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Abstract— We consider a third-order ordinary differential operator with summable coefficients. The

absolute and uniform convergence of the orthogonal expansion of a function from the class

in the

eigenfunctionsof this operator is studied and the rate of uniform convergence of these expansions on is

estimated.
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1. Introduction

IT is well known that any function in the domain of a self-
adjoint ordinary differential operator can be expanded in a
uniformly convergent series in the eigenfunctions of this
operator [1. p. 90]. For functions that do not belong to the
domain of self-adjoing Strum-Liouville operator, the problems
of absolute and uniform convergence have been studied in [2-
5] in [2,3] the Strum-Liouville operator

Lu=—u"+g(X)u, xeG=(0,1),
with two point self-adjoint boundary conditions (the
coefficients in the boundary conditions are real) was

considered, and under the condition q(X) € L (G), the

absolute and uniform convergence on the interval G of the
f(x) eW'(G) 1< p<2,

f(0)=f() =0, in orthonormal eigenfunctions of this
operator was proved.

The operator L with a real potential ((X) €L, (G)

independent of the specific boundary conditions (in particular,
self-adjoint boundary conditions with complex coefficients are
also allowed) was consider in [4, 5]. The results obtained in
[2-5] were generalized in [6] and [7] (for the one-dimensional
Schrdédinger operator).

expansions of  functions

On the interval G = (0,1) , consider the differential operator
Lu=u® + p,(0u® + p,(u® + p,(Ju, @
with coefficients

P(x)eL,©), p(x)eL(G) 1=23.

In the present paper, we study the problems of absolute and
uniform convergence of expansions of functions of the class

W,'(G) in the eigenfunctions of a third-order differential

operator (1) (see [8], [9]). Sufficient conditions for the
absolute and uniform convergence of these expansions are
obtained, and the rate of uniform convergence is estimated.
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This study are based on Ilins spectral method [10].

By D(G) we denote the class of functions absolutely
continuous together with their derivatives up to the second
order, inclusively, on the segment G = [0,1].

An eigenfunctions of the operator L corresponding to the
eigenvalue A is understood as any function not identically

equal to zero U(X)e D(G) and satisfying (almost
everywhere in G ) the equation (see [10])

Lu+Au=0.
We say that a function f(X) belongs to

W;(G), 1<p<oo,if f(X) is absolutely continuous on
G and f'(X) belongs to L,(G). The norm of the function
f(X) EWS (G) is given by the equality

[ sy =1E0, +1E1

where [H, = [, -

Assume that {U, (X)}c, is the complete system of
eigenfunctions of the operator L ortonormal in L, (G). By
{ﬂk }le we denote the corresponding system of eigenvalues.
Moreover, we assume that Reﬂk =0. Parallel with the

spectral parameter /1k , We consider a parameter U :
S0 \U3

(-i4,)" for 1 4 >0,
(i4 )" for 1 4 <O,

We now introduce a partial sum of the orthogonal expansion
of the function T (X) € W,'(G) in the system {U, (X)}:

M =
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o,(x f)= Z, il (%),

MV

v>0,

where

fo=(f,u) = )y, (x)dx,
G
and the difference

R (x f)=f(Xx)—0c,(x ).

In the present paper, we prove the following statements:
W, (G), p.(x) e L,(G),

P (x) € L(G), 1=2,3 and following conditions are satisfied:

| £ U@ (x) [ C,(F) e ug.
0<a<2, y 21

Y ke (f k) <o ®
k=2

Then the spectral expansion of the function f(X) in the

Theorem 1. Suppose that f(X)e

)

system {U, (X)};_, absolutely and uniformly converges on

the segment G =[0,1] and the following estimate is true:

1
R, G2 egoy <CHCOW v 2p ], +
(0.4

1+]p, M 3 Koy (1 k) + o ',v‘l)J

k=[v]

el

WL e L,

v > 8r,
where @,(d,0) is the integral modulus of continuity of the
function g(X) € L, (G), and the constant C is independent
of f(X).
Corollary 1. If the function f(X) €W,"(G) in the Theorem 1
satisfies the conditions f(0) = f(1) =0, then condition (2)
is necessarily satisfied (with the constant C,(f)=0), its

spectral expansion in the system {U,(X)};, converges

absolutely and uniformly on the segment G =[0,1], and the
following estimate holds:
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cloa —

1
SCOHSI{ 2p,f, +[a)1 (f,v*

Zk o, (f' k )}

k=[v]

i R Y Y T

v >8r.

Corollary 2. If the function in the Theorem 1 satisfies the
relations

f(0)=f(1)=0
and
f'(x) e H?(G), 0< B<1,(H/(G)
is the Nikolski class), then conditions (2) and (3) are
necessarily satisfied, its spectral expansion converges
absolutely and uniformly on the segment G =[0,1], and the
following estimate holds:

R, (00) ||C[O,1] S

1
< const {vz In.f], +vﬂ||f'||f}, v>8r’

where
[) =[f], + 6 a(f",5).
Theorem 2. Suppose that
f(x) €W, (G),
p.(x) € L, (G),

p(X) el (G) 1=23

conditions (2), (3) and

D ke (pf k™) <o 5)
k=2

are satisfied. Then the spectral expansion of the function
f(X) in the system {U, (X)};, absolutely and uniformly

converges on G =[0,1] and the following estimate is true:

IR, (:20) oo <C {cl( f)ve? +

ﬂz Kl (BF k) + S Ky (kD) +a(p fv )+ (Fv )+
k=[] K]

(L) T+ mt 1, HE 2 e Hl}' ©)

v >8r.

Corollary 3. If the function f (X) €W, (G) in the Theorem 2
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satisfies the relations f(0) = f(1) =0 and
f'(x)eH/(G), 0< <],
pfeH/(G), 0<y<1

then condition (2) and (3) are necessarily satisfied, its spectral
expansion converges absolutely and uniformly on the segment

G= [0,1], and the following estimate holds:
”Rv (,0) ”0[0,1] =
<const v/ [f'| +v7 B f [}, v28z

where constant is independent of the function (X) .

2. Some auxiliary lemmas
To prove the results, we must estimate the Fourier
coefficients T, of the function f(X) €W,'(G). To this end,

we use representation of the eigenfunction U, (X). Let as
introduce

K =0 = Yli) 6 (0),

krO

Z p (e u" (&),
i=v-1

p(é,u,) = 3 2

where
o =-1,
o, =exp(-iz /3),
o, =exp(iz 1 3).
Lemmal. (see [89]). If A #0, then the following

representation is valid for the eigenfunction uk (X) :
0=
2
=Y (o)
j=1

() 0] [ M(E u ) explio s (¢ ~)dé +

=) @ [M(E ) expliou G- o)

for ImA, >0 and
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X; (0)exp(-io, 1) + (o, By, expliao, 4 (1-1)) -
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s (t) =
3

= z (Ia))

j=1, j#2

; Q) explio, 1) + (i@,)' B, exp(-iw, u (1-1)) -

) co”lj M (€1, ) exp(—io, 1 (& ~t)dé +

j=, j#2

+(i) '*j M (& u)exp(-io u (E-D)dE (@

for ImA, <0 and. Moreover,
By = x; (0)exp(—ie, 14) -

~o, [M(&,u,)exp(-ia, 1, (£ -D)d ¢
B =X, (0)exp(ia, /) -

1
—0, [M(,u,) explio, g (£ ~D))dE"
0
the coefficients in relations (7) and (8) satisfy the
inequalities:
1% O <Cluf, <€ 1x;O)I< Cluy],
for
i=23 |By [<C|ul.:
C is a constant.

Lemma 2. Suppose that the function f(X) e W,'(G) and

| B < Clu ],

where

the system {U, (X) }_, satisfy condition (2). Then the Fourier
coefficients f, satisfy the inequalities (£4, =87):

| f IS CLC () +

e (L |y e (1, ) +

4 (1E1+11 )Zﬂ [Pl }Ilukll +

+Cluk_ | (ﬁlf ’/uk Ukz)) |
| f ISC{C,(f) +,le_1(1+|| p1||1)[a)1(plf“uk—1)+

oy () + i o f |+
RTINS

where C is a a constant independent of (X).

+u | f

Proof. Since the eigenfunction U, (X) is a solution of the

equation LUk = —ﬂkuk , we represent the Fourier coefficient
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f, of 44 #0 tothe form

fy=(F0) = (14 "Lu,) -
A RS YUNTTRUR

3
=2 (F.u®) =27 (F, pu?) =247 X (F, pu®™) . 20)
r=2
By virtue of the estimate (see [11])
1+ p Ul
o)l
p>1 s=0,2

we obtain the following estimate of the third term of the
right-hand side in (10):

3 3
YIS U T I
r=2 r=2
3
<consti? .| Sl .
r=2 (12)

3
<const 1 *| ], Ju], 2 [lp
r=2

Integrating the first term on the right-hand side of equality
(10) by parts and using condition (2), we get

ARG IEEAR RO

HA

j f'u? ()| <

<CNg*ful, + 43| (Fu®)] . as

We now estimate the expression 44 |(',u?)| on the
right-hand side of inequality (13). For that we use formulas (7)
and (8) subject to the sign of |m/7.k . For definiteness consider

the case IMA, <0 and apply relation (8) with =2
-3 r @2y, -1 ro -2 ,(2) ) _
:uk(f’uk )_:uk(fuuk u )—

3

= a4 D
+u;1 B;, (iwzf(f " exp(-ia, 4 (L-1)) -
-ty (f jM(éu)exp( i, 4, (£ -1)d&)+

]—1 j#2

(f'x; (O)(ie)* explio, 1) +
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(! j M (£,U,) exp(-ia, 4, (§ ~1)d¢) (14)

Estimate each term in this equality. Obviously

(F',%; (O)(ic,)* exp(io, 1)) =

= X; )i’ (f,exp(io, 1)), =13
Taking into account the inequality
|x7(0)|<const |u | ., =13, @s)

That follows from estimation (11), and using the estimation
(see [12], [13])

1
j '(t) explio, 1) dt | <
0

<const {@ (', 4)+ |1, |, §=13
we have
| (', (0)(ie, )" exp(io ) | <
.19
<const {a (f',4")+ | F, ul, . =13

Apply the estimation | S, |< const |u,|
term of equality (14). As a result we have

| By w,)* (1 exp(icn, 4, (1-1))) | <

<const{  (F )+ | £ }HUkH;

The third and fourth terms in equality (14) are estimated by
the same scheme. Therefore we estimate the third term. For
that we use the representation

M(‘ffuk):

in the second

17)

3

s @ry_ L
3 p(E)u7(E) 3 > p(d)

k r=2
U™ (£) and the inequality

3

Z &uf™

r=2

sconstukl[ZI ()| u }|Uk||

r

Then we have

a1 MG ) exp(-io, (G -1)dE) | <

j=1, j#2

3
sgz

k i=l j=2

(f',j PP (&) expl-io, 4, (£ 1))

3
Sledi I

const

(18)
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After changing the integration order in the first term, we get
that it doesn’t exceed the quantity

const 3
ﬂ P,

He =122

jf(t) exp(-io; i (E-O)tdEfu [, (19)

j=13
Taking into account the following chain of inequalities (see

[51, [6])

f'(t) exp(-io; 4 (& -1))dt| <

Wy ey |

<const { e (9,4 + 0., }<
<const {a (f', ")+ |f], +,,lk-l||f'|| b<
<const {a (f', i) +u |t} §=13,

where
_Jf(E+z) for 0<z<1-¢
9:(2) _{ 0 for 1g<z<y ©OH
we prove that expression (19) is bounded from above by the
quantity
const ;- gy
Il Lo (o) + a2 6], ful.

Consequently, the left side of (18) doesn't exceed the
quantity

const

Ioddy e () + 210} D, +

const -
Ipsi 11 lul.

Hence and from estimations (16), (17) and relation (14) we
get

k

C (L) I

(@] p1||1>[w1 (") + 2 £+

! leprll Hi } Ju].

Estimate now the term ﬂk_ (f, pu’) in equality (10).
Obviously

< const

k

(20)

\(plf,u)\ @)

By estimations (12), (13), (20) and equality (21) from
equality (10) we get inequality (9).

since the function P, (X)f(X) belongs to the class

= (f,puf)
ﬂk(pu

E-ISSN: 2224-3410
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Ll(G) we can apply estimation (20) with substitution of

p T for f'. Asaresult, we have

1
—(f, pu;
ﬂk( PU )

GGIE
k

ConSt
{(1+||p1||)[a’1 plfhuk +1uk1||p1f|| 1+

k

(22)

3
il Sl .

Consequently, by estimations (12), (13), (20) and (22) from
equality (10) we have

| f, | <const{C,(F)u™ + it W[ pu ) (F ) + o (B F o pa) +

3 ok Il

The case ImA, >0 is considered in the same way. The lemma

| i et 3 e (1

2 is proved.
Lemma 3. (see [11]) Assume that
p(X)eL(G), p(x)eL(G), 1=23. Then for the

orthonormal system of eigenfunctions {U, (X)},_, and the

sequence {,uk }f;l, the following estimates are true:

D> 1<C forany 720 (23)
<y <7+l
> ||uk||i <C(l+r) forany 7>0. (2

<y <t

Lemma 4. (see [14]).
satisfies, then

If the conditions of Lemma 3 a

2. "
k UIE )(X)}kzl’ e #0
is a Bessel system, i.e., for any function f(X) e L,(G),
the following inequality a true:

(zuf,ys-

H>0

12
Lol } <const [f[,. zs)

Lemma 5. Suppose that the conditions of Lemma 3 are
satisfied. Then the following estimate hold for the system

{u, (X)}, forany =2

> g <c), §>0,

ezp

(26)

where C(0) is positive constant.
Proof. Take a positive integer N, . By the estimates (23) and

(24), using the Abel transformation, we obtain the chain of
inequalities
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i <

PR TR

s <[ulng 1< sLulng
[u]+ng _+8) ’ 2
<5 ||uk||w[ D ||uk||sz
n=[u] n<p <n+l
[u]+ne-1 9
<> Y |ul (n“1+5)—(n+1)‘(1+5’)+
n=[u] n< <n+l
AT E et
< <[ul+ng+1
o 3 W e
1< <[p]
[afiyd 1+5) (L+n)°
<const ). (n+)T——— "+
= (n(n+1))

+const (N, +[x]) 7 (n, + ] +2) +
+const [u] “O@+[u]) <

< const {(1+ J) i ORREINE }s CO)u’,

n=[x]
whence, since the number n, is arbitrary, we obtain the

estimate (26).
Lemma 6. Assume that

P()eL,(G), p(x)eL(G), 1=23;
anda g(X) € L, (G) function satisfies condition

Y kla(gk?) <o

(27)
k=2
Then the estimate
_ 2 _
Y w9, ) <
Hezp
o (28)
< C{wl(g,ﬂ‘lh D k‘lwl(g,k‘l)}
k=[x]

holds, where 4 >8z and C is a positive constant

independent of 1 and the function f (X)

Proof. Take a positive integer m. By the estimate, (24)
using the Abel transformation, we obtain the chain of
inequalities

E-ISSN: 2224-3410
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>l ule(e. ) <

us e[ pl+m
[ul+m o 3 = 2
<Y nalgnt)y X Jul <
n=[x] n<p <n+l

[p]+m-1
< L

n=[x]

i Ju J[nlwl(Q, n)-(+) w9, (0+D) )]+

1I<p <n+l

{i

1<y <[ul+m-1

HukHiJ (Ll ) e 0, (Ll m) )+

d [p]+m-1
+[ > ||Uk||ij[ﬂ]lw1(9,[ﬂ]1)SC >+ (gn?)-
< <[u] =[]

-+ @ (9,(n+1) )]+

+C([ul+m) ([ul+m) @y (g, ([u]+m) ™)+
+CLul (1] @y (9.[117) <

[p]+m-1
SC{ Y (g ™)+ (9.l - @ (9, ([l + m)™)

n=[x]

+C (9, (L] +m) ™) +Can(9.[] ™)<

[p]+m-1
SC{ )y ”‘1601(9,n'1)+w1(9,[u]'1)+w1(g,([ﬂ]+m)'l)}
n=[u]

Since the number M is arbitrary, this together with
inequality (27), implies the estimate (28).

3. Proof of the results

We the uniform  convergence of the series
Z| f. [1u, (X)| on the segment G= [0,1]. To this end, we
k=1

represent this series as

IEAIPEIE
= Y 1wl Y o))

0<p <87 12871

To estimate the first sum on the right-hands side in (28), we
apply the estimate (24) in Lemma 3 and inquality

(29)

| f |I< || f ||1 Huk Hw . As a result we have
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0<%8”| fk | U ()] < RV (" HC[Ol] N Hf B o f)HC[O,l] -
Yl =160 Y Julf = qu() PIRATHO
0<yy <87 0<p <87 W<v c[o4]
=C(L+87)| f,[ < const| f,|.
To estimate the second sum in (29), we use the estimate (9) = z f.u () <
in Lemma 2: He>v C[0,1]
2 I llu (1<
e < 20 [l Jul, < const 2 { CL(F)A + W [py],)-
Hzv Hyzv
caant (603wl 0 fal- 3
B (P @ ) + QL2 e s r}lluklli +
<% el ull 10 el 3l + _
. N +eonst > st lu ], (P f,yk‘zuf))‘ <
Hezv
A Lﬂ;ﬂ ! J <const{ C,(f)v*? +(+|p,])-
1 u 2 |,— f, ,zu(z) ‘ . . Z n_la)l(f ',n_l)+a)1(f I,V_l)J+
-I-#kzz;‘ﬂ My ” Kl H Uy ) ]
since pfel,(G) and {,uk‘zuﬁz)(x)}ﬂkw is a Bessel +||f’l (1+|| Pull
system (see Lemma 4), we apply Bessel inequality (25), 3 r -=
Lemma 5 and Lemma 6. As a result we get Z” Pr ”1 vty ” Py f ”2 .
ﬂ;}) fk ” Uy (X)| < const { Cl( f )(87[)“_2 + (1+ ” p1||1) ' The proof of Th_eorem 1 is complete.

Proof of the Theorem 2. We prove the uniform convergence

Z iy (F,0 %)+ (F7,87)) |+ ] L+ py 8] of the series Z | £ Juc || on the segment G =[0,1].

>87
n=[87] J Hy
To estimate this series, we use the estimate (97) in Lemma 2:

2 , e llu ()<
L1 Ted 81" + [ 1], [8ﬂ]”2} <o &
r=2
. _ 2
Thus, the series (29) convergence uniformly on the segment < const {Cl( f );,Zs,, ,Uf 3 ”uk ||oo + (1+ ” pl”l) '
0 k=
G= [0,1]. Therefore, the expansion Z f U (X) converges . Z ﬂk_l o, (p, f ',Uk_l) ”uk ”2 n
k=1 %
absolutely and uniformly on this interval. By the completeness Hete . By ,
of the system {Uk(X)}f:1 in Lz (G) and the absolute +(1+|| p1||1) Zg: Hy a)l(f ,’luk ) ||uk||oo +
=87

continuity of the function f (X), we have the identity

f)=> fu(x) xeG (30)
k=
The prove the estimate (14) we use lemma 2, 4, 5 and 6. +(”f ” +|| f ” +|| plf” )Z” P ” [ Z Hy ”u ” J}

H>87

Hrfl@+led) 2w Jul 1 @+ 2 Jul; +
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since P, f €, (G) = L (G), we apply Lemmas 5 and 6.
As a result we have

> 1 lu (91 < const{ €, ()[87] 2 +L+[ p,)-

1287

S nla (B ) s a(pf B
n=[8r]
+ i ”_lwl(f’,n‘1)+w1(f”[8ﬂ]_1)}
n=[87]
. f], @+ o] )B7]™ +
£, @+lp i8] +

3
HIEL 4L et 2 e } <,

Thus, the expansion Z kak (X) converges absolutely and
k=1

uniformly on G .

{u ()}
converges exactly to the function. Consequently, the identity
(30) is true.

Estimate now difference R, (X, f). for that we use equality
(30), Lemmas 2, 5 and 6.

R, (" f )HC[O,l] - Hf -9 (" f )Hc[o,ll

From the completeness of the system

L,(G) the given expansion uniformly

= fu () <
H>V cro]
< 4] Jul, <
Hy2v
< const {qmz il @ fnl)-
Hy2v

) Y wlamt alul +lefl @+ Inl) Y sl +
2V we>v

}<

L el 2 e, +

Hezv

3
k1L b Eln

<const {C,(f)v? +(L+]

!

Hezv

p.[,)
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0

[ Kt kY + Y Ka (k) + o B f v+
k=[v] k=[v]

3
() v (o 1T [+ L+ L +[f 'HJZZV“ H Prl}

The estimation (6) is proved. The proof of Theorem 2 is
complete.
Corollary 2 follows from the definition of norm, on the

space Hlﬂ(G) and Theorem 1 with regard to the inequality
I <110
f(X) eW(G), satisfying the relations f(0) = f (1) =0.
Indeed, if T(0)=f(1)=0and f'(X) e H/(G), then we
have Cl(f) =0, and the following chain of inequalities is
satisfied (v >87).

which  holds  for any  function

(et ey .t + @+ ]p.],)x
{Z k‘la)l(f,k‘1)+a)1(f’,v‘1)]+
k:M
U+ DLy v (L 1) %
ok v Inl,

+1+] p“){ng(gﬂwl(f'l 5))L§] KGR s J +Vlf'l}+
3 1
273 v I <v 2
r=2

+const {|| £/, +sup (6 e (£, 5))}[v]‘ﬂ <
6>0

1
+v 2| p, |, +const v | £
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