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Abstract: - Recently, there has been growing interest in the antimicrobial potential of natural compounds found 
in essential oils (EOs). In this study, the antibacterial activity of Pinus pinaster essential oil (EO) was assessed 
against both Gram-negative and Gram-positive bacterial species using the microdilution method in microplates. 
Additionally, 18 natural compounds from this EO were evaluated through molecular docking for their 
inhibitory properties on PBP1, PBP2, and PBP3—crucial enzymes in the development of novel antibiotics. The 
DFT properties, drug-likeness, and ADMET predictions of these compounds were also investigated. The results 
demonstrated moderate antibacterial activity of P. pinaster EO against all tested bacterial strains, with inhibition 
zones ranging from 11 to 16 mm. Molecular docking studies indicated that Terpinen-7-al was the most potent 
compound, binding to the highest number of amino acids within the active sites of the target enzymes, as 
suggested by the native ligand of each enzyme. Furthermore, the DFT study, along with ADMET and drug-
likeness analysis, identified Terpinen-7-al as the most promising compound. Therefore, P. pinaster EO could 
serve as a significant source of natural molecules with promising antibacterial properties, particularly Terpinen-
7-al, which has the potential for development into an antibiotic treatment. 
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1  Introduction 
The rise of multi-drug resistant (MDR) bacteria 
poses a significant challenge to modern medicine 
fueled in part by the continuous and often 
indiscriminate use of antibiotics, [1] . Over the past 
century, antibiotics have revolutionized healthcare, 
saving countless lives by effectively treating 
bacterial infections, [2] .  

However, their widespread use and sometimes 
misuse have inadvertently provided a breeding 
ground for bacteria to develop resistance 
mechanisms, rendering many antibiotics ineffective, 
[3] . In this context, the search for new antimicrobial 
agents and innovative treatment strategies is crucial 
for addressing the evolving threat posed by MDR 
bacteria and ensuring continued access to effective 
therapies for infectious diseases, [4] .  

Moreover, research efforts aimed at 
understanding the mechanisms of antibiotic 

resistance and developing strategies to combat it are 
critical for preserving the efficacy of existing 
antibiotics and prolonging their lifespans, [5] . In 
this regard, antibacterial essential oils (EOs) have 
garnered considerable attention as a promising 
source for discovering new antibacterial drugs, [6] .  

These oils, derived from plants, contain a 
diverse array of bioactive compounds that have 
demonstrated antimicrobial properties against a 
wide range of bacterial pathogens. Therefore, 
exploring the therapeutic potential of antibacterial 
EOs represents a promising avenue for combating 
antibiotic-resistant infections and developing novel 
treatment strategies, [7] . In the realm of drug 
discovery and development, the quest for effective 
therapeutic agents hinges on the ability to accurately 
predict how molecules interact with target proteins. 
Molecular docking is a powerful method for 
assessing drug activity against specific protein 
targets, [8] .  
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Targeting proteins like penicillin-binding 
proteins (PBPs) is crucial for developing new 
antibiotics to fight bacterial infections, [9] . PBPs 
are essential for bacterial cell wall synthesis; 
inhibiting them disrupts peptidoglycan assembly, 
causing cell lysis and death, [10] .  

This study aims to evaluate the antibacterial 
activity of P. pinaster EO against Gram-negative 
and Gram-positive bacteria and identify the EO's 
most promising natural compounds that inhibit key 
bacterial enzymes (PBP1, PBP2, and PBP3). 
 

 

2 Methodology 
 

2.1 Antibacterial Activity 
Pinus pinaster needles EO was evaluated against 
several Gram-negative (Escherichia coli ATCC 
7839) and Gram-positive (Salmonella typhimurium 
ATCC 14028, Klebsiella pneumoniae ATCC 13883 
and Staphylococcus aureus ATCC BAA-2856) 
bacterial strains.  
 
2.2 Molecular Docking Studies 
The proteins analyzed in this study were 
downloaded from the RCSB Protein Data Bank, 
[11] They include PBP1 of S. aureus (PDB ID: 
7O4B), PBP2 of E. coli (PDB ID: 6G9S), and PBP3 
of K. pneumoniae (PDB ID: 8GPW), with 
resolutions of 2.00, 1.59, and 2.59 Å, respectively.  

Molecular docking was executed using 
AMDock v1.5.2, [12] . Integrated with AutoDock 
Vina 1.2.1, [13]  and the protein pH was maintained 
at 7.4.  

The validation of the docking protocol involved 
comparing the docked position of a co-crystallized 
ligand to its original configuration within the target 
protein. This comparison was done using PyMOL 
1.8.5, [14] , embedded in AMDock, using root mean 
square deviation (RMSD) calculations. Lower 
RMSD values, especially those under 2.0 Å, 
indicate greater accuracy of the docking protocol. 
[15] , grid boxes were established in AMDock using 
the "Center on Ligand" option, which places a box 
with optimal dimensions at the ligand's geometric 
center. All molecular interactions were visualized 
using BIOVIA Discovery Studio Visualizer in both 
3D and 2D formats, [16] . 

As ligands, natural compounds were derived 
from previous studies investigating the HPLC 
profiles of P. pinaster needles EO, [17] , [18] .  

The chemical structures of these compounds are 
shown in Table 1. 

Table 1. Main natural compounds from P. pinaster 
needles EO 

Compound 
Chemical    

structure 
Compound 

Chemical     

structure 

α-Pinene 

 

Camphene 

 
β-Pinene 

 

3-Carene 

 
Terpinen-7-al 

 

α-terpinyle 
Acetate 

 

Myrcene 
 
α-Terpinene 

 
    
α-Phellandrene 

 

α-Terpineol 

 

Longicyclene 

 

β-
Longipinene 

 
α-Longipinene  

 

Longifolene 

 
Caryophyllene 
oxide 

 

Caryophyllene 

 
Terpinolene 

 

Limonene 

 
 
2.3  Density Functional Theory 
To predict the properties of the compounds, Density 
Functional Theory (DFT) calculations were 
performed using Gaussian 09, Σφάλμα! Το 

αρχείο προέλευσης της αναφοράς δεν 

βρέθηκε. and visualized with Gauss View 6.0.16, 
[20] . Geometry optimizations were done with the 
B3LYP/6-31G(d) basis set for the most promising 
compounds in terms of interaction energies (ΔG).  

Stability and reactivity were assessed by 
calculating various descriptors, including HOMO 
and LUMO, energy gap (ΔEgap), ionization potential 
(I), chemical hardness (η), chemical softness (σ), 
and dipole moment (μ), [21] . 
 

2.4  Drug-likeness and ADMET Analysis 
SwissADME webserver, [22] , was used to predict 
the drug-likeness, pharmacokinetic, and 
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toxicological parameters of the tested compounds, 
including rotatable bonds, bioavailability score, 
TPSA, water solubility, lipophilicity, GI absorption, 
BBB penetration, skin permeation, P-gp substrate 
prediction, and Cytochrome P450 enzyme 
inhibition.  

ProTOX III webserver, [23] , calculated LD50 
values, toxicity classes, and organ and endpoint 
toxicities. 

 
 

3 Results and Discussion 
The antibiogram is a test that determines the 
sensitivity of bacteria to various antibiotics. The 
results are expressed in terms of the diameter of the 
inhibition zone, which indicates the ability of the 
antibiotic to inhibit bacterial growth, [24] .  

As illustrated in Figure 1 and detailed in Table 
2, the results indicate that amoxicillin (AMX120) is 
effective against S. typhimurium (24 mm) and S. 

aureus (21 mm), showing relatively large inhibition 
zones, while against E. coli (16 mm), the 
effectiveness was moderate. On the other hand, K. 

pneumoniae showed complete resistance (0 mm), 
meaning that amoxicillin is not effective against this 
bacterium. Regarding cefazolin (CZ 30), the results 
show effectiveness against S. typhimurium (21 mm), 
S. aureus (20 mm), and particularly against K. 

pneumoniae (23 mm). Against E. coli (15 mm), the 
effectiveness is comparable to that of amoxicillin. 
 

 
Fig. 1: Reference antibiogram of cefazolin (left) and 
amoxicillin (right). a) S. typhimurium, b) S. aureus 
c) K. pneumoniae, d) E. coli 

The aromatogram is a technique similar to the 
antibiogram, but it uses EOs to test the sensitivity of 
bacteria, [25] . The results obtained from the 

aromatogram of P. pinaster against S. typhimurium, 
S. aureus, K. pneumoniae, and E. coli are displayed 
in Figure 2.  

 

 

 
Fig. 2: Aromatogram of P. pinaster against the 
tested bacterial strains. a) S. typhimurium, b) S. 

aureus, c) K. pneumoniae, d) E. coli 
 

As shown in Table 2. The EO of P. pinaster 
needles exhibited moderate antimicrobial activity 
against all the tested stains, with inhibition zones of 
15 mm against S. typhimurium, 16 mm against S. 

aureus, 14 mm against K. pneumoniae, and 11 mm 
against E. coli. This activity is relatively modest 
compared to conventional antibiotics. 
 
Table 2. Inhibition zone of reference antibiotics and 

P. pinaster EO 
Inhibition     

zone (mm) 

S. 

typhimurium S. aureus K. 

pneumoniae E. coli 

AMX120 24 ± 1.65 21 ± 1.14 - 16 ± 0.79 

CZ 30 21 ± 1.56 20 ± 1.54 23 ± 2.38 15 ± 0.66 

P. pinaster 

needles oil 14.83 ± 0.29 16.16 ± 
1.15 13,67 ± 0.58 10,8 ± 0.76 

-: No activity found 

 

3.1  Molecular Docking 
RMSD is an essential measure in molecular 
docking. It allows for the evaluation of structural 
similarity between two molecular configurations, 
often between a reference experimental structure 
and a predicted structure, or between different 
conformations of the same molecule, [26] . 
 In our study, the RMSD values between the 
positions of the redocked ligands and the native 
ligands were 0.403 Å for 7O4B, 1.524 Å for 6G9S, 
and 0.879 Å for 8GPW. These values are below the 
acceptable threshold of 2 Å. As shown in Figure 3, 
there is a good overlap between the pose simulated 
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by Autodock Vina (colored in blue) and the native 
ligand (colored in red). 
 

 
Fig. 3: Superimposition of the docked (blue) and 
native (red) co-crystallized complexes.                         
a) PBP1 of S. aureus (7O4B), b) PBP2 of E. coli 
(6G9S), c) PBP3 of k. pneumonia (8GPW). 
 
 The results obtained from the molecular 
docking of each compound from P. pinaster EO 
with PBP1 of S. aureus (7O4B), are displayed in 
Table 3. 
 

Table 3. Binding energies of natural compounds 
from P. pinaster EO against PBP1 

Compound  

PBP1 of S. aureus 

(7O4B) 
ΔG 

kJ mol-1 
Ki 

µM 

Ref 
Amoxicillin -33.472 1.37 

Cefazolin -37.238 299.41 
α-Pinene -20.50 2600 
β-Pinene -20.50 2600 
Camphene -20.08 3000 
Myrcene -19.25 4200 
α-Phellandrene -19.66 3600 
Δ-3-Carene -22.59 1100 
α-Terpinene -21.34 1800 
Limonene -20.50 2600 
Terpinolene -21.76 1500 
α-Terpineol -22.17 1300 
Terpinen-7-al -39.75 1.80 
α-Terpinyl Acetate -26.78 20.36 
α-Longipinene -27.61 14.53 
Longicyclene -27.20 17.20 
β-Longipinene -25.52 33.78 
Longifolene -28.45 10.37 
Caryophyllene -26.78 20.36 
Caryophyllene oxide -27.20 17.20 

 
 The results obtained from the molecular 
docking of each compound from P. pinaster EO 
with PBP2 of E. coli (6G9S), are displayed in Table 
4. 
 
 
 
 
 

Table 4. Binding energies of natural compounds 
from P. pinaster EO against PBP2 

Compound  

PBP2 of E. coli (6G9S) 

ΔG 

kJ mol-1 
Ki 

µM 

Ref 
Amoxicillin -7.5 3.18 

Cefazolin -8.0 1.37 
α-Pinene -19.66 3600 
β-Pinene -19.66 2600 
Camphene -19.25 4200 
Myrcene -18.83 5000 
α-Phellandrene -18.83 5000 
Δ-3-Carene -21.34 1800 
α-Terpinene -21.34 1800 
Limonene -18.83 5000 
Terpinolene -21.34 1800 
α-Terpineol -20.92 2200 
Terpinen-7-al -30.54 4.46 
α-Terpinyl Acetate -25.52 33.78 
α-Longipinene -23.85 66.36 
Longicyclene -24.27 56.05 
β-Longipinene -23.85 66.36 
Longifolene -24.69 47.35 
Caryophyllene -23.85 33.36 
Caryophyllene oxide -28.45 10.37 
 

The results obtained from the molecular 
docking of each compound from P. pinaster with 
EO PBP3 (8GPW) of K. pneumoniae are displayed 
in the Table 5. 
 

Table 5. Binding energies of natural compounds 
from P. pinaster EO against PBP1 

Compound  

PBP3 of K. pneumoniae 

(6R3X) 

ΔG kJ mol-1 Ki µM 

Ref Amoxicillin -7.8 1.62 

Cefazolin -8.6 0.49 

α-Pinene -19.25 420 
β-Pinene -19.25 420 
Camphene -18.83 500 
Myrcene -17.57 420 
α-Phellandrene -20.50 260 
Δ-3-Carene -19.25 360 
α-Terpinene -21.34 260 
Limonene -21.76 150 
Terpinolene -21.34 220 
α-Terpineol -23.01 93.00 
Terpinen-7-al -35.15 0.67 

α-Terpinyl Acetate -25.94 28.53 
α-Longipinene -25.52 33.78 
Longicyclene -24.69 39.99 
β-Longipinene -25.10 39.99 
Longifolene -24.27 56.05 
Caryophyllene -25.94 28.53 
Caryophyllene oxide -27.61 14.53 
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ΔG represents the change in free energy during 
the interaction between the compounds (ligands) 
and the target protein. It aims to evaluate the 
potential binding between the ligand and the 
receptor by using energy functions and algorithms 
to quantitatively measure the affinity (binding 
affinity) between the two molecules, [27] . 

Upon analyzing the molecular docking results, 
we observe that Terpinen-7-al exhibits the lowest 
ΔG values (-39.75, -30.54, and -39.75 kJ mol-1 
against S. aureus, E. coli, and K. pneumoniae, 
respectively), making it the most effective among all 
the molecules that compose EO. Additionally, this 
molecule surpasses the effectiveness of the 
reference drugs (Amoxicillin and Cefazolin) in 
terms of ΔG for PBP1 of S. aureus (7O4B) and is 
more effective than Amoxicillin for PBP3 of K. 

pneumoniae (8GPW). 
In terms of inhibition constants (Ki), Terpinen-

7-al also has the lowest values (1.80, 4.46, and 0.67 
µM for S. aureus, E. coli, and K. pneumoniae, 
respectively), indicating high efficacy in inhibiting 
the target protein's activity at low concentrations. 
 

 
Fig. 4: The molecular interactions of Terpinen-7-al 
with a) PBP2 (6G9S), b) with PBP3 (8GPW), and c) 
with PBP1(7O4B) 
 

The interactions of Terpinen-7-al with the 
selected proteins were investigated using Discovery 
Studio (Figure 4) With E. coli, Terpinen-7-al binds 
in the binding cavity, forming 2 hydrogen bonds and 

8 hydrophobic interactions. The hydrogen bonds 
consist of 2 carbon-hydrogen (C-H) types with 
lengths of 3.45 Å and 3.51 Å, while the hydrophobic 
interactions range between 3.65 and 5.36 Å and 
include various types (two Pi-Sigma, two alkyl, and 
four Pi-Alkyl bonds). There is also an unfavourable 
bond (2.87 Å). 

In the case of K. pneumoniae, Terpinen-7-al 
forms 4 hydrogen bonds, including one 
conventional hydrogen bond of 2.44 Å and three C-
H bonds (3.02-3.80 Å). It also interacts through 
thirteen hydrophobic bonds, comprising four alkyl 
(3.93-5.13 Å) and nine Pi-Alkyl (4.32-5.42 Å). 

Regarding S. aureus, the molecule forms two 
conventional hydrogen bonds (2.11 and 2.24 Å) and 
six hydrophobic interactions, including one alkyl 
(4.53 Å) and five Pi-Alkyl (3.91-5.23 Å). The 
interacting residues are presented in Figure 4. 
 
3.2  Density Functional Theory 
Determining the electronic parameters of molecules 
through the DFT is a powerful tool for predicting 
and explaining their reactivity in different reaction 
types and remains an efficient method for 
interpreting biological activity results, [28] . 
 

Table 6. Electronic properties of P. pinaster EO 
natural compounds 

Compound  
Terpinen-7-
al Caryophyllene Longicyclene Longifolene 

HOMO (eV) -4.743 -5.950 -6.685 -6.244 

LUMO (eV) -0.972 0.529 2.106 0.697 

Egap (eV) 3.771 6.479 8.791 6.941 

Ionization 

potential (I) 
4.743 5.950 6.685 6.244 

Chemical 

potential (μ) 
-2.858 -2.710 -2.289 -2.773 

Chemical 

hardness (η) 
1.886 3.240 4.396 3.470 

Chemical 

softness (S) 
0.265 0.154 0.114 0.144 

Dipole 

moment (D) 
1.769 0.349 0.155 0.494 

 
 ΔEgap of the compounds suggests varying 
degrees of stability, reactivity, and potential 
applications, [29] . According to DFT results 
displayed in Table 6, it appears that Terpinen-7-al, 
with the smallest gap (3.771 eV), is likely more 
reactive and could be useful in applications 
requiring high reactivity. Longicyclene, with the 
largest gap (8.791 eV), is the most stable and could 
be advantageous in applications where chemical 
stability is essential. Longicyclene, with the highest 
hardness (4.396 eV) and the lowest softness (0.114 
eV), is the most stable and least reactive, making it 
suitable for applications where stability is required. 
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Terpinen-7-al, with the lowest hardness (1.886 eV), 
is the most reactive and least stable, which confirms 
the energy gap results. 
 The dipole moments provide valuable 
information about the polarity, solubility, and 
intermolecular interactions of the compounds, [30] . 
Terpinen-7-al, with the highest dipole moment 
(1.769 D), is the most polar and likely the most 
soluble in polar solvents, making it suitable for 
applications requiring high polarity. Longicyclene, 
with the lowest dipole moment 0.155 D), is the least 
polar. 
 
3.3  Drug-likeness and ADMET Analysis 
By analyzing the obtained results in Table 7, we 
observe that 50% of the compounds studied from 
the EO of P. pinaster (Myrcene, α-Phellandrene, α-
Terpinene, Limonene, δ-Terpinene, Terpinolene, 
cis-β-Terpineol, α-Terpineol, α-Terpinyl Acetate, 
and Caryophyllene Oxide) meet the criteria of 
Lipinski's rule of five. The other molecules adhered 
to all the rules, except for Log Po/w (MLOGP), 
which exceeded 4.15. This high lipophilicity (log P 
> 4.15) may present challenges in terms of oral 
bioavailability, distribution within the body, and 
potential toxicity. Therefore, it is necessary to 
conduct further studies to evaluate their 
pharmacokinetic and pharmacodynamic properties 
in greater detail. 
 

Table 7. Drug-likeness analysis of natural 
compounds from P. pinaster EO 

Compound MW g mol-1 Violation of 
Lipinski rule 

α-Pinene 136.23 No 
β-Pinene 136.23 No 
Camphene 136.23 No 
Myrcene 136.23 Yes 
α-Phellandrene 136.23 Yes 
Δ-3-Carène 136.23 No 
α-Terpinene 136.23 Yes 
Limonene 136.23 Yes 
Terpinolene 136.23 Yes 
α-Terpineol 154.25 Yes 
Terpinen-7-al 432.68 No 
α-Terpinyl Acetate 196.29 Yes 
α-Longipinene 204.35 No 
Longicyclene 204.35 No 
β-Longipinene 204.35 No 
Longifolene 204.35 No 
Caryophyllene 204.35 No 
Caryophyllene oxide 220.35 Yes 
  

Regarding the ADME analysis, the results 
shown in Table 8 indicate that most compounds 
exhibit good water solubility. Intestinal absorption 

was low for all compounds except cis-β-Terpineol, 
α-Terpineol, and α-Terpinyl Acetate, which 
demonstrated high absorption. The study revealed 
that most compounds from P. pinaster EO are 
capable of crossing the blood-brain barrier. 
However, compounds such as β-Caryophyllene 
Oxide, α-Longipinene, β-Longipinene, Longifolene, 
and Caryophyllene were found to be unable to cross 
this barrier.  P-glycoprotein (P-gp) plays a 
critical role in the ADME of drugs by influencing 
their absorption, distribution, metabolism, and 
excretion. A thorough analysis of drug interactions 
with P-gp is essential for the development of new 
drugs, understanding their pharmacokinetics, and 
optimizing therapies, particularly concerning drug 
resistance and drug interactions, [31] . The results of 
this study (Table 8) show that no compound derived 
from P. pinaster affects this enzyme. 
 
Table 8. ADMET properties of natural compounds 

from P. pinaster EO 

 
 

Cytochrome P450 (CYP450) enzymes are a 
crucial family involved in the metabolism of many 
drugs and endogenous substances. Interaction with 
these enzymes can lead to drug interactions or alter 
the rate at which a molecule is degraded and 
eliminated from the body, [32] . The results indicate 
that none of the studied compounds affect the 
CYP1A2 subfamily, except Longicyclene. 
Similarly, no compound affects CYP2C19, except 
α-Longipinene, Longicyclene, β-Longipinene, 
Longifolene, Caryophyllene, and Caryophyllene 
Oxide. Additionally, all compounds affect CYP2C9 
except α-Phellandrene, Δ-3-Carene, α-Terpinene, δ-
Terpinene, cis-β-Terpineol, α-Terpineol, Terpinen-
7-al, and α-Terpinyl Acetate. It was noted that 
CYP2D6 and CYP3A4 are not affected by any 
compound. 

In light of the obtained results, it is evident that 
the predicted LD50 values for the compounds of P. 
pinaster range from 1680 to 15380 mg kg-1. None 
of these compounds exhibited cytotoxicity or 
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carcinogenicity. However, α-Terpinyl Acetate was 
predicted to be hepatotoxic, and Caryophyllene 
Oxide was predicted to be mutagenic. Regarding 
immunotoxicity, only the compounds Δ-3-Carene 
and Caryophyllene were found to be active. 
 
 
4 Conclusion 
The essential oil of Pinus pinaster needles exhibits 
moderate antimicrobial activity against S. 

typhimurium, S. aureus, K. pneumoniae, and E. coli. 
Although this activity is less potent than that of 
traditional antibiotics, it may hold value in specific 
applications, particularly as a complement to 
existing treatments or in scenarios involving 
antibiotic resistance. Further research is necessary to 
better understand its clinical applications and to 
optimize its use. 

The obtained in silico results indicate that 
Terpinen-7-al is a promising candidate for inhibiting 
PBPs due to: a stable and favorable interaction with 
the protein (low ΔG) and high efficacy at low 
concentrations (low Ki). These characteristics are 
encouraging for the potential development of 
Terpinen-7-al as a therapeutic inhibitor of PBPs. 
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