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Abstract:-Water resources have become a growing concern in society. This is largely due to the scarcity of this
natural asset and the realisation that increasing demand could lead to future conflicts. Sometimes, human action
limits access towater or alters natural flows. Run-of-river hydropower schemesmanage river flows on a short-term
basis, altering the natural flow of rivers according to the energy needs of consumers or the risk of flooding.
The aim of this work is to show how to model and predict the hourly flow in a run-of-river reservoir, using the
Crestuma-Lever dam on the river Douro (Portugal) as a case study. Data collected from 1998 to 2020 will be
used. The study focuses on the use of time series models capable of dealing with multiple periodicities, such as
the TBATS model. The findings show that the model can be used for 48-hour to weekly forecasting. In general,
it captures the large fluctuations in the turbine discharges and most peak discharges. However, it does not capture
most zeros and has difficulty in dealing with low flow values. The results of the time-series model are also
compared with those obtained using three machine learning algorithms: the Seasonal Naïve, the Neural Network,
and the Random Forest.
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1 Introduction
The management of water resources plays a
fundamental role in society today. Awareness
of the finite nature of natural resources has led to
increased interest in studies and research, leading to
new developments in this field. The construction of
dams is a source of hydroelectric power, producing
renewable and non-polluting energy. Strategic and
efficient planning of reservoirs and dam operations
can reduce water losses and pollution, help prevent
floods and droughts and provide adequate access to
water. Adequate management of dams and reservoirs
requires, at the very least, knowledge of the inflows
and outflows involved, which may or may not be
measured and must, therefore, be estimated based

on an assumed model. On the other hand, proper
management also requires forecasting inflows or
outflows into the future, most often within short-term
horizons. Release flows in dams depend mainly on
inflows, but the dependency is complex because
management decisions that condition releases use
both data on electrical power demand, essentially,
and optimised strategies for the use of combined
energy sources. These data and strategies are kept
confidential by the utilities.

The scenario that we consider in this paper is
relevant to water resourcesmanagement. We consider
a dam for which daily data are available as time series
for the inflow or for the instantaneous water level in
the reservoir (see e.g., [1], [2], [3], [4], [5], for related
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problems). The goal of the present work is to analyse
the ability to predict hourly discharges at the dam. Of
particular practical interest are the one-week-ahead
release forecasts. We will rely on a data-driven model
to achieve this objective.

The time series of dam releases are multi-periodic,
including a natural hydrological annual period,
and weekly and daily periods both resulting from
energy demand. At first sight, SARIMA (Seasonal
Autoregressive Integrated Moving Average) models
would be natural candidates for modelling the time
series. However, these models have virtually
no success in dealing with multiple seasonalities,
especially when large periods are combined with
small periods and large data sets are involved, as
is the case here. Modelling and forecasting with
multi-periodic time series can be challenging in terms
of statistical methodology. Indeed, the literature on
this subject is not very prolific. A key reference is
the work of Hydman and co-workers, [6], [7], [8];
see also, [9]. These works are notable for their new
approaches to the problem and their consideration of
practical aspects. They propose a new time series
model named TBATS (Trigonometric seasonality,
Box-Cox transform, ARMA errors, Trend, and
Seasonal components). The TBATS model can
be seen as a generalisation of earlier state-space
models for time series with multiple seasonality,
incorporating ARMA error corrections and Box-Cox
transformations.

To illustrate the proposed method, we consider a
study case of a dam located on the Douro river in
Portugal. Daily inflow and hourly outflow data are
available for about two decades and are used to fit a
TBATS model. The model is then used to forecast
the hourly discharge of the dam over a one-week
time horizon. The results are compared with those
obtained using Seasonal Naïve, Neural Network and
Random Forest algorithms.

2 Multi-periodicity Modelling and
Forecasting. The TBATS Model

The time series of dam releases simultaneously
exhibit at least daily, weekly, and annual periods;
therefore modelling should take into account this
multiplicity of periods. In the literature on time series
modelling, one can find a diversity of proposals that
can be used in our problem. As mentioned in the
introduction, TBATS, a model proposed by [8], is one
such model. It is a powerful tool in that it allows
for multiple seasonal non-integer periods, trends, and
Box-Cox transformations to induce non-linearity as
well as ARMA error correction.

In this work, the time series of dam releases
is denoted by QOUT and the inflow time series is

denoted by QIN .
The TBATS model is described by the following

set of equations:

Q
(λ)
OUT,t = lt−1 + ϕbt−1 +

T∑
i=1

S
(i)
t−mi

+ dt , (1)

lt = lt−1 + ϕbt−1 + αdt , (2)
bt = ϕbt−1 + βdt , (3)

dt =

p∑
i=1

φidt−i +

q∑
i=1

θiet−i + et , (4)

whereQ(λ)
OUT,t is the time seriesQOUT,t after a possible

Box-Cox transformation with parameter λ, S
(i)
t is

the seasonal component of the series with period
mi, lt consists of the so-called local level of the
series, bt represents the (stochastic) trend of the series
and dt is the associated ARMA(p, q) process. The
parameters ϕ, α and β must be estimated when fitting
the model to the available data, here constituted by
the observed time series QOUT . In this model,
each seasonal component S(i) appearing in equation
(1) is modelled by a trigonometric representation
based on Fourier series, although the remaining
components are allowed a more elaborate stochastic
structure than in a simple ARMA or ARIMA model
with a Fourier term (see, [10], [11], for application
examples). TBATS models are flexible enough to
allow the seasonal components to change slowly
over time. Additionally, by incorporating ARMA
errors, these models can effectively capture existing
autocorrelations in the time series data. TBATS
models can accommodate linear as well as nonlinear
trends. The R language tbats() function can be used
to perform the necessary computations, [12].

2.1 Stationarity of the Residuals
As usual in times series modelling, it is necessary
to analyse the stationarity of the residuals and to
carry out a diagnostic step. For this analysis, we
use the Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
test, [13], and the Augmented Dickey-Fuller (ADF)
test. The model fit assumption of non-autocorrelation
of the residuals is also assessed using the Ljung-Box
test. The usual significance level of 5 % is used in the
testing procedures.

2.2 Error Metrics
The quality of the predictions provided by the
different models can be assessed by computing some
error metrics. The Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Mean Error (ME)
metrics will be used in the present work. They are
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defined as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 , (5)

MAE =
1

n

n∑
i=1

|yi − ŷi| , (6)

ME =
1

n

n∑
i=1

yi − ŷi , (7)

where yi is the i-th measured value and ŷi is the
corresponding forecast, and n is the length of the
time series considered in the computation. Recall that
these metrics, when applied to the training set, allow
the goodness of fit to be assessed. When applied to the
test set, they assess the ability of the model to produce
forecasts, [14].

3 Case study: Crestuma-Lever Dam
We are particularly interested in the forecast of the
hourly discharge of the Crestuma-Lever dam on the
river Douro in Portugal.

3.1 Study area and Available Data
The basin of river Douro covers an area of 97603
km2, of which 18643 km2 are in Portugal (Fig. 1).
The estuary of the river Douro is 21 km long and is
limited upstream by the Crestuma-Lever dam (Fig.
2). This dam houses a run-of-river hydroelectric
power station with a useful capacity of 22.5 × 106

m3 and fully controls the flow of the river into the
estuary. Its turbines and weir gates can be operated
simultaneously, and the instantaneous release of
water from the dam is QOUT = QHP + QW, where
QHP is the turbine discharge, and QW is the flow rate
through the weirs.

In Portugal, the hydrological year begins on 1
October and ends on 30 September the following year.
Reservoir inflow varies throughout the year and is
highly correlated with rainfall, with large intra- and
inter-annual variability. The hydrological year has a
wet period from October to April, when the highest
flows are usually recorded, and a dry period fromMay
to September, when flows are usually lower. The
inter-annual variability is also considerable, leading
to the existence of wet hydrological years with a
large annual inflow and dry hydrological years with
reduced annual inflows.

Two sets of data are available, from SNIRH
(Sistema Nacional de Informação de Recursos
Hídricos) and from EDP (Energias de Portugal),
from the year 1998 to the year 2020, although
the second set of data is not published. The
following time series are available: average hourly

Fig. 1: The basin of the river Douro in the Iberian
Peninsula

Fig. 2: Upstream view of the Crestuma-Lever dam
(photo by Francisco Piqueiro)

dam releases, QOUT; average daily reservoir inflows,
QIN; average hourly weir releases, QW; average
hourly hydropower releases, QHP. These data start
on 13 January 1998 and end on 30 September 2020.
Additionally, the following time series have been
provided by SNIRH from September 1998 to March
2020: cumulative (volumetric) reservoir inflow,
cumulative (volumetric) dam release, instantaneous
water volume in the reservoir, instantaneous water
level in the reservoir, zR. Table 1 summarises general
information on the relevant available data. The data
were first checked for gaps, consistency (using the
volume and water level data) and outliers. The
analysis dictated the exclusion of data prior to 3 May
2001 in the modelling procedure.

In the present study, the dataset recorded from 4
May 2001 to 30 Sep 2019 is used as a training dataset,
while the dataset recorded in the hydrological year
of 2019/20, i.e. from 1 Oct 2019 to 30 Sep 2020,

Table 1. Structure of the database

Time series Source Type of data
QOUT EDP hourly
QW EDP hourly
QHP EDP hourly
QIN SNIRH daily
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(a) Reservoir inflow.

(b) Dam release.

Fig. 3: Inflow and outflow chronograms from
1998/99 to 2019/20

is used as a test dataset. The chronograms of the
time series of reservoir inflow QIN (daily data) and
reservoir outflow QOUT (hourly data) are shown in
Fig. 3. There is clearly a relationship between the two
time series.

In fact, the hourly discharge of the dam depends,
on the one hand, on the reservoir inflow and, on the
other hand, on the decisions taken by the hydropower
plant manager, which can be seenmainly in the hourly
hydropower release time series, which is usually
kept confidential. Fig. 4 illustrates the variability
of the hydropower release time series along one full
hydrological year and among years. Two instances of
the time series of hydropower release along two full
hydrological years are shown in the figure.

On the other hand, since our aim in this paper
is to forecast the hourly discharge of the dam
and this depends on the reservoir inflow, the

Table 2. Estimates of parameters for the TBATS
                                model (1)–(4)

TBATS ARMA
ϕ̂ −8.6× 10−2 θ̂1 +1.14

α̂1 +3.8× 10−3 θ̂2 −0.35
α̂2 +8.7× 10−4 γ̂1 −0.21
α̂3 −2.0× 10−3 γ̂2 −0.03

β̂1 −1.0× 10−3

β̂2 +1.3× 10−3

β̂3 +9.5× 10−4

Table 3. Basic statistics of the training dataset and
                                  fitted model

Training TBATS model
dataset (1)–(4)

mean 447 481
median 257 484
standard deviation 632 276
max 9727 1141
min 0 0
1st quartil 0 264
3rd quartil 695 690
5 % quantil 0 0
10 % quantil 0 0
90 % quantil 1159 1133
95 % quantil 1367 1378

daily time series QIN was disaggregated into an
hourly time series. Several disaggregation methods
were tried but without success due to unresolved
physical inconsistencies in the results. Therefore, a
linear interpolation method was used to perform the
disaggregation.

3.2 Results
A TBATS(1, 2, 2,−, ⟨24, 4⟩ , ⟨168, 5⟩ , ⟨8766, 5⟩)
model was fitted to the training dataset. Within the
class of TBATS models, this model provided the best
fit. No Box-Cox transform needs to be applied (i.e.
parameter λ equals 1), the autoregressive component
is an ARMA(2, 2), and three seasonal terms were
included: a daily period (24 h) with 4 harmonics,
a weekly period (168 h) with 5 harmonics, and
an annual period (8766 h) with 5 harmonics. The
estimates of the parameters obtained are shown in
Table 2.

The residuals obtained in the model fitting present
some challenges as they cannot be strictly considered
as random white noise (see Fig. 5), but no bias is
detected. The AIC is 3550918. The basic statistics
are presented in Table 3.

Short-term forecasts one week ahead have been
made. As mentioned above, the data for the
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(a) From 1998/99 to 2019/20.

(b) Hydrological year 2002/03.

(c) Hydrological year 2011/12.

Fig. 4: Chronograms of turbine flow release

(a) ACF.

(b) PACF.

Fig. 5: ACF and PACF of the residuals (model
(1)–(4))
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(a) 1–7 Oct 2019.

(b) 5–12 Jan 2020.

Fig. 6: Dam release forecasts

hydrological year 2019/20 (1 October 2019 to 30
September 2020) are used as a test dataset. The
ME, RMSE and MAE metrics for these forecasts are
presented in Table 4. As an example, the week from
1 to 7 October 2019 (the first week of the test dataset)
is analysed in more detail here. Fig. 6 shows the dam
release forecasts for this first week, as well as the
forecasts for a week in January, which is generally
characterised by larger flows. The predictions are
shown in red, and the observed data (test dataset) are
shown in blue. Table 4 shows the forecast metrics
for the week from 1 to 7 October 2019 as well as the
metrics for the entire 2019/20 hydrological year.

We have found that the predictors may produce
negative forecasts at some points in time when very
low flows occurred. As such values are not physically
possible, these predictions have been replaced by
zeros. Such a procedure introduces some unwanted
bias.

We found that the TBATS model is generally not
good at tracking fast decreases in discharge values and
most zeros, and exhibits significantly poor forecast
metrics (see, for instance, the forecast error results

Table 4. Forecast metrics (in m3 /s) for TBATS,
Seasonal Naïve, Neural Network and Random Forest
                                    models.

Model ME RMSE MAE

Forecast 01 Oct 2019 to 07 Oct 2019
TBATS -243 310 282
Seasonal Naïve 16.8 281 165
Neural Network -103 228 174
Random Forest -39 320 268

Forecast 01 Oct 2019 to 30 Sep 2020
TBATS 41.1 679 345
Seasonal Naïve 270 745 398
Neural Network 306 810 473
Random Forest 58 685 240

for the first week of October 2019 in Table 4).
However, similar conclusions were reached when a
Seasonal Naïve model (see, [6], for model details)
was applied. The Seasonal Naïve model clearly
showed its inability to predict the hourly discharge,
which is not surprising as it is not supposed to
deal with time series with multiple periodicities.
Predictions based on a Random Forest algorithm
(refer to the randomForest library in the R software)
considering QOUT as explained by QIN, as well as
hour of the day, day of the week, month and year,
showed no improvement, even when different sets
of years were used in the training phase. The same
happened when using the Neural Network algorithm
implemented in the function nnetar, also in the R
software. In the latter case, the entire training dataset
was used, as this Neural Network clearly gave the
lowest prediction errors. Despite of the considerable
computational effort required to run these algorithms,
the resulting errors were not significantly reduced.

4 Final Comments
The TBATS model can be used to produce reasonable
quality hourly forecasts of dam releases based
on daily reservoir inflow data. Specifically, it
demonstrates the ability to track the peaks and large
variations in hourly dam releases.

Future research should explore alternative time
series models that incorporate multiple periodicities
and that may be of non-linear nature, as well as other
machine learning algorithms applied to the problem
of forecasting dam releases. Some investment in
methodologies that address the disaggregation of
daily inflow data into hourly data will also be
required.
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