuclides, man-made ones such as 137Cs, 
being released into the environment by different 
anthropogenic practices and being deposited in soils 
as fallout, also play a significant role in radiation 
exposure, [9], [10]. Hence, the knowledge of natural 
and anthropogenic radionuclides-specific activity in 
environmental matrices is important for establishing 
background levels of radiation and assessing the 
effects of radioactive exposure for humans, [11], 
[12]. 

In sediments, naturally occurring radioisotopes 
mainly tend to be accumulated by weathering, 
erosion, and depositional processes of different 
geological materials, exhibiting concentrations 
generally growing as grain size becomes smaller, 
[13], [14]. The investigation of natural radioactivity 
in coastal sea sediments may give valuable 
information on the source and fate of radionuclides 
in aquatic habitats, helping to establish their 
distribution and the potential risk to public health 
from radio contamination of rivers and coastline 
areas and the use of sea sediments for nourishment 
of beaches, [15], [16].  

Going on, the unregulated urban development 
surrounding many towns and coastal areas has led to 
an increasing level of pollutants that have 
contaminated these aquatic habitats to an alarming 
degree. Among them, metals are of the greatest 
concern because of their long-lasting and bio-
accumulative character, [17], [18], [19], [20]. They 
can be delivered to the aquatic environment and 
accumulated in sediments through the disposal of 
liquid effluents, chemical leachates, and runoff from 
residential, manufacturing, and farming activities, 
and also through atmospheric deposition, [21], [22]. 
These metals can be leached from sediments to 
overlying waters through either natural or man-
made processes, resulting in a potential hazard to 
ecosystems, [23]. 

In this article, coastal sea sediments from three 
different selected sites of Reggio Calabria and Vibo 
Valentia districts, Calabria region, Southern Italy, 
were analyzed to quantify natural (226Ra, 232Th and 
40K) and artificial (137Cs) gamma-emitting 
radionuclides, by using High Purity Germanium 
(HPGe) gamma spectrometry, to record 
radioactivity background levels and to check for any 
possible anthropic radionuclides’ pollution, [24]. 

Moreover, Inductively-Coupled Plasma Mass 
Spectrometry (ICP-MS) was employed for the 
quantitative analysis of metals, to evaluate any 
possible chemical pollution through a comparison 
with the limits set by the Italian Legislation, [25]. 
 

 

2   Materials and Methods 
 
2.1 Samples Collection and Preparation 
Five samples of coastal sea sediments, around 1 kg 
everyone, were collected for each of the three 
selected locations (Figure 1), at a depth of 8-10 m. 
In detail, the GPS coordinates of the sampling 
points are 38°28’28.3” N and 15°54’32.7” E for 
ID1, 38°30’27.3” N and 15°55’04.73” E for ID2, 
38°32’25.9” N and 15°55’50.4” E for ID3, 
respectively. Sampling was performed according to 
the following process: the sampler was cocked and 
depressed at a steady speed to enable it to contact 
the seabed in the proper position. Upon contact with 
the seabed, the operator scored the GPS coordinates 
and recovered the sampling instrument. As soon as 
the sampler touched the surface, it was rapidly 
retrieved to prevent any stresses that would alter its 
content, externally rinsed to ensure no 
contamination, and its content was drained into a 
tank and stored in well-sealed and labeled 1 L 
acidified polyethylene containers to prevent 
radionuclide precipitation and absorption on the 
container sides.  

In the laboratory, all sediments were oven-dried 
at 105° C, sieved to a particle size of less than 2 
mm, and placed into 1 L capacity Marinelli airtight 
containers. After 40 days, secular radioactive 
equilibrium was reached between 226Ra and its 
daughter products, and sediments were ready to be 
analyzed by High Purity Germanium (HPGe) 
gamma spectrometry, [26]. 
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Fig. 1: Location of the sampling sites, in Reggio 
Calabria (ID1 and ID2) and Vibo Valentia (ID3) 
districts 
 
2.2 HPGe Gamma Spectrometry 

Measurements 

For the HPGe gamma spectrometry analysis, coastal 
sea sediments were counted for 70000 seconds, to 
reduce the statistical uncertainty, and spectra were 
analyzed to obtain the activity concentrations of 
226Ra (by using the 295.21 keV and 351.92 keV 
214Pb and 1120.29 keV 214Bi gamma-ray lines), 232Th 
(by using the 911.21 keV and 968.97 keV 228Ac γ-
ray lines), 40K (through its gamma-line at 1460.8 
keV) and 137Cs (through its gamma-line at 661.66 
keV), [27].  

The experimental set-up was a positively biased 
detector (GEM), with FWHM of 1.85 keV, peak-to-
Compton ratio of 64:1, and relative efficiency of 40 
% at 1.33 MeV (60Co), placed inside lead wells to 
shield the background radiation environment. It is 
worth noting that, for the sample holder geometry of 
1 L, efficiency and energy calibrations were carried 
out with a multipeak Marinelli geometry gamma 
source (AK-5901) of 1 L capacity, covering the 

energy range 60-1836 keV, customized to reproduce 
the exact geometries of samples in a water-
equivalent epoxy resin matrix. The Gamma Vision 
software was used for data acquisition and analysis, 
[28]. 

The specific activity (Bq kg-1 dry weight, d.w.) 
of the detected radionuclides was given by, [29]: 
        
   𝐶 =

𝑁𝐸

𝜀𝐸𝑡𝛾𝑑𝑀
                             (1) 

  
where NE indicates the net area of a peak at energy 
E, εE and γd is the efficiency and yield of the 
photopeak at energy E, respectively, M is the mass 
of the sample (kg) and t is the live time (s), [30].  
The quality of the gamma spectrometry 
experimental results was certified by the Italian 
Accreditation Body (ACCREDIA), [31]. 
 

2.3   ICP-MS Measurements 

The concentration of As, Cd, Cu, Hg, Ni, Pb, Sb, Tl, 
Zn, and Crtot was obtained through ICP-MS analysis 
using a Thermo Scientific iCAP Qc ICP-MS. 
Particles with a size smaller than 2 mm, previously 
served, were further minced at a size of about 100 
µm through an agate ball mill. After, a quantity of 
0.5 g of this sample, together with 9 mL of ultrapure 
(67-69%) HNO3 and 3 mL of ultrapure (32-35%) 
HCl were directly introduced into a 100 mL TFM 
vessel. Acid digestion was performed using a CEM 
microwave unit system, Mars 6 touch control, in one 
step, at 1000 W and 175 ºC, with a maintenance 
time of 4 minutes and 30 seconds, followed by a 20-
minute cooling, [32]. After cooling, vessel contents 
were filtered and filled up to 50 mL with distilled 
H2O. The final sample was then diluted at a 
concentration of one order of magnitude lower than 
the initial value. 

The sample introduction system consisted of a 
Peltier cooled (3 ˚C), baffled cyclonic spray 
chamber, PFA nebulizer, and quartz torch with a 2.5 
mm i.d. removable quartz injector. The instrument 
was operated in a single collision cell mode, with 
kinetic energy discrimination (KED), using pure He 
as the collision gas. All samples were presented for 
analysis using a Cetac ASX-520. The iCAP Qc ICP-
MS was operated in a single KED mode using the 
following parameters: 1550 W forward power; 0.98 
L/min nebulizer gas; 0.8 L/min auxiliary gas; 14.0 
L/min cool gas flow; 4.5 mL/min collision cell gas 
He; 45 s each for sample uptake/wash time; 
optimized dwell times per analyte (0.1 s, except 0.5 
s for As, Hg, Cr and Se); one point per peak and 
three repeats per sample. 
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2.4 Evaluation of Radiological Hazard 

Effects 

Radiological parameters, such as the absorbed 
gamma dose rate in the air (D), the annual effective 
dose equivalent (AEDE) outdoors, the external 
hazard index (Hex) and the excess lifetime cancer 
risk (ELCR), were estimated to assess any potential 
radiological health risk to humans, [33], [34]. 

In particular, the absorbed dose rate calculation 
is the first major step to evaluating the health risk, 
[35]: 
 
 D (nGy h-1) = 0.462CRa + 0.604CTh + 0.0417CK  (2) 
 
where CRa, CTh, and CK are the specific activities, in 
Bq kg-1 d.w., of 226Ra, 232Th, and 40K, respectively. 
Going on, the annual effective dose equivalent, 
received by an individual, is given by, [36]: 
 
AEDEout (mSv y-1) = D (nGy h-1) · 8760 h · 0.7 Sv 
Gy-1 · 0.2 · 10-6                                                              

(3) 
 
where 0.2 is an outdoor occupancy factor and 0.7 Sv 
Gy-1 is the conversion coefficient from the absorbed 
dose to the effective dose received, [37]. 

 
Moreover, the external radiation hazard index, 

to set the radiation dose to a value lower than 1 mSv 
y-1 was defined, [38]: 
 

       Hex = (CRa/370 + CTh/259 + CK/4810) ≤ 1     (4) 
 

Finally, the excess lifetime cancer risk index 
gives the probability of cancer development during 
a lifetime at a certain amount of exposure. It 
accounts for the number of extra cancers that are 
expected in a defined population as a result of 
exposure to a carcinogen at a particular dose, [38]: 
 

  ELCR = AEDEout · DL · RF                   (5) 
 

where DL is the mean human life duration (estimated 
to be 70 years) and RF the risk factor (Sv−1), i.e. fatal 
cancer risk per Sievert, equal to 0.05 for the public 
according to the International Commission on 
Radiological Protection (ICRP) recommendation, 
[39]. 
 

 

 

 

 

 

3   Results and Discussion 
 

3.1 Radioactivity Analysis and Radiological 

Hazard Effects Assessment 
The average activity concentrations of detected 
radionuclides, 226Ra, 232Th, 40K, and 137Cs, in the 
investigated samples, are reported in Table 1 for 
each sampling site.  
 

Table 1. The average activity concentrations CRa, 
CTh, CK, and CCs (average value ± standard 

deviation) of, respectively, 226Ra, 232Th, 40K, and 
137Cs, were evaluated for each sampling site. 

ID 

CRa 

(Bq kg-1 

d.w.) 

CTh 

(Bq kg-1 

d.w.) 

CK 

(Bq kg-1 

d.w.) 

CCs 

(Bq kg-1 

d.w.) 

1 (19.6 ± 2.7) (32.3 ± 4.9) (800 ± 112) < 0.2 
2 (13.5 ± 2.2) (23.4 ± 2.9) (543 ± 81) < 0.1 
3 (13.2 ± 2.1) (24.3 ± 3.1) (825 ± 91) < 0.1 

 

The observed variability, location by location, 
can be due to the large changes in chemical and 
mineralogical properties and rare-earth elements of 
the marine backdrop, [40].  

As far as natural radionuclides are concerned, 
the 40K specific activity is more than one order of 
magnitude greater than that of 226Ra and 232Th 
radionuclides, as usually occurs in soil samples. In 
detail, the specific activities range from (13.2 ± 2.1) 
Bq kg-1 d.w. to (19.6 ± 2.7) Bq kg-1 d.w., from (23.4 
± 2.9) Bq kg-1 d.w. to (32.3 ± 4.9) Bq kg-1 d.w. and 
from (543 ± 81) Bq kg-1 d.w. to (825 ± 91) Bq kg-1 
d.w. for 226Ra, 232Th, 40K, respectively.  It is worth 
noting that the highest specific activity of 226Ra and 
232Th were found in site ID1, while 40K was in site 
ID3. 

Furthermore, taking into account that worldwide 
average concentrations of 226Ra, 232Th, and 40K in 
soils, as reported by [31], are 35 Bq kg-1 d.w., 30 Bq 
kg-1 d.w. and 400 Bq kg-1 d.w., respectively, we can 
notice that, in our case, the specific activity 
concentration is lower than the average world value 
in all cases for 226Ra. Moreover, it is higher than the 
mean worldwide value only for site ID1 for 232Th, 
while it is higher than the worldwide one in all cases 
for 40K. These results are strictly related to the 
mineralogical composition of the coastal sea 
sediments themselves, as widely reported in the 
literature, [41], [42], [43], [44].  

Regarding anthropogenic radioactivity content, 
we notice that the activity concentration of 137Cs is 
lower than the minimum detectable activity value in 
all cases, excluding radioactive contamination of 
anthropic origin for the investigated samples. 
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Going on, radiological hazard indices are reported in 
Table 2 for all the investigated sampling sites.  
 

Table 2. Radiological hazard indices for all the 
investigated sampling sites. 

ID 
D 

(nGy h-1) 

AEDEout 

(µSv y-1) 
Hex 

ELCR 

(x10-3) 

1 61.9 75.9 0.34 0.27 
2 43.0 52.8 0.24 0.18 
3 55.2 67.7 0.30 0.24 

 
In detail, the absorbed dose rate, as evaluated by 

using equation (2), is higher than the world average 
value (57 nGy h-1), [37], only for site ID1. The 
annual effective dose equivalent, received by an 
individual and obtained through equation (3), never 
exceeds 1 mSv y-1, which is set as the maximum 
limit by, [45]. Moreover, the external radiation 
hazard index, as resulting from equation (4), is 
lower than unity for all investigated samples. Thus, 
in light of the aforementioned results, radiological 
health risks for the population due to external 
exposure to gamma rays, mainly due to the use of 
coastal sea sediments for beach nourishment, can be 
considered negligible. Finally, excess lifetime 
cancer risk values, as obtained by using equation (5) 
the AEDEout values calculated by equation (3), are in 
very good agreement with the literature, [46], [47], 
[48]. It is worth noting that the assessment of the 
radiological health hazards for the population only 
based on the calculated ELCR is not possible, 
because trustworthy and standardized mortality and 
morbidity statistics are not affordable. 
 
3.2   Metals Analysis 
Table 3. Average contents (mg kg-1 d.w.) of metals 

detected in the investigated samples by ICP-MS 
analysis, were evaluated for each sampling site. In 

the last column, the threshold limit set by the Italian 
legislation is reported for comparison. 

Table 3 reports the average contents (mg kg-1 
d.w.)  of metals detected in the investigated samples 
by ICP-MS analysis, evaluated for each sampling 
site. 

It can be noticed that in all cases the 
experimental values remain below the 
contamination thresholds set by, [49], [50]. 
Consequently, these metals cannot be treated as 
pollutants, they do not cause unpleasant effects 
neither compromise the well-being of the 
environment nor pose a risk to human health, [51]. 
 

 

4   Conclusion 
The specific activity of natural and anthropic 
radioisotopes, i.e., 226Ra, 232Th, 40K, and 137Cs, was 
quantified through HPGe gamma spectrometry for 
coastal sea sediments picked up from different 
sampling points of Reggio Calabria and Vibo 
Valentia districts, Calabria region, Southern Italy. 
Moreover, to assess any possible radiological health 
risk for the population, mainly due to the use of 
coastal sea sediments for beach nourishment, the 
absorbed gamma dose rate in air, the annual 
effective dose equivalent outdoors, the external 
hazard index, and the excess lifetime cancer risk 
were calculated. Obtained results put into evidence 
low levels of radioactivity, thus discarding any 
significant radiological health risk for the 
population. 

Going on, the presence of potentially hazardous 
elements (such as As, Cd, Cu, Hg, Ni, Pb, Sb, Tl, 
Zn, and Crtot) was assessed through ICP-MS 
measurements. To estimate the degree of pollution 
by these metals, their concentrations were compared 
with threshold limits set by the Italian Legislation. 
Obtained results indicate that metal concentrations 
are much lower than the contamination reference 
values, thereby ruling out pollution.  

Noteworthy, as a direction for future research, 
this study can be used as a baseline for 
investigations about radioactivity background levels 
in coastal sea sediments of the investigated area. 
Furthermore, it should be remarked that the 
approach stated in this article might be applied, in 
principle, for the assessment of any potential 
radiological hazard for human beings due to the 
presence of radioactive elements in sediments, by 
constituting a guideline for investigations focused 
on the monitoring of the radiological and chemical 
quality of these samples, with a strong impact on the 
real life. No Artificial Intelligence methods can be 
applied to this study. 
 
 

 Site ID  

 1 2 3 Threshold limit 

CAs 1.07 1.49 1.21 12 

CCd < 0.1 < 0.1 < 0.1 0.3 

CCu 1.83 2.61 1.93 19 

CHg < 0.05 < 0.05 < 0.05 0.3 

CNi 1.69 2.54 1.33 30 

CPb 2.85 3.01 1.87 30 

CSb 0.09 0.06 0.05 2 

CTl < 0.1 < 0.1 < 0.1 0.3 

CZn 6.93 25.5 33.1 124 

CCr-tot 2.61 4.64 2.42 50 
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