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Abstract—The synergy of the two paradigms, neural network 
and fuzzy inference system, has given rise to rapidly emerging 
filed, neuro-fuzzy systems. Evolving neuro-fuzzy systems are 
intended to use online learning to extract knowledge from data 
and perform a high-level adaptation of the network structure. 
We explore the potential of evolving neuro-fuzzy systems in 
reinforcement learning (RL) applications. In this paper, a novel 
on-line sequential learning evolving neuro-fuzzy model design for 
RL is proposed. We develop a dynamic evolving fuzzy neural 
network (DENFIS) function approximation approach to RL 
systems. Potential of this approach is demonstrated through a 
case study⎯two-link robot manipulator. Simulation results have 
demonstrated that the proposed approach performs well in 
reinforcement learning problems. 

Keywords— Reinforcement learning, Neuro-fuzzy system 

I.  INTRODUCTION  
Reinforcement learning (RL) paradigm is a 

computationally simple and direct approach to the adaptive 
optimal control of nonlinear systems [1]. In RL, the learning 
agent (controller) interacts with an initially unknown 
environment (system) by measuring states and applying 
actions according to its policy to maximize its cumulative 
rewards. Thus, RL provides a general methodology to solve 
complex uncertain sequential decision problems, which are 
very challenging in many real-world applications. 

Often the environment of RL is typically formulated as a 
Markov Decision Process (MDP), consisting of a set of all 
states , a set of all possible actions A , a state transition 
probability distribution , and a reward 
function . When all components of the MDP 
are known, an optimal policy can be determined, e.g., using 
dynamic programming. 

S
:S A SP × × [0,1]→

:S AR × → \

There has been a great deal of progress in the machine 
learning community on value-function based reinforcement 
learning methods [2]. In value-function based reinforcement 
learning, rather than learning a direct mapping from states to 
actions, the agent learns an intermediate data structure known 
as a value function that maps states (or state-action pairs) to 
the expected long term reward. Value-function based learning 
methods are appealing because the value function has well-
defined semantics that enable a straightforward representation 
of the optimal policy, and theoretical results guaranteeing the 
convergence of certain methods [3]. 

Q-learning is a common model-free value function strategy 
for RL [4]. Q-learning system maps every state-action pair to a 

real number, the Q-value, which tells how optimal that action 
is in that state. For small domains, this mapping can be 
represented explicitly by table of Q-values. For large domains, 
this approach is simply infeasible. If, one deals with large 
discrete or continuous state and action spaces, it is inevitable 
to resort to function approximation, for two reasons: first to 
overcome the storage problem (curse of dimensionality), 
second to achieve data efficiency (i.e., requiring only a few 
observations to derive a near-optimal policy) by generalizing 
to unobserved states-action pairs. There is a large literature on 
RL algorithms using various value-function estimation 
techniques. 

Functionally, a fuzzy system or a neural network can be 
described as a function approximator. Theoretical 
investigations have revealed that neural networks and fuzzy 
inference systems are universal approximators [5, 6]. Neural 
networks are used to generalize the value function pertaining 
to specific situations. However, these works still assume 
discrete actions and cannot handle continuous-valued actions. 
In realistic applications, it is imperative to deal with 
continuous states and actions. Fuzzy Inference System (FIS) 
can be used to facilitate generalization in the state space and to 
generate continuous actions, in particular in conjunction with 
Q-learning widely known as fuzzy Q-learning (FQL). 
Glorennec [7] and the extension proposed by Jouffe [8] 
provided a fundamental contribution in the definition of FQL, 
this is the basis for many of the existing implementations. In 
FQL, the consequent parts of a FIS are selected by Q-learning. 
However, structure and premise parameters are still 
determined by a priori knowledge. To circumvent this 
problem, Er and Deng [9] proposed a dynamic fuzzy Q-
learning (DFQL) approach to construct self-tuning FIS based 
on reinforcement signals and deal with continuous state and 
action spaces. 

Recently, the synergy of the two paradigms, neural 
network and fuzzy inference system, has given rise to rapidly 
emerging field, neuro-fuzzy systems. The neuro-fuzzy term 
means a type of system characterized for a similar structure of 
a fuzzy controller, where the fuzzy sets and rules are adjusted 
using neural network tuning techniques in an iterative way 
with the input-output data vectors. A Neuro-fuzzy system is 
widely termed as fuzzy neural network (FuNN) [10, 11] in the 
literature. Fuzzy neural network systems are intended to 
capture the advantages of both fuzzy logic (approximate 
reasoning) and neural networks (learning) i.e. acquire fuzzy 
rules based on the learning ability of neural networks [12]. 
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Many researchers have developed such a neuro-fuzzy 
system for solving real-world problem effectively. The 
evolving fuzzy neural network (EFuNN) was proposed by 
Kasabov in [13], one of the hybrid neuro-fuzzy architecture. 
Dynamic evolving neural fuzzy inference system 
(dmEFuNN/DENFIS) [14] is a modified version of the 
EFuNN with the idea that, depending on the position of the 
input vector in the input space, a FIS for calculating the output 
is formed dynamically bases on m fuzzy rules that had been 
created during the past learning process. The application of 
these networks has been in the areas of classification and 
regression using supervised learning methods. DENFIS when 
used especially for online learning adaptive systems [14][15]. 

Use of neuro-fuzzy systems for value function 
approximation for RL setup has not yet been explored. In this 
paper, we explore the potential of an alternative dynamic 
evolving fuzzy-neural network (dmEFuNN) for reinforcement 
learning algorithms. We compare the learning performances of 
dmEFuNN and Dynamic FNN (here, dynamic fuzzy Q-
learning) in reinforcement learning framework, using 
simulation experiment on two-link robot manipulator tracking 
control problem. Further, we examine the robustness 
performance of the proposed approach for handling the 
uncertainty in terms of parameter variations and external 
disturbances. 

The paper is organized as follows. Section II presents the 
theoretical background of fuzzy inference system with 
reinforcement learning approach and recent trends of neuro-
fuzzy systems. Section III proposes architecture and learning 
framework of dmEFuNN function approximator for RL 
systems. Section IV exhibits the empirical performance based 
on the experimental results of the system-two-link robot 
manipulator simulations. Section V, conclusions are drawn in 
the last section. 

II. THEORETICAL BACKGROUND 
A neuro-fuzzy system is widely termed as fuzzy neural 

network (FuNN) [10, 11] in the literature. Fuzzy neural 
network systems are intended to capture the advantages of 
both learning and computational power of neural network and 
the high-level human-like thinking and reasoning of fuzzy 
system. Evolving fuzzy neural network and dynamic evolving 
fuzzy neural network are the hybrid neuro-fuzzy architecture. 

A. Evolving Fuzzy Neural Network (FEuNN) 
EFuNN implements five layers Mamdani type FIS. The 

first layer passes crisp input variable to the second layer that 
calculates the degrees of compatibility in relation to the 
predefined membership functions. The third layer is the rule 
layer and each node in this layer represents either an existing 
rule, or a rule anticipated after training. The rule nodes 
represent prototypes of input-output data as an association of 
hyperspheres from the fuzzy input and the fuzzy output spaces. 
Each rule node is defined by two vectors of connection 
weights, which are adjusted through a hybrid learning 
technique. The fourth layer represents a fuzzy quantization of 
each output variable and calculates the degree to which output 
membership functions are matched the input data. The fifth 

layer carries out defuzzification and calculates the crisp value 
for the output variable. In EFuNN, all the rule nodes are 
created during the learning phase. We used EFuNN as an 
function approximator in RL framework, where input to the 
EFuNN is the state or state-action pair resulted in to the output 
Q-value. 

B. Dynamic Evolving Fuzzy Neural Network (DENFIS) 
The dynamic evolving neural-fuzzy inference system, 

DENFIS (also known as dmEFuNN), uses the first-order 
Takagi-Sugeno type of inference engine [14]. DENFIS is 
similar to EFuNN in some principles. It inherits and develops 
EFuNN’s dynamic features that make DENFIS suitable for on-
line adaptive systems. The DENFIS model uses a local 
generalization. Principally structure of EFuNN and DENFIS is 
somewhat similar. Dynamic feature of EFuNN developed with 
the idea that, depending on the position of the input vector in 
the input space, a FIS for calculating the output value is formed 
dynamically bases on m fuzzy rules that has been created 
during the past learning process. Evolving clustering method 
(ECM) [15] is used for fuzzy rules creation and updation 
within the input space partitioning. 

Although DENFIS meets the requirements of online 
learning to form adaptive intelligent systems to a great extent, 
however there is still scope of advancement. Our objective is to 
use DENFIS as a function approximator in reinforcement 
learning framework. 

III. APPROXIMATION OF VALUE FUNCTION USING DENFIS 
A novel value function approximator for online sequential 

learning on continuous state-action domain based on DENFIS 
is proposed in this paper. Fig. 1shows architectural view of the 
DENFIS function approximation approach to RL system. 

 

 

 

 

 

 

 

 
Fig. 1 DENFIS controller architecture 
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where tx  is the input vector ( 1 2= [ , , , ] ( , )t T
q t

tx x x x s a=…
t

) of 

the DENFIS model and output y  corresponds to estimated 
Q-value associated with each state-action in rule 

. ; 1iR i = ,2,...,m
Training samples are obtained online as the interaction 

between the learning agent (controller) and its environment 
(plant). The online learning process of DENFIS involves the 
creation of new fuzzy rules, and existing fuzzy rules can be 
updated incrementally. In addition, evolving clustering method 
(ECM) is used to partition the input sample space to determine 
the fuzzy sets in the antecedent part, i.e., ECM is used to 
determine cluster centers and membership functions of the 
antecedent part, and wRLS with forgetting factor determine the 
parameters of the consequent part of a fuzzy rule. 

The agent’s action is selected based on the outputs of 
DENFIS. In specific, control actions are selected using an 
exploration/exploitation policy [4] in order to explore the set of 
possible actions and acquire experience through the online RL 
signals. We use a pseudo-stochastic exploration -greedyε  as in 
[4]. In -greedyε  exploration, we gradually reduce the 
exploration (determined by the ε  parameter) according to 
some schedule; we have reduced ε  to its 90 percent value 
after every 10 iterations. The lower limit of parameter ε  has 
been kept fixed at 0.002 (to maintain exploration). 

It is an online learning algorithm that learns an approximate 
state-action value function that converges to the 
optimal function Q (commonly called Q-value). Online 
version is given by 

( , )t
tQ s a

∗

1( , ) ( , ) [ ( ) ( , )]t t t t t
t tQ s a Q s a c V s Q s aη γ +← + + − t

t

           (2) 

where 1tcts s +⎯⎯→
( )A t

ta s∈
 is the state transition under the control 

action (in fact ; where 

 is the action generated by inner PD loop),  is the 
cost incurred by the controller, 

( ) ( )t
c t pda a s a s= +

(0,1]

t

( t
pda s ) tc

η∈  is the learning rate 
parameter that can be used to optimize the speed of learning, 
and (0,1]γ ∈  is the discount factor that controls the trade-off 
between immediate and future costs. 

  

A. Learning Process in DENFIS online model 

The first-order Tagaki-Sugeno fuzzy rules [58] are 
employed in DENFIS online model. The linear functions in 
the consequence parts are created and updated by linear least-
square estimator (LSE) [15] on the learning data. The linear 
function for a learning data set of  data pairs, p

{ }1 2([ , , , ], ), 1,2, ,i i iq ix x x y i =… p… , can be expressed as 
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Here W is the weight matrix and its elements, , are defined 
by −  ( is the distance between the jth sample and the 
corresponding cluster center), . We can rewrite 
equation (4) with the use of recursive LSE formula [104] as 
follows: 

jd
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=

thk
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             (5) 

In the DENFIS online model, Kasabov and Song [99] used 
a weighted recursive LSE with a forgetting factor defined as 
follows. Let the  row vector of matrix  is denoted as  
and the  element of  is denoted as . Then b  can be 
calculated iteratively as follows: 
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where , 1,... 1k n n p= + − ;  is the weight of 1kw + 1k + -th 
sample defined by 11 kd +−  (  is the distance between the 1kd +

1k + -th sample and the corresponding cluster centre); and 
(0.8,1)λ ∈  is forgetting factor. The initial values of  and 

 can be calculated directly from (5) with the use of first  
data pairs from the learning data set. 

Pn

nb n

In online DENFIS model, the rules are created and updated 
at the same time with the input space partitioning using online 
ECM, and equations (4) and (6). 

IV. SIMULATION EXPRIMENTS 
To demonstrate the usefulness of dynamic evolving fuzzy 

neural network function approximator in reinforcement 
learning framework, we conducted experiments using the well-
known two-link robot manipulator tracking control problem. 

In implementation, the DENFIS has as input the state-
action pair and as output, the Q-value corresponding to the 
state-action pair. In particular, the DENFIS network begins 
with zero cluster. We first obtained a group of fuzzy rules 
using an DENFIS off-line learning model, with the use of 
training samples available from well defined reinforcement 
fuzzy systems (here we take training samples from dynamic 
fuzzy Q-learning controller). Then with agent-environment 
interaction, the training samples available and the DENFIS 
model build-up an online mode based on dynamic inference, 
i.e., clustering and reformulation of the rules are performed 
whenever a new training example is presented to the network. 
The DENFIS off-line learning model when used as an 
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initialization, improves the generalization (e.g., improves the 
learning efficiency).  

For simplicity, the controller uses two DENFIS models as 
function approximators; one each for the two-links. DENFIS is 
one module of ECOS toolbox working in the MATLAB 
numeric computing environment. The distance threshold Dt  
is set to 0.08 and default value of the number of rules in 
dynamic fuzzy inference system is set to 3 for constructing 
DENFIS. 

hr

A. Simulation Results and Discussion 
Simulations were carried out to study the learning 

performance, and robustness against uncertainties, for DENFIS 
learning approach on two-link robot manipulator control 
problem. To analyze the DENFIS algorithm for computational 
cost, accuracy, and robustness, we compare the proposed 
approach with dynamic fuzzy reinforcement learning approach. 
MATLAB 7.10 (R2010a) has been used as simulation tool. 

Learning performance study 

The physical system has been simulated for a single run of 
10 sec using fourth-order Runge-Kutta method, with fixed time 
step of 10 msec. Fig. 2 and Fig. 3 show the output tracking 
error (both the links), for both the controllers ─ DFQC and 
DENFISQC. Table 1 tabulates the mean square error, absolute 
maximum error ( ma ), and absolute maximum control 
effort (

x | ( ) |e t
max | |τ ) under nominal operating conditions. 
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Fig. 2 Standard two-link controller comparison: output tracking errors (link 1) 
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Fig. 3 Standard two-link controller comparison: output tracking errors (link 2) 

Table 1 Comparison of controllers: learning performance study 

Controller 
MSE (rad) 

From the results (Figs. 2−3 and Table 1), we observe that 
training time for DENFISQC is higher than DFQC. 
DENFISQC outperforms DFQC, in terms of lower tracking 
errors and the low value of absolute error and control effort for 
both the links 

Robustness study 

In the following, we compare the performance of DFQ and 
DENFISQC under uncertainties. For this study, we trained the 
controller for 20 episodes, and then evaluated the performance 
for two cases: 
Effect of payload variations : The end-effector mass is varied 
with time, which corresponds to the robotic arm picking up 
and releasing payloads having different masses. Fig. 4 and 
Fig. 5 show the output tracking errors for link 1 and link 2, 
respectively, and Table 2 tabulates the mean square error, 
absolute maximum error and absolute maximum control effort 
at payload variations with time. 

max | ( ) |e t
max | |

 

(rad) 
τ  (Nm) 

Training 

Time 

(sec) 

Link 1 Link 2 Link 1 Link 2 Link 1 Link 2 ------ 

DFQC 0.0083 0.0066 0.1336 0.0788 89.1723 35.7915 9.8383 

DENFISQC 0.0077 0.0054 0.1242 0.0676 84.1694 33.0757 72.2333 
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Fig. 4 Effect of payload variation comparison: output tracking errors (link 1) 
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Fig. 5 Effect of payload variation comparison: output tracking errors (link 2) 

Table 2 Comparison of controllers: effect of payload variations 

Controller 
MSE (rad) max |e(t)| (rad) max |τ | (Nm) 

Link 1 Link 2 Link 1 Link 2 Link 1 Link 2 

DFQC 0.0237 0.0126 0.4112 0.9052 267.9725 399.1648 

DENFISQC 0.0215 0.0103 0.3902 0.8157 263.9985 379.0526 

Effects of external disturbances: A torque disturbance disτ  
with a sinusoidal variation of frequency 2π rad/sec, was added 
with time to the model. The magnitude of torque disturbance 
is expressed as a percentage of control effort.Fig. 6 and Fig. 7 
show the output tracking errors for link 1 and link 2, 
respectively, and Table 3 tabulates the mean square error, 
absolute maximum error ( ), and absolute maximum 
control effort (

max | ( ) |e t
max | |τ ) for torque disturbances added with 

time to the model variation. 
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Fig. 6 Effect of external disturbances comparison: output tracking errors (link 1) 
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Fig. 7 Effect of external disturbances comparison: output tracking errors (link 2) 

Table 3 Comparison of controllers: effect of external disturbances 

Controller 
MSE (rad) max | ( ) |e t max | |(rad) τ  (Nm) 

Link 1 Link 2 Link 1 Link 2 Link 1 Link 2 

DFQC 0.0115 0.0063 0.3748 0.9054 259.2883 399.0790 

DENFISQC 0.0106 0.0063 0.3711 0.9068 260.9928 399.5970 

Simulation results (Figs 4−7, Table 2 and Table 3) show 
comparable robustness property for DENFISQ-learning based 
controller and Dynamic fuzzy Q-learning based controller. 

V. CONCLUIONS 
We have explored the potential of dynamic evolving fuzzy-

neural network (DENFIS) for reinforcement learning 
algorithms. DENFIS is a sequential learning architecture and 
has ability to grow and prune to ensure a parsimonious 
structure that is well suited for real-time control applications. 

From the simulation results, it is obvious that training time 
in DENFIS based RL system is larger compared to the dynamic 

fuzzy Q-learning based RL system. This feature is achieved 
without any loss of performance. 

REFERENCES 
[1] R. S. Sutton, A. G. Barto, and R. J. Williams, “Reinforcement learning is 

direct adaptive optimal control,” IEEE Control Syst. Mag., vol. 12, no. 2, 
pp. 19−22, 1992. 

[2] J. A. Boyan, and A. W. Moore, “Generalization in reinforcement 
learning: Safely approximating the value function,” Advances in Neural 
Information Proc. Sys., pp. 369–376., 1995. 

[3] B. Ratitch, On characteristics of Markov decision processes and 
reinforcement learning in large domains, PhD thesis, Montréal: McGill 
University, School of Computer Science, 2004. 

[4] R. S. Sutton, and A. G. Barto, Reinforcement Learning: An Introduction 
(adaptive computation and machine learning), Cambridge: MIT Press, 
1998. 

[5] K. Hornic, M. Stinchcombe, and H. White, “Multilayer feed forward 
networks are universal approximators,” Neural Networks, vol. 2, 
pp.359–366, 1989. 

[6] L. Wang, “Fuzzy systems are universal approximators,” in Proc. Int. 
Conf. Fuzzy System, 1992. 

[7] P. Y. Glorennec, L. Jouffe, “Fuzzy Q-learning,” Proc. IEEE Int. Conf. 
Fuzzy Systems; vol. 2, pp. 659–662, 1997. 

[8] L. Jouffe, “Fuzzy inference system learning by reinforcement methods,” 
IEEE Trans. System, Man, and Cybernetics, Part C, vol. 28, no. 3, pp. 
338–355, 1998. 

[9] M. J. Er, and C. Deng, “Online tuning of fuzzy inference systems using 
dynamic fuzzy Q-learning,” IEEE Trans. on Systems, Man, and 
Cybernetics, Part B, vol. 34, no. 3, pp. 1478–1489, 2004. 

[10] N. Kasabov, Foundation of Neural networks, Fuzzy systems and 
Knowledge engineering, The MIT Press, CA, MA, 1996. 

[11] J. Vieira, F.M Dias, and A. Mota, “Neuro-fuzzy systems: A survey,” 
WSEAS Trans on Systems, vol. 3, no. 2, April 2004. 

[12] D. A. Linkes, and H. O. Nyongesa, “Learning systems in intelligent 
control: On appraisal of fuzzy, neural and genetic algorithm control 
applications,” In Proc. Inst. Elect. Eng. Control Theory Applications, 
vol. 143, pp. 367–386, 1996. 

[13] N. Kasabov, “Evolving fuzzy neural networks for 
supervised/unsupervised online knowledge-based learning,” IEEE 
Trans. Syst., Man, Cybern., Part B, vol. 13, no. 6, pp. 902–918, Dec. 
2001. 

[14] N. Kasabov, and Q. Song, “DENFIS: Dynamic evolving neuro-fuzzy 
inference system and its application for time-series prediction,” IEEE 
Trans. Fuzzy Sys., vol. 10, no. 2, pp. 144–154, April 2002. 

[15] M J Watts, “A decade of Kasabov’s evolving connectionist systems: A 
review,” IEEE Trans. Systems, Man, and Cybernetics-Part C: 
Applications and Reviews, vol. 39, no. 3, pp. 253–269, May 2009. 

 

  
Ιnternational Journal of Electrical Engineering and Computer Science (EEACS)Volume 2, 2020

ISSN: 2769-2507 72




