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Abstract: This article focuses on predicting the number of tourists visiting Thailand’s national parks using count
data models. Given the discrete and overdispersed nature of the tourist count data, traditional Poisson regression
models were extended to include Negative Binomial (NB) and Zero-Inflated models. Using data from 2016 to
2022, we evaluated four model types: Poisson, Negative Binomial, Zero-Inflated Poisson, and Zero-Inflated
Negative Binomial (ZINB). Model performance was assessed using the Akaike Information Criterion (AIC),
log-likelihood values, and the Vuong test. Findings reveal that the ZINB model best fits the data, addressing
both overdispersion and excess zeros, resulting in more accurate predictions. This model is thus recommended
for similar count data applications in tourism and environmental studies. Future work may focus on optimizing
the model by reducing complexity and improving outlier handling.
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1 Introduction
The idea of national parks establishment had emerged
after World War II in which there was a tremendous
increase in population leading to jungles and forest
destruction. The issue of wild animal extinction had
been raised by that time until the government realized
and determined to tackle the problem seriously in
order to conserve the natural environment, especially
for rare species of plants as well as breeds of wild
animals. Having national parks established also
significantly drives economic development due to
the beauty of nature which leads to various types of
business and service.

Due to the rapid growth of tourism inmany regions
in Thailand. A large number of tourists, both local and
international, are captivated to visit the national parks

since they offer numerous activities and services
that most people will enjoy. That being said, in
order to effectively welcome and provide appropriate
facilities for visitors under a limited budget, knowing
an approximate number of tourists visiting a specific
national park in a specific time frame helps plan the
strategies, financial management, and many more for
those who visit the park. Statistical modeling plays
a crucial role in predicting the interesting outcome,
number of tourists/visitors in this case. Thus, it is also
vital to select the best model among various model
candidacies that explains and predicts the count data
based on the data we possess in our hands.

In this article, the author has fetched the open data
from the governmental data center. This involves the
number of counts of national park visitors between
2016 and 2022 categorized by years, months, and
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the national parks which are the primary and obvious
factors that affect the number of tourists. These three
variables are considered to be independent variables
while it is clear that the number of tourists visiting
the national parks is response variable. There are 146
national parks included in the data set in which they
are encoded as dummy variables.

Since the response variable is related to the count
data which is discrete and non-negative integers,
the most direct approach to study the relationship
is to explore the models that are able to model
the integer-valued data. This primarily includes
the Poisson (POI) and Negative Binomial (NB)
regressions which require an assumption that the
response variable follows the Poisson and Negative
Binomial distributions respectively.

The main objective is to compare the effectiveness
of the count modeling for the number of tourists
visiting national parks. We have applied four
different-sophisticated regression models. This
ranges from the Poisson (POI) Regression Model,
Negative Binomial (NB) Regression Model, and
Zero-inflated Poisson (ZIP) Regression Model to
Zero-inflated Negative Binomial (ZINB) Regression
Model. Ultimately, they are compared using
three distinct model evaluation methods including
the Log-likelihood ratio test, Akaike Information
Criterion, and Vuong Test.

2 Methodology
2.1 Poisson (POI) Regression Model
The model was developed by [1], [2]. It is a
building block for the count regression model where
the Poisson distribution has been assumed by the
model, [3]. Let yi be independent Poisson random
variables with parameter λi. The probability mass
function for yi given xi is defined as

f(yi|Xi) =
e−λiλyi

i

yi!
(1)

Note that E[y|xi] = V[yi|xi] = µi where µi can be
computed by exp(X⊺β). In general, the POI model
can expressed as the log-likelihood function. Under
the independence assumption, we have

lnL(β) =

n∑
i=1

(
− expX

⊺
i β −yiX

⊺
i β − ln yi!

)
(2)

The main applications for this specific count
modeling are ubiquitous and have been exposed for a
long history in various fields such as [4], [5], [6], [7].

2.2 Negative Binomial (NB) Regression
Model

The model was invented by [8], which was derived
from a mixture between Poisson and Gamma

distribution due to the restriction of the definition
of the density function for negative binomial. This
model compromises the assumption of having both
expectation and variance coincide. Thus, the
model alleviates modeling the Poisson-distributed
dependent variable whose variance is greater than
its mean. The probability mass function is defined
below:

f(yi|Xi) =
Γ
(
yi +

1
θ

)
Γ(1θ )yi!

(
1

1 + θλi

) 1

θ
(

θλi

1 + θλi

)yi

(3)
where λi is the mean and θ is the overdispersion
parameter defined by

E[yi|Xi] = λi and V[yi|Xi] = λi(1 + θλi)

Note that when θ = 0, the above coincides
with the Poisson distribution. According to the
independence assumption, this model can be written
as a log-likelihood function as

lnL(β) =

n∑
i=1

ln

[
Γ

(
yi +

1

θ

)]
−

n∑
i=1

ln yi!

−
n∑

i=1

ln

[
Γ

(
1

θ

)]
+

n∑
i=1

yi ln θ +

n∑
i=1

yiX
⊺
i β

−
n∑

i=1

(
yi +

1

θ

)
ln
(
1 + θeX

⊺
i β
)

(4)

The main applications for the NB regression model
are also of interest to numerous fields and have been
studied by many researchers such as [9], [10], [11].

2.3 Overdispersion
Overdispersion refers to the phenomenon where
the empirical observations have higher variance
than the theoretical model. Otherwise, it is
called underdispersion phenomenon. Overdispersion
usually occurs when modeling simple parametric
model where the variance cannot be independently
adjusted, [12]

Once overdispersion is mentioned, this relates to
the zero-inflation circumstance. Hence, we consider
the zero-inflated models which are commonly used in
count data analysis with an excessive number of zero
counts. This type of model embraces various types of
situations of observing many zeros. Two of them are
studied in this paper.

2.4 Zero-inflated Poisson (ZIP) Regression
Model

The ZIP model combines Poisson and a degenerate
distribution at zero, [13]. The independent random
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variable yi breaks into two different conditions with
different outcomes

yi ∼
{
ki0 ,with probability πi
Poisson(λi) ,with probability 1− πi

(5)

Then the probability mass function is defined as

yi ∼

{
πi + (1− πi)e

−λi ; yi = 0

(1− πi)
e−λiλyi

yi
; yi > 0

(6)

where λi > 0 is the rate parameter, and 0 ≤ πi ≤ 1
denote the probability of i-th observation. Given Xi,
we obtain the expectation and variance as

E[yi|Xi] = λi(1− πi)

V[yi|Xi] = λi(1− πi)(1 + πiλi)

When modeling the Zero-inflated data, [9], describe
that the parameters λi and πi satisfy the following

ln(λi) = B⊺
i β

logit(πi) = ln

(
πi

1− πi

)
= G⊺

i γ
(7)

where we denote B⊺
i and G⊺

i and as the vectors of
independent variables in covariate matricesB andG
respectively. We can also express the ZIP regression
model as a log-likelihood function when πi is not a
function of λi as follows:

lnL(β,γ) =
∑
i:yi=0

ln
(
eG

⊺
i γ + e−eX

⊺
i
β
)

−
∑
i:yi=0

ln
(
1 + eG

⊺
i γ
)
−
∑
i:yi>0

ln(yi! )

+
∑
i:yi>0

(
yiX

⊺
i − eX

⊺
i β
)

(8)

2.5 Zero-inflated Negative Binomial (ZINB)
Regression Model

Analogous to the NB regression model, the ZINB
was developed by [14], who considers that there
is an excessive number of zeros while there exists
an overdispersion phenomenon. Thus, it is suitable
for fitting the response variable yi whose variance
is greater than its expectation. Suppose yi ∼
ZINB(λi, θ, πi). Then the probability mass function
is defined as

f(yi|Xi) = πi + (1− πi)

(
1

1 + θλi

) 1

θ

(9)

when yi = 0 and

f(yi|Xi) =(1− πi)
Γ
(
yi +

1
θ

)
Γ
(
1
θ

)
yi!

(
1

1 + θλi

) 1

θ

×
(

θλi

1 + θλi

)yi
(10)

when yi > 0. GivenXi, the expectation and variance
are computed by

E[yi|Xi] = λi(1− πi)

V[yi|Xi] = λi(1− πi)(1 + πiλi + θλi)

To implement the ZINB regression model, we express
it as a log-likelihood function for both cases, yi = 0
and yi > 0 as follows: For yi = 0,

lnL(β,γ) =

n∑
i=1

ln

(
eG

⊺
i γ +

(
1

1 + θeX
⊺
i β

) 1

θ

)

−
n∑

i=1

ln
(
1 + eG

⊺
i γ
)

(11)

and for yi > 0,

lnL(β,γ) =−
n∑

i=1

ln(1 + eG
⊺
i γ)

+

n∑
i=1

ln

[
Γ

(
yi +

1

θ

)]
−

n∑
i=1

[
Γ

(
1

θ

)]

−
n∑

i=1

ln yi! +

n∑
i=1

yi ln θ +

n∑
i=1

yiX
⊺
i β

−
n∑

i=1

(
yi +

1

θ

)
ln
(
1 + θeX

⊺
i β
)

(12)

2.6 Model Comparison Criteria
In this paper, the author has proposed three different
evaluation methods to compare the effectiveness of
the models. This involves the Akaike Information
Criterion (AIC), the Likelihood-ratio (LR) test,
and the Vuong test for a non-nested model. The
mathematical (and statistical) formulations are
explained below:

2.6.1 Akaike’s Information Criterion (AIC)
The AIC is an estimator of the prediction error as
well as the quality of the statistical models for a
given data set, [15], invented in 1973. This criterion
mainly focuses on how much information is lost by
a model which is widely used in information theory

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT 
DOI: 10.37394/232015.2025.21.25

Samach Sathitvudh, 
Piyada Wongwiwat, Wikanda Phaphan

E-ISSN: 2224-3496 286 Volume 21, 2025



and statistical inference. More formally, let q be the
number of estimated parameters in themodel andL(·)
be the maximum likelihood function. The AIC value
is computed by [16].

AIC = 2q − 2 lnL(·) (13)

The rule of thumb for the AIC value is that the lower
the value, which implies that the model is able to
maintain more information, the higher the quality of
the model.

2.6.2 Likelihood-ratio Test (LRT)
When comparing two candidate statistical models, the
LRT (Wilk’s test) plays a crucial role in comparing
the goodness of fit between these models. Two
hypotheses are posed by the complexity of the model
in which the null hypothesis constrains the model to
a simpler version whereas the alternative hypothesis
is specified under the more complex model. More
formally,

H0 : θ ∈ Θ0

H1 : θ ∈ Θ

where the statistical models with a parameter space
Θ. The null hypothesis is interpreted as the parameter
θ lies in a more constrained subset Θ0 of Θ. By
rejecting the null hypothesis, it means that the more
complex model explains the ground truth of the data
more effectively.
The log-likelihood ratio test statistics under the null
hypothesis H0 is given by [17].

ΛLR = −2

[
ln sup

θ∈Θ0

L(θ)− ln sup
θ∈Θ

L(θ)

]
(14)

Since the numerator is constrained, it cannot exceed
the denominator. Therefore, the ratio is bounded in
[0, 1].

2.6.3 Vuong Test for Non-nested Model
Analogous to the LRT, the Vuong test [18] uses the
Kullback–Leibler information criterion to construct
the likelihood-ratio-based test for two candidate
models. It focuses on identifying whether these two
models are approximately equally close to the ground
truth of the data. More formally, the hypotheses are
specified as:

H0 : two models are equally comparable
H1 : the alternative model is closer
to the ground truth data

Under the strictly non-nested models, the Vuong test
statistic is defined by

V =

∑n
i=1mi√
nsdm

(15)

wheremi = ln
[
f1(yi|Xi)
f2(yi|Xi)

]
and fi’s are the likelihood

functions of model 1 and 2 respectively. Furthermore,
the Vuong test for non-nested models is well known
for comparing the zero-inflated count model to
its non-zero-inflated one although there is some
argument claiming that the test has not been yet
globally valid due to the nestedness.

3 Empirical Results
As the main objective is to evaluate the models’
efficiency for predicting the number of tourists
visiting the national parks. In this section, the
empirical findings are presented in four subsections;
the descriptive analysis, the models, the model
comparison, and the prediction.

3.1 Descriptive Analysis
Under 12,264 total observations, the number of
tourists visiting national parks in Thailand ranges
from 0 to 675,818. Overall, from 2016 to 2022,
there are 16.01%, 17.94%, 18.36%, 17.97%, 12.30%,
6.83%, and 10.59% of the number of tourists visiting
the parks respectively. Table 1 illustrates the
percentage of tourists visiting the national parks in
different aspects; by month (descending order). Table
2 describes the top 10 most visited national parks in
proportion. Lastly, Table 3 illustrates the Cramer’s
V coefficient for each covariate X1, X2 and X3

which correspond to year, national park (dummy),
and month respectively whereas the response variable
Y is the number of tourists.

Table 1. Proportion of tourists visiting the national
                        parks for each month

Month Proportion
December 14.63%
January 11.99%
April 10.87%
February 9.84%
March 9.83%
November 8.47%
October 8.23%
July 6.73%
May 5.57%
August 5.50%
September 4.48%
June 3.87%

According to the Cramer’s V coefficient table,
it shows a high association between the response
variable (the number of tourists) and each of the
predictors (year, dummy of park, and month).
Meanwhile, there exists a small multicollinearity
between the year and the dummy variable of the park.
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Table 2. Top 10 national parks visited

Park name Proportion
Khao Yai 9.48%
Hat Noppharat Thara (Phi Phi) 7.75%
Khao Leam Ya - Mo Ko Samet 5.98%
Phang Nga Bay 5.75%
Doi Inthanon 4.63%
Khao Khitchakut 4.22%
Erawan 3.41%
Namtok Phlio 3.25%
Mu Ko Similan 3.23%
Khao Sok 2.07%

Table 3. Cramer’s V coefficient

Variable X1 X2 X3 Y
X1 1 0.211 0 0.788
X2 0.211 1 0 0.739
X3 0 0 1 0.74

3.2 Modeling Results
In this subsection, the resulting models with
parameter estimates β are provided. For the
non-zero-inflated model such as POI and NB, the
proposed model is the following:

ln(λi) =β0 + β1j
Yearj + β2k

Nationalk
+ β3l

Monthl
(16)

where j ∈ {1, ..., 6}, k = {1, ..., 145}, l =
{1, ..., 11} and β’s for each model are shown in Table
4, Table 5, Table 6, and Table 7 On the other hand
for both zero-inflated regression models, two separate
models are considered. One is similar to 16 with
different estimated parameters. The other part which
considers inflation is formulated as

logit(πi) = γ0 + γ1l
Monthl (17)

where l = {1, ..., 11}.
Therefore, Table 4, Table 5, Table 6, and

Table 7 illustrate the estimation of parameters
(non-zero/count parts) from all four proposed models,
POI, NB, ZIP, and ZINB. Note that the models have
assigned one level for each variable to be baselines.
This includes year7, national146 and month12.

Since the models ZIP and ZINB contain zero part,
Table 8 displays the estimation of parameters from the
zero-inflated models specifically the zero part. Note
that the zero parts are obtained from month variable
where month12 is the baseline.

3.3 Model Comparison
After obtaining proper models for predicting the
number of tourists visiting the national parks, one

Table 4. Estimated coefficients and p-values from
 Poisson and Negative Binomial Regression Models

Parameters POI NB Regression ZIP ZINB

Intercept 10.9163 11.5455 10.8723 11.4013

β11
0.5051 0.1823 0.4792 0.0898

β12
0.3337 -0.3922* 0.3263 -0.3831

β13
0.4932 0.2376 0.4784 0.1724

β14 0.5281 0.2265 0.5027 0.1334

β15 0.149 -0.1506 0.3997 0.1689

β16
-0.4384 -0.645 -0.3232 -0.2636

β21
-3.6356 -3.6148 -3.6133 -3.5931

β22
-1.5123 -1.5054 -1.5203 -1.5725

β23
-6.3596 -6.3277 -6.2063 -6.2021

β24 -2.8388 -2.8954 -2.8319 -2.8849

β25 -6.014 -6.1893 -5.9815 -6.1414

β26
-4.075 -4.0876 -4.0648 -4.0703

β27
-5.1485 -5.3946 -5.1276 -5.3473

β28
-4.1226 -4.3498 -4.0501 -4.2157

β29
-2.648 -2.9448 -2.5834 -2.7713

β210 -2.9489 -3.0525 -2.9378 -3.0193

β211 0.2123 0.0312* 0.2097 0.1297*

β212
-1.2335 -1.1687 -1.2337 -1.2011

β213
-4.2523 -4.3359 -4.2659 -4.3874

β214
-5.3464 -5.3662 -5.2667 -5.2145

β215
-1.6085 -1.5711 -1.5845 -1.5446

β216 -3.689 -3.7553 -3.686 -3.7405

β217 -0.9474 -0.9469 -0.913 -0.9056

β218
-2.5116 -2.5956 -2.5036 -2.5711

β219
-0.5021 -0.4822 -0.5082 -0.5065

β220
-1.3182 -1.2619 -1.3171 -1.3026

β221
-4.1913 -4.1906 -4.1938 -4.274

β222 -2.1941 -2.2305 -2.186 -2.2184

β223 -2.1994 -2.343 -2.1649 -2.2369

β224
-2.34 -2.4411 -2.3233 -2.4203

β225
0.5608 0.6485 0.5527 0.5798

β226
1.0487 1.1936 1.0374 1.1007

β227
-1.5662 -1.5345 -1.5663 -1.5858

β228 -5.7596 -5.9397 -5.7516 -5.8757

β229 -0.8882 -0.8358 -0.8802 -0.8626

β230
-2.9628 -2.9911 -2.9547 -3.0207

β231
-0.8795 -0.9984 -0.8635 -0.9649

β232
-2.3089 -2.2296 -2.3025 -2.2567

β233
-2.7534 -2.6806 -2.7543 -2.7577

β234 -3.5755 -3.5292 -3.5661 -3.5707

β235 -4.3964 -4.3631 -4.3488 -4.2744

β236
-5.0273 -5.2552 -5.006 -5.1817

β237
-1.693 -1.8783 -1.677 -1.8036

β238
-2.4642 -2.6838 -2.4611 -2.6471

β239
-3.2905 -3.3395 -3.2643 -3.3388

* refers to insignificant variables under the α = 0.05.

must investigate systematically which one is the most
effective model using AIC and the log-likelihood.
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Table 5. Estimated coefficients and p-values from
  Poisson and Negative Binomial Regression Models

Parameters POI NB Regression ZIP ZINB

β240
-5.634 -5.8245 -5.5806 -5.6766

β241
-0.7536 -0.7922 -0.7506 -0.7707

β242
-2.9302 -3.044 -2.7719 -2.8682

β243
0.3015 0.0904* 0.3301 0.1974*

β244 -4.0315 -3.8451 -3.9997 -3.8922

β245 -0.9231 -1.1299 -0.834 -0.9462

β246
-3.0117 -3.2928 -2.9871 -3.2074

β247
-0.616 -0.5916 -0.6135 -0.6316

β248
-3.4807 -3.5571 -3.4646 -3.5141

β249
-5.3999 -5.4049 -5.371 -5.3446

β250 -3.5475 -3.6469 -3.5139 -3.5544

β251 -1.7587 -1.97 -1.7648 -1.9652

β252
-2.7892 -2.9071 -2.7505 -2.8475

β253
-3.7288 -4.0211 -3.7067 -3.9186

β254
-1.828 -1.9124 -1.8225 -1.9145

β255
-3.8403 -3.7775 -3.8208 -3.758

β256 -2.2303 -2.2116 -2.2101 -2.2168

β257 -2.2137 -2.3094 -2.2012 -2.2889

β258
-2.4077 -2.1966 -2.3692 -2.1768

β259
-1.5681 -1.5498 -1.5762 -1.6045

β260
-1.3091 -1.3452 -1.3116 -1.3446

β261
-1.7292 -1.6785 -1.7268 -1.6577

β262 -4.3338 -4.6923 -4.3308 -4.6103

β263 -4.155 -3.9866 -4.0888 -3.8886

β264
-3.3334 -3.3571 -3.3415 -3.4105

β265
-0.445 -0.4587 -0.4309 -0.42

β266
-3.7092 -3.8598 -3.6585 -3.7724

β267
-2.906 -2.7623 -2.8451 -2.7117

β268 -1.7928 -1.7121 -1.7438 -1.6366

β269 -0.0492 -0.028* -0.0518 -0.063*

β270
-1.8035 -1.9979 -1.7322 -1.8285

β271
-4.3903 -4.6529 -4.3427 -4.4467

β272
-1.967 -2.0176 -1.9474 -1.97

β273
-2.4782 -2.4067 -2.4519 -2.3597

β274 -3.719 -3.7926 -3.7251 -3.8418

β275 -1.8541 -1.8546 -1.8294 -1.7943

β276
-3.1686 -3.2255 -3.156 -3.204

β277
-2.5294 -2.3291 -2.5141 -2.3803

β278
-2.8203 -3.0804 -2.7913 -2.9664

β279
-3.7993 -3.7279 -3.7746 -3.7197

β280 -3.0355 -2.8622 -2.967 -2.8334

β281 -2.1532 -2.0541 -2.1239 -1.9915

β282
-1.6524 -1.2564 -1.6371 -1.3357

β283
-2.7148 -2.8941 -2.6778 -2.7863

β284
-0.9558 -1.0062 -0.9533 -0.9951

β285
-3.7678 -3.8894 -3.744 -3.8514

* refers to insignificant variables under the α = 0.05

Table 9 shows the empirical results for AIC and
log-likelihood values for each particular model. This

Table 6. Estimated coefficients and p-values from
  Poisson and Negative Binomial Regression Models

Parameters POI NB Regression ZIP ZINB

β286
-1.876 -2.2138 -1.8314 -2.0555

β287
-4.3008 -4.3423 -4.2847 -4.3042

β288
-1.7685 -1.6223 -1.7484 -1.6218

β289
-1.7047 -1.8463 -1.6871 -1.8231

β290 -2.4965 -2.6016 -2.4839 -2.5152

β291 -3.351 -3.2292 -3.3467 -3.3173

β292
-4.3748 -4.2605 -4.3546 -4.3011

β293
-5.8085 -5.8761 -5.7761 -5.8308

β294
-4.9231 -5.1277 -4.907 -5.0072

β295
-1.1777 -1.477 -1.1696 -1.4016

β296 -2.0439 -1.8154 -1.991 -1.8325

β297 -1.6403 -1.6089 -1.6257 -1.6273

β298
-3.0901 -2.8258 -3.0744 -2.926

β299
-5.0023 -4.9711 -4.9698 -4.9393

β2100
-3.9065 -4.1005 -3.887 -4.0489

β2101
-3.2564 -3.2883 -3.2404 -3.2394

β2102 -0.6797 -0.8726 -0.6814 -0.8388

β2103 -4.176 -4.5431 -4.1149 -4.3922

β2104
-3.9575 -4.0567 -3.9414 -3.9885

β2105
-2.6941 -2.766 -2.6563 -2.6358

β2106
-6.4544 -6.8285 -6.1393 -6.3237

β2107
-2.8335 -3.0682 -2.8073 -2.9676

β2108 -3.7215 -3.5679 -3.7167 -3.7109

β2109 -4.0744 -4.5299 -4.0159 -4.3432

β2110
-4.382 -4.5828 -4.3802 -4.5966

β2111
-2.3205 -2.3249 -2.3116 -2.3666

β2112
-4.8025 -4.9321 -4.7964 -4.9141

β2113
-2.1013 -2.2387 -2.0514 -2.1204

β2114 -3.2035 -3.2783 -3.1373 -3.1619

β2115 -2.7677 -2.8976 -2.722 -2.8005

β2116
-4.8764 -5.1718 -4.6146 -4.7658

β2117
-1.7063 -1.7681 -1.6712 -1.6809

β2118
-3.4747 -3.4174 -3.45 -3.3861

β2119
-2.8421 -2.8565 -2.8346 -2.8945

β2120 -3.4556 -3.6562 -3.3482 -3.4845

β2121 -1.6415 -1.9588 -1.5998 -1.8385

β2122
-3.4217 -3.5403 -3.396 -3.4745

β2123
-1.9808 -1.9127 -1.9728 -1.93

β2124
-3.7355 -3.8988 -3.6765 -3.7687

β2125
-4.5104 -4.5153 -4.448 -4.4124

β2126 -6.0085 -6.3699 -5.8318 -6.0099

β2127 -2.624 -2.6952 -2.6302 -2.7056

β2128
-0.8554 -0.9051 -0.8499 -0.8873

β2129
-2.6997 -2.5939 -2.7022 -2.67

β2130
-1.8335 -1.7151 -1.8305 -1.7836

β2131
-6.8521 -7.0412 -6.7211 -6.8419

* refers to insignificant variables under the α = 0.05.

shows that the Zero-inflated Negative Binomial
regression model appears to be the most appropriate
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Table 7. Estimated coefficients and p-values from
  Poisson and Negative Binomial Regression Models

Parameters POI NB Regression ZIP ZINB

β2132
-1.1731 -1.3899 -1.165 -1.2959

β2133
-0.0562 -0.4331 0.187 0.079

β2134
-2.4229 -2.7151 -2.1797 -2.2597

β2135
-1.6155 -1.4737 -1.5386 -1.4021

β2136 -1.2651 -1.5629 -1.249 -1.4471

β2137 -2.2718 -2.1736 -2.2557 -2.2756

β2138
-1.7203 -1.891 -1.7209 -1.8988

β2139
0.8171 0.8515 0.8146 0.8625

β2140
-2.6257 -2.5668 -2.6152 -2.6123

β2141
-2.9554 -3.1157 -2.9393 -3.09

β2142 -2.4289 -2.5304 -2.3843 -2.473

β2143 -2.5904 -2.7628 -2.5657 -2.6846

β2144
0.5195 0.5428 0.5225 0.5864

β2145
-2.3617 -2.1842 -2.3282 -2.1368

β31
-0.1989 -0.3351 -0.1997 -0.2942

β32
-0.3966 -0.7611 -0.3965 -0.7426

β33 -0.3974 -0.8536 -0.3921 -0.7943

β34 -0.2968 -0.4785 -0.1244 -0.1841

β35
-0.9661 -1.6039 -0.7637 -1.1474

β36
-1.3331 -1.9616 -1.067 -1.4652

β37
-0.7765 -1.2745 -0.6657 -0.9671

β38
-0.9777 -1.4986 -0.888 -1.2309

β39 -1.1832 -1.5288 -1.1077 -1.343

β310 -0.5745 -0.8417 -0.5625 -0.7731

β311
-0.5459 -0.6362 -0.5379 -0.6665

* refers to insignificant variables under the α = 0.05.

Table 8. Estimated coefficients from Zero-inflated
  Poisson and Negative Binomial Regression Models

Parameters ZIP ZINB

Intercept -5.8488 -5.8256

γ31
-1.0718* -1.1056*

γ32
0.8762* 0.8168*

γ33
2.2435 2.2128

γ34
4.2443 4.2207

γ35
4.7473 4.7235

γ36
4.9031 4.8786

γ37
4.3198 4.2943

γ38
4.0657 4.0382

γ39
3.8778 3.8499

γ310
2.8829 2.8517

γ311
2.2435 2.2077

* refers to insignificant variables under the α = 0.05.

regression model for the number of tourists visiting
the national parks due to the smallest AIC and the
largest log-likelihood. Furthermore, it is proper to
determine overdispersion for the response variable
and make sure that our ZINB regression model best

Table 9. AIC and Log-likelihood for POI, NB, ZIP,
                 and ZINB Regression Models

Regression
models AIC Log-likelihood

POI 58650892 -29325283
NB 212652.9 -106162.4
ZIP 47533436 -23766543
ZINB 202669 -101158.5

explains the variation and the data by comparing
POI with the NB regression model. Restating
the hypotheses test for overdispersion below, the
likelihood ratio test is performed.

H0 : POI appropriately fits the data
H1 : NB appropriately fits the data

The result shows that the test statistic is 58438241
and the p-value is sufficiently small to reject
the null hypothesis implying that there exists an
overdispersion so that the negative binomial family
performs better at explaining the phenomenon of
a number of tourists visiting the national parks in
Thailand.

3.4 Prediction
According to the previous finding, the ZINB
regression model is determined to be the most
appropriate model for predicting the number of
tourists. The entire data set was modeled and the
predicted values of the number of tourists were
obtained. The Figure 1 shows the line plot comparing
the behavior of the actual and predicted values. As

Fig. 1: Prediction of number of tourists (blue) against
the actual number of tourists visiting the national
parks (red)

shown in the graph, the prediction of the number
of tourists (blue) obtained from the ZINB regression
model is significantly accurate as the actual values
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(red) and the prediction behave similarly although
there are a few observations that the prediction
is trivially lower than expected. This might be
considered later due to the issue of outliers. The
box plot (Figure 2) also illustrates another aspect
of how the ZINB model performs in predicting the
number of tourists. The box plot confirms our claim
that the ZINB model performs delightfully as for the
most part, the plots are almost similar to each other
which provides a satisfactory sign that the model is
appropriate.

Fig. 2: Box plot of the prediction against the actual
values for the number of tourists

Throughout, the RMSE of the ZINB model is
16, 616.12 whereas the RMSE of the NB model
is 25, 528.13. This also confirms our claim that
the zero-inflated negative binomial regression model
outshines all of the proposed count models in terms
of AIC, Log-likelihood, and the RMSE itself.

4 Conclusion
This paper evaluates the performance of four
regression models, two of which are ordinary count
models: Poisson and Negative Binomial regression
models. There are two special models on top of the
two models that embrace the notion of zero-inflated
count models. The models were developed and tested
to predict the number of tourists visiting the national
park in Thailand between 2016 and 2022.

According to the findings, the Zero-inflated
Negative Binomial (ZINB) regression model is the
most appropriate model for predicting the number
of tourists in this study and is superior to all of the
other model candidates. It has been systematically
shown that the data is over-dispersed, and requires the
negative binomial (NB) regression family to tackle
the modeling part. Furthermore, when performing
evaluation methods by calculating the AIC and the
log-likelihood, it shows that the ZINB wins against

the ordinaryNBmodel. For this reason, the prediction
of the number of tourists was displayed and proved
that this model outperforms the others which is also
confirmed by comparing their RMSE.

Among all these situations, there is some room
for improvements that future research can take and
develop. One is that there exist some limitations
in predicting a number of tourists when the actual
number is significantly large and the model does not
perform impressively. Second, the model might be
considered complex since it contains a huge number
of variables. It is recommended that grouping dummy
variables of national parks based on their location
might be a practical and acceptable approach to make
the model less complicated and easier to understand.
Moreover, we can extend our work to other models of
count data like, [19], [20], [21], [22].
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