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Abstract: The variations from year to year of the monthly average temperatures are modelled as a discrete-time
Markov chain. By computing the limiting probabilities of the Markov chain, we can see the impact of climate
change on these temperatures. The same type of model is proposed for the variations of the monthly amounts of
precipitation. An application to Jordan is presented.
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1 Introduction
Because of the great importance of climate change,
there have been numerous papers written on
prediction models for this phenomenon; see, [1]
and the long list of references therein, [2] and, [3] for
a recent example of such a model.

The author has used stochastic processes, in
particular diffusion processes, as models in hydrology
and meteorology. For example, [4] used filtered
Poisson processes to forecast river flows. This
problem has also been addressed by various authors;
see, [5], [6], [7], [8], [9], [10], [11], [12] and, [13].

In, [14], the author considered the problem of
modelling and forecasting the variations from year
to year of the monthly average temperatures and
amounts of precipitation in Italy. In both cases, he
proposed a discrete-time Markov chain as a model.
After having justified the validity of the model by
making use of real-life data, he computed the limiting
time probabilities of the Markov chains, from which
one can forecast the long-term behaviour of the
chains. Then, he divided the data set into two
equal parts and computed the limiting probabilities
for each part in order to check whether they had
varied significantly in the time period considered.
He concluded that there were some signs of the
effects of climate change on the averages of interest,
particularly on the monthly average amounts of
precipitation. Related papers on this topic are, [15],
[16], [17], [18] and, [19].

In this paper, the aim is to carry out the same type
of analysis for Jordan, a country having a climate

which is quite different from that of Italy. The climate
in Jordan is not uniform, but it can be considered
in general to be subtropical arid. Moreover, most
of the time rainfall is scarce. According to the
experts, temperatures are likely to increase due to
climate change, while the total annual precipitation
will probably decrease. We will see whether the
model that we propose agrees with these statements.
Furthermore, we will be able to quantify the expected
changes.

Let {Xn, n = 0, 1, . . .} be a discrete-time
stochastic process having state spaceS. We recall that
{Xn, n = 0, 1, . . .} is a Markov chain if

pi,j(n) := P [Xn+1 = j | Xn = i, (1)
Xn−1 = in−1, . . . , X0 = i0]

= P [Xn+1 = j | Xn = i]

for all states i0, . . . , in−1, i, j in S, and for any n ∈
{0, 1, . . .}. In most applications, it is also assumed
that the Markov chain is time-homogeneous or
stationary, so that the one-step transition probabilities
pi,j(n) do not depend on n:

pi,j(n) ≡ pi,j := P [X1 = j | X0 = i] (2)

for any states i, j ∈ S. In practice, this property
may not hold for any n. For instance, in hydrology
the Markov chain might be almost stationary during a
given season, but not over the whole year. In such a
case, a different model may be used for each season.

The matrix P := (pi,j)i,j∈S is called the one-step
transition probability matrix. We define the n-step
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transition probability matrix

P(n) =
(
p
(n)
i,j

)
i,j∈S

, (3)

where
p
(n)
i,j := P [Xn = j | X0 = i]. (4)

It can be shown that P(n) = Pn. An important
question is to determine whether the limit
limn→∞ P(n) exists and, if so, to compute the
limiting probabilities

πj := lim
n→∞

P [Xn = j], (5)

which must not depend on the initial state i.
When the Markov chain is irreducible and ergodic

(see, [20], for example), it can be shown that the πj’s
exist and are the unique positive solution of the linear
system

π = πP, (6)
subject to

∞∑
i=0

πi = 1, (7)

where
π := (π0, π1, . . .). (8)

Remark. In theory, we can also obtain the limiting
probabilities by computing the limit limn→∞ P(n). If
the size of the state space S is large, or even infinite,
this task is quite difficult. However, making use of
a mathematical software program, we can compute
P(n) for n large enough, in order to see how fast p(n)i,j
converges to πj .

In the next section, we will propose a particular
Markov chain as a model for the variations from year
to year of themonthly average temperatures in Jordan.
Next, we will confirm the validity of the model by
making use of real-life data, and we will compute
the limiting probabilities of the chain in order to
forecast what is likely to happen when the process
stabilizes. The model will enable us to look for signs
of climate change in Jordan. Similarly, in Section 3 a
Markov chain will serve as a model for the variations
from year to year of the monthly average amounts of
precipitation. We will conclude this paper with a few
remarks in Section 4.

2 Variations of Monthly Average
Temperatures

We will define the state Xn of the stochastic process
{Xn, n = 0, 1, . . .} after n months in terms of the
difference Dn between the average temperature (in
degrees Celsius) for this month and the corresponding

one of the previous year. Because the experts
consider that a one-degree change in the average
temperature is already significant, we consider the
following states:

Xn =

{
1 if Dn ≤ −1,
2 if Dn ∈ (−1, 1),
3 if Dn ≥ 1.

(9)

In practice, we cannot check whether Eqs. (1)
and (2) are indeed satisfied for any states and any
n. Actually, in real-life applications, it is impossible
to exactly satisfy these properties. Our aim is to
propose a model that is at least realistic. To do so,
we can consider the random variable Ki that denotes
the number of months that the process {Xn, n =
0, 1, . . .} spends in state i before making a transition
to another state. If {Xn, n = 0, 1, . . .} is indeed a
Markov chain, then by independence we can write
that Ki has a geometric distribution with parameter
p := 1− pi,i, so that

P [Ki = k] = pk−1
i,i (1− pi,i), for k = 1, 2, . . .

(10)
When we have a set of real-life data, we can

perform Pearson’s goodness-of-fit statistical test to
check whether the geometric distribution is an
acceptable model for Ki, i = 1, 2, 3. More simply,
we can look at the histograms of the random variables
to see whether their form is that of a decreasing
exponential function, which should be the case if they
have a geometric distribution.

The historical monthly average temperatures
and rainfalls for all the countries in
the world can be found on the website
Climate Change Knowledge Portal (CCKP)
(https://climateknowledgeportal.worldbank.org/)
that was created by the World Bank. To estimate the
transition probabilities pi,j of the Markov chains, the
data for the years 1991-2016 will be used. Then, we
will compute the limiting probabilities πj , which will
enable us to forecast the long-term behaviour of the
variations of the monthly average temperatures and
rainfalls. Finally, we will divide the dataset into two
equal subsets: from 1991 to 2003, and from 2004
to 2016. We will compute the limiting probabilities
for each subset and compare them to see if there are
significant signs of climate change.

The differences in monthly average temperatures
seem to be quite random and symmetrical, as can
be seen in Figure 1 and Figure 2 produced by the
statistical software program Minitab. Moreover,
based on the Anderson-Darling normality test
performed by Minitab, we can easily accept that the
differences follow a Gaussian distribution, with a
p-value greater than 0.58; see Figure 3. Hence, it is a
good dataset.
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Fig. 1:   Time series plot of the differences in
monthly average temperatures.
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Fig. 2:    Histogram of the differences in monthly
average temperatures.

Using the whole dataset, Minitab produced the
histograms of the random variables K1, K2 and K3

that are shown in Figure 4, Figure 5, and Figure 6,
together with an exponentially decreasing function.
Although K1 and K3 took only respectively two and
three different values, we can state that the form of
each histogram (especially that of K2, which took
7 different values) is in agreement with that of a
geometric distribution. Based on the histograms,
a Markov chain with the above states seems to be
appropriate to serve as an approximate model for
the variations of the monthly average temperatures
in Jordan between 1991 and 2016. To make this
statement more precise, we performed Pearson’s
chi-square statistical test to check the goodness of
fit of a geometric distribution to the data. The
statistics χ2 and the p-values are given in Table 1.
From these values, one can indeed accept that each
random variable Ki has approximately a geometric
distribution.

Table 1. Pearson’s chi-square statistical test for a
    geometric distribution in the case of temperature

Variable χ2 p-value
K1 0.60 0.74
K2 1.72 0.89
K3 0.02 0.99
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Fig. 3:     Probability plot of the differences in
monthly average temperatures.
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Fig. 4: Histogram of the random variableK 1 in the
case of temperature.

Remarks. (i) Because of the small number of values
taken by K1 and K3, the p-values given in Table 1
are only approximate. Moreover, in order to perform
the tests, we assumed that the point estimate p̂ of
the parameter p of the geometric distribution was in
fact the known value of p (otherwise, the number of
degrees of freedom in the case of K1 and K3 would
be equal to 0). Nevertheless, the p-values in Table 1
are so high that the geometric distribution is surely a
valid model for the random variablesKi.
(ii) In the case when at least one of the variables Ki

cannot be assumed to have a geometric distribution,
we can try to define a new state space in order to
satisfy this fundamental property.

Next, we can estimate the transition probabilities
pi,j of the Markov chain. We find that the estimated
one-step transition probability matrix is given by

P =

[
6/74 27/74 41/74
27/137 81/137 29/137
39/77 28/77 10/77

]
. (11)

Because pi,j ̸= 0 for any pair of states i, j, the
Markov chain {Xn, n = 0, 1, . . .} is both irreducible
and aperiodic. Moreover, the number of states being
finite, it is also positive recurrent, and thus ergodic.
Hence, the limiting probabilities exist. Solving the
system (6), (7), we get

π1 = 0.2530, π2 = 0.4712, π3 = 0.2758. (12)
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Fig. 5: Histogram of the random variableK 2 in the
case of temperature.
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Fig. 6: Histogram of the random variableK 3 in the
case of temperature.

According to the limiting probabilities, it would
be slightly more likely to observe in the future
an increase of the average temperature of at least
one degree during a given month, compared to the
previous year, than a decrease of at least one degree.
This is consistent with the fact that the average of the
300monthly differences is equal to 0.0583. However,
the standard deviation is equal to 1.653, which is
relatively large and creates uncertainty.

Now, our aim is to detect signs of climate
change. Therefore, we performed the same analysis
as above for each of the two equal subsets of data.
The transition probability matrices for the periods
1991-2003 and 2004-2016 are respectively

P =

[
1/31 13/31 17/31
12/77 50/77 15/77
18/36 12/36 6/36

]
(13)

and

P =

[
5/43 14/43 24/43
15/60 31/60 14/60
21/41 16/41 4/41

]
. (14)

The resulting limiting probabilities are presented in
Table 2.

We see that the value of π3 has increased by about
8.5% in the second time period considered, which is
significant, but the value of π1 has increased by a
staggering 30.5%! The long-term probabilities that
the Markov chain will be in state 1 or in state 3 are

Table 2. Limiting probabilities for the time periods
1991-2016, 1991-2003 and 2004-2016 in the case of
                  monthly average temperatures

Period π1 π2 π3
1991-2016 0.2530 0.4712 0.2758
1991-2003 0.2199 0.5150 0.2651
2004-2016 0.2870 0.4255 0.2875

almost equal. These results are quite comparable
to the corresponding ones in Italy over the period
1991-2015. However, the changes observed in Jordan
are more pronounced.

According to the website CCKP, the mean annual
temperature has increased by 0.89 degrees Celsius
in Jordan since 1900. We can conclude from the
above data that the variations in monthly average
temperatures have greatly accelerated in recent years.
Thus, the impact of climate change is observable in
Jordan.
Remarks. (i) We find that if we raise the matrix P
given in Eq. (11) to the power 16, then its three lines
are practically equal to the limiting probabilities π1,
π2 and π3. Therefore, these limiting probabilities
could be observed after 16 months. Hence, the
process is already almost in steady state. However,
the limiting probabilities should be updatedwhen new
observations become available.
(ii) The time period considered, namely from 1991
to 2016, is relatively short. In order to make the
above conclusions more credible, we calculated the
differences in monthly average temperatures from
1901 onwards. The mean difference for the period
1901-1990 is equal to 0.0056, compared to 0.0583
between 1991 and 2016. It is therefore clear that
the increase in the average temperature has been felt
mainly since the 1990s. More precise results can
be found in Table 3. Notice the steady increase in
the average temperature. Finally, we also computed

Table 3. Differences inmonthly average temperatures
                 for the time period 1901-2016

Period 1901-1930 1931-1960 1961-1975
Mean difference −0.0170 0.0133 0.0140

Period 1976-1990 1991-2003 2004-2016
Mean difference 0.0260 0.0570 0.0600

the probability that the average monthly temperature
will increase by at least 1 degree Celsius, compared
to the previous year, if we assume that the average
monthly difference follows a Gaussian distribution.
The various probabilities are given in Table 4. After
a marked increase between the years 1961 and 1990,
the probability of interest stabilized in the time period
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1991-2016. This probability for 1991-2016 is close
to the value of π3 in Table 2. Thus, we may
conclude that these results are consistent with the
above conclusions.

Table 4. Probability that the monthly average
temperature will increase by at least 1 degree Celsius
                    for various time periods

Period 1931-1960 1961-1990 1991-2016
Probability 0.1897 0.2756 0.2845

(iii) Our aim was to determine whether we can expect
the average annual temperature to increase by at least
1 degree Celsius in the next few years. We can be
more precise and look for changes in the average
temperatures during the various seasons. Because
we need enough data to reach reliable conclusions,
we divided the data set into two equal parts: from
November to April (winter), and fromMay toOctober
(summer). Proceeding as above, we obtained the
following results:

Pwinter =

[
5/47 11/47 31/47
13/48 24/48 11/48
26/49 14/49 9/49

]
(15)

and

Psummer =

[
1/28 18/28 9/28
13/87 54/87 20/87
15/29 13/29 1/29

]
. (16)

The corresponding limiting probabilities are given in
Table 5. We see that it is actually during the winter
months that the average monthly temperature is more
likely to increase than to decrease by at least 1 degree
Celsius. The temperatures during the summer months
are expected to remain fairly stable.

Table 5. Limiting probabilities for the monthly
average temperatures during the winter and summer
            months for the time period 1991-2016

Season π1 π2 π3
Winter 0.3099 0.3433 0.3468
Summer 0.2028 0.5894 0.2078

In the next section, the same analysis will be
performed to see whether the conclusions are similar
in the case of monthly average rainfalls in Jordan.

3 Variations of Monthly Average
Rainfalls

Contrary to Italy, there is very little precipitation in
Jordan from about April to October. In Figure 7, we

present the differences in monthly average rainfalls
in the period 1991-2016. We cannot model these
differences as a stationary Markov chain. Instead,
we will consider the months of interest, namely from
November to March. The new time series is shown
in Figure 8, as well as the corresponding histogram
and probability plot in Figure 9 and Figure 10. As
in the previous section, we can surely accept the
hypothesis that the differences follow a Gaussian
distribution; this time the p-value is greater than 0.63.
The mean difference is equal to −0.8434 millimetres
of precipitation, and the standard deviation to 13.46.
Therefore, precipitation has decreased during the
time period considered. On the website CCKP,
we can read that Global Historical Climatology
Network (GHCN) data for the country indicates a
2.92 mm/month per century reduction in average
annual precipitation since 1900. Themajority of local
station records indicate that precipitation dropped
from 94 mm to 80 mm during the last 10 years for the
period 1937/38 to 2004/2005. The minimum and
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Fig. 7:    Time series plot of the differences in
monthly average rainfalls
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Fig. 8: Time series plot of the differences
in monthly average rainfalls for the months from
November to March

maximum differences are equal to −34.30 and 35.79
respectively. The median difference is −0.28.

It is less obvious than in the case of temperatures
howwe should define the states. We denote byD∗

n the
difference between the average rainfall (in mm) for a
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Fig. 9:    Histogram of the differences in monthly
average rainfalls for the months from November to
March.
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Fig. 10:    Probability plot of the differences in
monthly average rainfalls for the months from
November to March.

month of a given year and the corresponding month
of the previous year. We define

Xn =

{
1 if D∗

n ≤ −5,
2 if D∗

n ∈ (−5, 5),
3 if D∗

n ≥ 5.
(17)

The histograms of the random variables K1, K2 and
K3 are presented in Figure 11, Figure 12 and Figure
13. We see that each variable took only two values,
namely 1 and 2. Therefore, the stochastic process
{Xn, n = 0, 1, . . .} did not remain for more than
two months in the same state, which concurs with the
volatility observed in Figure 8 and the fact that the
standard deviation is large (13.46). Still, the required
exponential decrease can be observed in each case, so
that the fact that {Xn, n = 0, 1, . . .} is approximately
a Markov chain is at least plausible. As in Section 2,
we performed Pearson’s chi-square statistical test
for a geometric distribution; see Table 6. The
(approximate) p-values are all large enough to indeed
consider {Xn, n = 0, 1, . . .} as a Markov chain.

Next, with the help of our real-life dataset,
we calculated the estimated one-step transition
probability matrix:

P =

[
4/47 14/47 29/47
12/29 6/29 11/29
31/45 7/45 7/45

]
. (18)
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Fig. 11: Histogram of the random variable K 1 in
the case of monthly average rainfalls.
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Fig. 12: Histogram of the random variable K 2 in
the case of monthly average rainfalls.

As in the previous section, we can state that the
limiting probabilities exist. By solving the system (6),
(7), we find that

π1 = 0.3913, π2 = 0.2227, π3 = 0.3860. (19)

According to the limiting probabilities, it would be
slightly more likely to observe a drop of the monthly
average precipitation of at least 5 mm during a
given month, compared to the previous year, than an
increase of at least 5 mm. This is consistent with the
mean monthly difference which is equal to −0.8434
mm, thus pointing towards a small decrease.

Finally, for the periods 1991-2003 and 2004-2016
the transition probability matrices are respectively

P =

[
2/23 7/23 14/23
7/16 3/16 6/16
15/21 4/21 2/21

]
(20)

and

P =

[
2/24 7/24 15/24
5/13 3/13 5/13
16/24 3/24 5/24

]
. (21)

The limiting probabilities are given in Table 7.
We see that the value of π3 has increased by

more than 10% in the second time period considered,
which is really significant, while the probability of
a difference of less than 5 mm in absolute value has
decreased also by more than 10%. Moreover, rather
unexpectedly, it is now slightly more likely to observe
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Fig. 13: Histogram of the random variable K 3 in
the case of monthly average rainfalls

Table 6. Pearson’s chi-square statistical test for a
   geometric distribution in the case of precipitation

Variable χ2 p-value
K1 0.42 0.81
K2 0.71 0.40
K3 1.76 0.41

in the future a monthly increase rather than a decrease
of at least 5 mm of precipitation. Remember however
that these conclusions are only valid for the months
from November to March. Even if there is a small
increase in precipitation during the winter, the total
precipitation for the whole year may still decrease.

Remarks. (i) As in the case of temperature, the three
rows of the matrix P16, where P is defined in Eq. (18),
are almost equal to limiting probabilities for the time
period 1991-2016. Hence, we may state that our
forecasts should be valid after at most 16 months.
This is due to the fact that the Markov chain is almost
in steady state since 1991.

(ii) We computed the mean differences in monthly
average precipitation for various time periods from
1901 to 2016; see Table 8. After a steady
increase between 1901 and 1960, we observe that
the trend is reversed in the time period 1991-2016.
There is therefore more volatility than in the case
of temperature. Notice however than the mean
differences are rather small.

In Table 9, we present the probability that
the monthly average amount of precipitation will
decrease by at least 5 mm for various time periods,
assuming that the monthly average differences follow
a Gaussian distribution. Because the standard
deviation of the observations was larger in the time
periods 1931-1960 and 1961-1990 than between 1991
and 2016, we find that the probability of interest is
actually quite stable. This probability is close to the
value of π1 in Table 7, which again strengthens the
validity of our forecasts.

Table 7. Limiting probabilities for the time periods
1991-2016, 1991-2003 and 2004-2016 in the case of
                   monthly average precipitation

Period π1 π2 π3
1991-2016 0.3913 0.2227 0.3860
1991-2003 0.3989 0.2352 0.3659
2004-2016 0.3834 0.2112 0.4053

Table 8. Mean differences in monthly average
        precipitation between 1901 and 2016

Period 1901-1930 1931-1960
Mean difference 0.008 0.02

Period 1961-1990 1991-2016
Mean difference 0.21 −0.84

4 Conclusion
In this paper, we proposed a simple stochastic
model to forecast the impacts of climate change
in Jordan. We were interested in forecasting the
expected changes in monthly average temperature
and precipitation. Thanks to a website created
by the World Bank containing real-life data for all
the countries in the world, we were able to both
justify the validity of the Markov chains that we
put forward as models and to estimate their various
transition probabilities. Then, it was a simple
matter to compute the limiting probabilities of the
Markov chains, which enable us to forecast the
future variations of the variables of interest. These
limiting probabilities should be recalculated when
new observations become available.

Because of the scarcity of precipitation in Jordan,
especially in the summer, defining a state space of the
stochastic process {Xn, n = 0, 1, . . .} such that this
process could indeed be considered as aMarkov chain
was more difficult than in the case of temperature.
By restricting the period during which the model was
used, namely from November to March, we were able
to justify the validity of this assumption and then to
quantify the expected effects of climate change on
precipitation in Jordan.

Jordan is a small enough country for our study
to make sense. Indeed, the statistical data analysis
that we carried out would not be very useful for a
really large country like Russia or Canada. For large
countries, we would need data for their various parts,
which can also be found on the website of the World
Bank.

Table 9. Probability that the monthly average amount
of precipitation will decrease by at least 5 mm for
                       various time periods

Period 1931-1960 1961-1990 1991-2016
Probability 0.3791 0.3835 0.3786
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