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1 Introduction 
The computer time reduction of a large system 

design is one of the sources of the total quality 

design improvement. This problem has a great 

significance because it has a lot of applications, for 

example on VLSI electronic circuit design. Any 

traditional system design strategy includes two main 

parts: the mathematical model of the physical 

system that can be defined by the algebraic 

equations or differential-integral equations and 

optimization procedure that achieves the optimum 

point of objective function of designing. In limits of 

this conception it is possible to change optimization 

strategy and use the different models and different 

methods of analysis but in each step of the circuit 

optimization process there are a fixed number of the 

equations of the mathematical model and a fixed 

number of the independent parameters of the 

optimization procedure. 

There are some powerful methods that reduce the 

necessary time for the circuit analysis. Because a 

matrix of the large-scale circuit is a very sparse, the 

special sparse matrix techniques are used 

successfully for this purpose [1-2]. Other approach 

to reduce the amount of computational required for 

both linear and nonlinear equations is based on the 

decomposition techniques. The partitioning  of  the 

circuit matrix into bordered-block diagonal form can 

be done by branches tearing as in [3], or by nodes 

tearing as in [4] and jointly with direct solution 

algorithms gives the solution of the problem. 

The extension of the direct solution methods can 

be obtained by hierarchical decomposition and 

macromodel representation [5]. Other approach for 

achieving decomposition at the nonlinear level 

consists on a special iteration techniques and has 

been realized in [6] for the iterated timing analysis 

and circuit simulation. Optimization technique that 

is used for the circuit optimization and design, exert 

a very strong influence on the total necessary 

computer time too. The numerical methods are 

developed both for the unconstrained and for the 

constrained optimization [6] and will be improved 

later on.  

Different techniques for analog circuit 

optimization can be classified in two main groups: 

deterministic optimization algorithms and stochastic 

search algorithms. Some drawbacks of classic 

deterministic optimization algorithms consist in 

requirement of a good initial point in space of 

parameters, unsatisfactory local minimum that can 

be reached, and very often in requirement of 

continuity and differentiability of the objective 

function. To overcome these problems some special 

methods were applied. For example a method to 
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determine initial point of the process by centering 

[7], application of geometric programming methods 

[8] that guarantee the convergence to a global

minimum, but, on the other hand,  this require a

special formulation of design equation to which

additional difficulties accompany. Other approach

based on the idea of space mapping technique [9].

The aim of space-mapping is to achieve a

satisfactory solution with a minimal number of

computationally expensive fine model evaluations

by means of optimization of coarse model. This

technology successfully used for optimization of

microwave systems but there are no experience for

solution other problems.

  Stochastic search algorithms, especially 

evolutionary computation algorithms like genetic 

algorithms, differential evaluation, genetic 

programming, particle swarm optimization, etc. 

have been developed in recent years [10-15]. 

Genetic algorithms have been employed as 

optimization routines for analog circuits due to the 

ability to find a satisfactory solution. A special 

algorithm defined as a particle swarm optimization 

technique is one of the evolutionary algorithms and 

competes with genetic algorithms. This method is 

successfully used for electromagnetic problems and 

for optimization of microwave systems [16-17].  

The practical aspects of deterministic methods 

were developed for the electronic circuits design 

with the different optimization criterions [18]. The 

fundamental problems of the development, structure 

elaboration, and adaptation of the automation design 

systems have been examine in some papers [19-20]. 

The above described ideas of system design as 

deterministic and stochastic can be named as the 

traditional approach or the traditional strategy 

because the analysis method is based on the 

Kirchhoff laws. 

The idea of refusing of laws of Kirchhoff at 

designing of electronic circuits was outspoken in 

[21] and realized practically in two systems of

designing [22-23]. The most general approach was

realized at development of the generalized

methodology of process of optimization of

electronic circuit, defined as the controllable

dynamic system [24]. This system is determined by

differential or numerical equations for state

variables and a system of constraints which is

defined by the mathematical model of electronic

circuit. The main conception of this theory is the

introduction of the special control vector, which

generalizes the network optimization process and

gives the possibility to control the design process to

achieve an optimum of the cost function of the

designing for the minimal computer time. This

possibility appears due to an infinite number of the 

different strategies of designing that exist within this 

theory. By this approach the traditional strategy of 

designing is only a one representative of a large set 

of different designing strategies. As shown [24] the 

potential computer time gain that can be obtained by 

this approach is increased when the size and 

complexity of the system increase. 

2 Problem Formulation 
We will consider that the process of designing of 

electronic circuit is formulated as a task of 

minimization of not negative special objective 

function ( )XC . It is assumed that all aims of

designing are realized it in the point of a minimum 

of objective function ( )XC  .

In case of differential form for optimization 

procedure the system of equations for state variables 

can be written in procedure of optimization [24] by 

this form: 

( )
dx

dt
f X U

i

i= , ,  Ni ,...,2,1= ,  (1) 

where N is an incurrence of variables in the task of 

optimization of electronic circuit,  ( )MuuuU ,...,, 21=

is a vector of control functions, u j ∈ Ω , { }Ω = 0 1; .

According to the developed methodology, the 

system of constraints of the procedure of 

optimization, being at sense the mathematical model 

of electronic circuit, can be defined by means of the 

next equations: 

( ) ( )1 0− =u g Xj j
,   j M= 1 2, ,..., ,  (2) 

where M is a number of dependency variables, 

coincide with the number of nods of circuit. 

Functions ( )f X Ui ,  can be determined by one or

another method of optimization and, in particular, 

for the gradient method of optimization, the 

functions ( )f X Ui ,  are given as follows [24]:

( ) ( )UXF
x

UXf
i

i ,,
δ

δ
−= , i K=12, ,..., ,  (3) 

( ) ( )
( )

( )[ ]Xx
dt

u
UXF

x
uUXf ii

Ki

i

Kii η
δ

δ
+−

−
+−= −

−
'1

,, , 

 i K K N= + +1 2, ,..., ,  (3´) 

where K is a number of independent variables in the 

traditional definition of task (N=K+M), function 
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( )Xiη , written in implicit form and it defines a 

current value of variable 
ix  from the system (2), 

'

ix  is a previous variable value 
ix . A function 

( )UXF ,  is the generalized objective function of 

designing process and can be defined by the next 

additive expression [24]: 

 

( ) ( ) ( )∑
=

+=
M

j

jj XguXCUXF
1

21
,

ε
.   (4)  

 

 It is necessary to find the optimal behavior of the 

control functions u j  during the design process to 

minimize the total design computer time. The 

functions ( )f X Ui ,  are piecewise continued as the 

temporal functions and the structure of these 

functions can be found by approximate methods of 

the control theory [25-26]. 

In such definition the task of optimization of 

circuit is formulated as a controllable dynamic 

system, which needs to bring to a point of 

equilibrium. Thus the time of transient for the 

system is associated with the time of designing of 

electronic circuit. In this case a basic instrument is a 

control vector of U which changes the internal 

structure of the equations for circuit optimization 

problem. 

 

3 Lyapunov Function 
Dynamic properties of designing process were 

analyzed [27] on the basis of the entered function of 

Lyapunov of process of optimization. The presence 

of the correlation was marked between processor 

time of optimization of circuit and properties of 

function of Lyapunov of process of optimization. It 

was showed that the function of Lyapunov can be 

defined on the basis of the generalized objective 

function of process of optimization ( )UXF ,  by 

means of the next formula: 
 

   ( ) ( )[ ]r
UXFUXV ,, = ,   (5) 

 

where degree of r > 0. 

We can define now the design process as a 

transition process for controllable dynamic system 

that can provide the stationary point (final point of 

the optimization procedure) during some time. The 

problem of the time-optimal design algorithm 

construction can be formulated now as the problem 

of the transition process searching with the minimal 

transition time. There is a well-known idea [28-29] 

to minimize the time of the transition process by 

means of the special choice of the right hand part of 

the principal system of equations; in our case these 

are the functions ( )UXf i , . It is necessary to change 

the functions ( )UXf i ,  by means of the control 

vector U selection to obtain a maximum speed of 

the Lyapunov function decreasing (maximum 

absolute value of the Lyapunov function time 

derivative dtdVV /=
•

). 

The problem of stability of designing trajectory 

is related to the analysis of conduct of derivative at 

times from the function of Lyapunov 
•

V . More 

informative however there is the normalized 

derivative on time, which is defined by next 

formula:  

        VVW /
•

= .    (6) 

 

 In this case we can compare the different design 

strategies by means of the function W(t) behavior 

and we can search the optimal position for the 

control vector switch points. 

It was showed [30] that on the basis of analysis 

of conduct of derivative function of Lyapunov it is 

possible to find optimum switch points of control 

vector U that is a basis of quasi optimal strategy of 

designing and allowing to minimizing processor 

time of designing. 

 

4 Optimal Switch Point 
The optimal structure of the control vector U is the 

principal aim of the analysis of process of designing 

that is based on generalized methodology. All 

examples were analyzed for the continuous form of 

the optimization procedure (1). Functions V(t) and 

W(t) were the main objects of the analysis and its 

behavior has been analyzed during the design 

process. As shown in [30] the behavior of the 

functions V(t) and W(t) can define the total 

computer time for each design strategy. It is very 

interesting to analyze the behavior of the function 

V(t) for determine the optimal position of the switch 

points of the control vector. This function serves as 

a sensitive criterion to detect the optimal switching 

of the control vector U. The Lyapunov function V(t) 

for all examples was calculated by formula (5) for  

r= 0.5. 

 

4.1 Example 1 

The analysis of the process of designing for two-

node passive nonlinear network in Fig. 1 is 

presented below.  
 The model of this network (2) includes two equations 

(M=2) and the optimization procedure (1) includes five 

equations. 
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Fig. 1 Two-node nonlinear passive network 

 
The nonlinear element is defined as: 

( )2

21111 VVbay nnn −⋅+= . The vector X includes five 

components: 1

2

1 yx = , 2

2

2 yx = , 
3

2

3 yx = , 
14 Vx = , 

25 Vx = . 

This network is characterized by two dependent 

parameters and the control vector includes two control 

functions: U= ( )21 ,uu . Structural basis includes four 

different strategies with corresponding control vector: 

(00), (01), (10), and (11). Behavior of the functions V(t) 

and W(t) help us to determine the switch point optimal 

position of the control vector. 

Taking into account the preliminary reasons about the 

optimal algorithm structure [24] we have been analyzed 

the strategy that consists of two parts. The first part is 

defined by the control vector (11) that corresponds to 

MTDS and the second part is defined by the control 

vector (00) that corresponds to TDS. So, the switching is 

realized between two strategies, (11) and (00). 

 The behavior of the functions V(t) and W(t) during 

the process of circuit design after the switching point is 

shown in Fig. 2. 

 

 
 

Fig. 2 Behavior of the functions V(t) and W(t) in the 

design process for seven different switch points 

(from 147 to 267) 

 

The corresponding total iteration number and 

computer time are presented in Table 1. 

The integration of the system (1) was realized by 

the constant integration step. The step for switch 

point increment is equal 20 to improve the 

identification of the difference between all curves. 

Table 1. Iterations number and computer time for 

strategies with different switch points 

 

The analysis shows that the optimal switch point 

corresponds to the step 207 (graph 4 with dots in 

Fig. 2). The curves 1, 2, and 3 correspond to the 

switch point position before the optimal switch 

point (curve 4), but the curves 5, 6, and 7 

correspond to the switch point that lies after the 

optimal one. There is a decreasing of the computer 

time from curve 1 to curve 4. On the contrary, the 

computer time increases from curve 4 to curve 7. It 

means that curve 4 corresponds to the optimal 

position of the switch point. 

The initial parts of W(t) dependencies of Fig. 2 

are shown in Fig. 3 in large scale.  
 

 
Fig. 3 Behavior of the functions V(t) and W(t) 

during the initial part of design process 

 

We can see that the curves 1, 2, and 3, which 

correspond to the switch points before the optimal 

point (4) have not intersections. On the other hand, 

the curves 5, 6, and 7 that are based on the switch 

point after the optimal one have intersections and 

each this curve lies upper the curve 4 till some time 

point. It means that from this time moment the 

graph W(t) for the optimal switch point lies below 

all of other graph. So, from one hand the optimal 

switch point corresponds to a minimal computer 

time, from the other hand, this point corresponds to 

the graph of W(t) function that lies below all of 

other graphs. This property serves as a principal 

criterion for the optimal switch point selection. 

N Switch Iterations Total

point number design

   time (sec)

1 147 8319       0.221

2 167 6501       0.172

3 187 3697       0.096

4 207 2860       0.073

5 227 3383       0.087

6 247 5429       0.142

7 267 6682       0.175
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The function W(t) that corresponds to the optimal 

switch point has a maximum absolute value leading 

off the 340th integration step. It means that from 

this integration step we can confidently predict the 

optimal switch point position that leads to the 

minimal computer design time. 

 

4.2 Example 2 

 Three-node nonlinear circuit is presented below 

in Fig. 4. The nonlinear elements are defined as: 

( )2

21111 VVbay nnn −⋅+= , ( )2

32222 VVbay nnn −⋅+= . The 

vector X includes seven components: 1

2

1 yx = , 

2

2

2 yx = , 3

2

3 yx = , 4

2

4 yx = , 15 Vx = , 26 Vx = , 37 Vx = . 

 

 
 

Fig. 4. Three-node nonlinear passive network. 

 

 The model of this network (2) includes three 

equations (M=3) and the optimization procedure (1) 

includes seven equations. This network is 

characterized by three dependent parameters and 

the control vector includes three control functions: 

U= ( )321 ,, uuu . Structural basis includes eight 

different strategies with corresponding control 

vector: (000), (001), (010), (011), (100), (101), 

(110), and (111). Behavior of the functions V(t) and 

W(t) help us to determine the switch point optimal 

position of the control vector. 

 Taking into account the preliminary reasons 

about the optimal algorithm structure [27] we have 

been analyzed the strategy that consists of two 

parts. The first part is defined by the control vector 

(111) that corresponds to Modified Traditional 

Strategy of Optimization (MTSO) and the second 

part is defined by the control vector (000) that 

corresponds to Traditional Strategy of Optimization 

(TSO). So, the switching is realized between two 

strategies, (111) and (000). 

The optimal switch point was a principal 

objective of this analysis. The consecutive change 

of the switch point was realized for the integration 

step number from 2 to 20. The corresponding total 

iteration number and computer time are presented 

in Table 2 for some switch points near the optimal. 

The behavior of the functions V(t) and W(t) during 

the design process after the switch point is shown in 

Fig. 5 for seven positions of switch points. 

Table 2. Iterations number and computer time for 

strategies with different switch points for three-node 

network. 

 

 

 
 

Fig. 5. Behavior of the functions V(t) and W(t) 

during the design process for seven different switch 

points (from 6 to 12) for network in Fig. 4. 

 

 The integration of the system (1) was realized by 

the constant integration step. The analysis shows 

that the optimal switch point corresponds to the step 

9 (graph 4 with dots in Fig. 5). The curves 1, 2, and 

3 correspond to the switch point position before the 

optimal switch point (curve 4), but the curves 5, 6, 

and 7 correspond to the switch point that lies after 

the optimal one. There is a decreasing of the 

computer time from curve 1 to curve 4. On the 

contrary, the computer time increases from curve 4 

to curve 7. It means that curve 4 corresponds to the 

optimal position of the switch point.  

 So, from one hand the optimal switch point 

corresponds to a minimal computer time, from the 

other hand, this point corresponds to the graph of 

W(t) function that lies below all of other graphs. 

This property anew serves as a principal criterion 

for the optimal switch point selection. The function 

W(t) that corresponds to the optimal switch point 

has a maximum absolute value leading off the 15th 

integration step. It means that from this integration 

step we can confidently predict the optimal switch 

point position that leads to the minimal computer 

design time. 

N Switch Iterations Total

point number design

   time (sec)
1 6 8409        0.659

2 7 6408        0.502
3 8 3141        0.246
4 9 1234        0.096

5 10 3310        0.259

6 11 5918        0.464
7 12 7404        0.581
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4.3 Example 3 

Five-node nonlinear passive network is shown in 

Fig. 6. 
 

 
 

Fig. 6. Five-node nonlinear passive network. 

 
 The nonlinear elements have next dependencies: 

( )2

32111 VVbay nnn −⋅+= , ( )2

42222 VVbay nnn −⋅+= .  

The vector X includes eleven components: 1

2

1 yx = , 

2

2

2 yx = , 3

2

3 yx = , 
4

2

4 yx = , 5

2

5 yx = , 6

2

6 yx = , 17 Vx = , 

28 Vx = , 39 Vx = , 410 Vx = , 511 Vx = . The model of 

this network (2) includes five equations (M=5) and 

the optimization procedure (1) includes eleven 

equations. This network is characterized by five 

dependent parameters and the control vector 

includes five control functions: 

U= ( )54321 ,,,, uuuuu . Structural basis includes 32 

different strategies with corresponding control 

vector from (00000) to (11111). Behavior of the 

functions V(t) and W(t) determine the switch point 

optimal position of the control vector. The 

switching is realized between strategy (11111) and 

strategy (00000). The consecutive change of the 

switch point was realized for the integration step 

number from 2 to 25. 

 As discussed above, the principal element of the 

minimal-time design algorithm is the optimal 

position of the control vector switch point. The total 

iteration number and computer time are presented 

in Table 3 for some switch points near the optimal. 

 

Table 3. Iterations number and computer time for 

strategies with different switch points for five-node 

network. 

 Fig. 7 shows the behavior of the functions V(t) 

and W(t) for seven different positions of the switch 

point. 

 

 
 

Fig. 7. Behavior of the functions V(t) and W(t) 

during the design process for seven different switch 

points (from 11 to 17) for network in Fig. 6. 

 

 It is clear that the optimal switch point 

corresponds to step 14 and the computer time in 

this case has a smallest value. The corresponding 

curve lies below all of the other curves. 

 

4.4 Example 4 

The next example corresponds to the two-stage 

transistor amplifier in Fig. 8.  

 

 
Fig. 8. Two-stage transistor amplifier. 

  

The vector X includes ten components: 1

2

1 yx = , 

2

2

2 yx = , 
3

2

3 yx = , 4

2

4 yx = , 
5

2

5 yx = , 
16 Vx = , 

27 Vx = , 

38 Vx = , 
49 Vx = , 

510 Vx = . The model of this 

network (2) includes five equations (M=5) and the 

optimization procedure (1) includes ten equations. 

The total structural basis contains 32 different 

design strategies. The control vector includes five 

control functions: U= ( )54321 ,,,, uuuuu . The Ebers-

Moll static model of the transistor has been used 

[31].  

 The total iteration number and computer time for 

some design strategies are presented in Table 4.  

N Switch Iterations Total

point number design

   time (sec)

1 11 62243 28.37

2 12 47371 21.59

3 13 24517 11.17

4 14 1966 0.89

5 15 24163 11.01

6 16 40464 18.44

7 17 49219 22.43
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Table 4. Iterations number and computer time for 

strategies with different switch points for two-stage 

transistor amplifier. 

 

 The integration of the system (1) was realized 

by the optimal variable integration step. Fig. 9 

shows the behavior of the functions V(t) and W(t) 

for the same design strategies with different switch 

points including the optimal one.  
 

 
 

Fig. 9. Behavior of the functions V(t) and W(t) 

during the design process for seven different switch 

points (from 7 to 13) for network in Fig. 8. 

 

 As for previous example, the design of two-

transistor cell amplifier has been proposed as a 

combination of MTSO and TSO. In this case the 

quasi-optimal control vector includes two switch 

points. We changed the control vector from (11111) 

to (00000) and from (00000) to (11111). The 

consecutive change of the switch point was realized 

for the integration step’s number from 2 to 20.The 

behavior of the functions V(t) and W(t) for the 

optimal switch steps and some steps  near the 

optimal confidently detect the optimal position of 

the switch points. 

 We observe a specific behavior of the function 

W(t) near the optimal switch point’s position. 

Before the optimal switch point the function W(t) 

graphs are “parallel”. Function W(t) has the 

maximum negative value for the optimal switch 

points. The graphs of the function W(t) that 

correspond to the optimal switch point’s position 

(number 4) and before the optimal position (1, 2 

and 3) have not intersection. After the optimal 

points the graphs of the function W(t) intersect the 

graphs that correspond to the optimal switch point 

and before the optimal one. It means that we can 

detect the optimal position of the switch points 

during the initial design interval.  

 So, the structure of the optimal control vector 

i.e. the structure of the time optimal design strategy 

can be defined by means of the analysis of the 

relative time derivative of the Lyapunov function 

during the initial time interval of the design 

process. 

 

4.5 Example 5 

The last example corresponds to the three-stage 

transistor amplifier in Fig. 10.  
 

 
Fig. 10. Three-stage transistor amplifier. 

 

 The vector X includes 14 components: 1

2

1 yx = , 

2

2

2 yx = , 3

2

3 yx = , 4

2

4 yx = , 5

2

5 yx = , 6

2

6 yx = , 7

2

7 yx = , 

18 Vx = , 29 Vx = , 310 Vx = , 411 Vx = , 512 Vx = , 613 Vx = , 

714 Vx = . The model of this network (2) includes 

seven equations (M=7) and the optimization 

procedure (1) includes 14 equations. The total 

structural basis contains 128 different design 

strategies. The control vector includes seven control 

functions: U= ( )7654321 ,,,,,, uuuuuuu . 

 The total iteration number and computer time are 

presented in Table 5 for some switch points near the 

optimal one. 

 

Table 5. Iterations number and computer time for 

strategies with different switch points for three-stage 

transistor amplifier. 

N Switch Switch Iterations Total
point 1 point 2 number design

    time (sec)
1 7 8 4900        9.912

2 8 9 4486        9.113
3 9 10 3785        7.691
4 10 11 1354        2.742

5 11 12 3618        7.341

6 12 13 4424        8.981
7 13 14 4882        9.893

N Switch Switch Iterations Total

point 1 point 2 number design

    time (sec)

1 10 16 8187      154.31
2 11 17 7432      140.04

3 12 18 6125      115.36

4 13 19 2087        39.14

5 14 20 10259      193.33

6 15 21 11610      218.81

7 16 22 12372      233.16
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 Fig. 11 shows the behavior of the functions V(t) 

and W(t) for the same optimization strategies.  
 

 
 

Fig. 11. Behavior of the functions V(t) and W(t) 

during the design process for seven different switch 

points (from 10 to 16) for network in Fig. 10. 

 

 The integration of the system (1) was realized by 

the optimal variable integration step. As for 

previous example, the design of three-transistor cell 

amplifier has been proposed as a combination of 

MTSO and TSO. In this case the quasi-optimal 

control vector includes two switch points. We 

changed the control vector from (1111111) to 

(0000000) and from (0000000) to (1111111). The 

consecutive change of the switch point was realized 

for the integration step’s number from 2 to 25. The 

behavior of the functions V(t) and W(t) for the 

optimal switch steps and some steps near the 

optimal confidently detect the optimal position of 

the switch points. We observe a behavior of the 

function W(t) near the optimal switch point’s 

position similar the previous example.  Function 

W(t) has the maximum negative value for the 

optimal switch points. The graphs of the function 

W(t) that correspond to the optimal switch point’s 

position (number 4) and before the optimal position 

(1, 2 and 3) have not intersection. After the optimal 

points the graphs of the function W(t) intersect the 

graphs that correspond to the optimal switch point. 

It means that we can detect the optimal position of 

the switch points during the initial design interval. 

 So, the structure of the optimal control vector i.e. 

the structure of the time optimal design strategy can 

be defined by means of the analysis of the relative 

time derivative of the Lyapunov function for the 

initial time design interval 

 We observe a specific behavior of the function 

W(t) near the optimal switch point’s position. Before 

the optimal switch point the function W(t) graphs 

are “parallel”. Function W(t) has the maximum 

negative value for the optimal switch points. The 

graphs of the function W(t) that correspond to the 

optimal switch point’s position (number 4) and 

before the optimal position (1, 2 and 3) have not 

intersection. After the optimal points the graphs of 

the function W(t) intersect the graphs that 

correspond to the optimal switch point and before 

the optimal one. It means that we can detect the 

optimal position of the switch points during the 

initial design interval.  

 

5 Quasi Optimal Algorithm 
We can mark two special strategies of optimization. 

The first strategy is determined by a control vector 

( )0,...,0,0=U . This strategy corresponds to the 

traditional approach for a circuit optimization, and 

in this case the system (2), being the system of 

constraints, must be solved on every step of 

procedure of optimization. This is a traditional 

strategy of optimization. The second strategy is 

determined by a control vector ( )1,...,1,1=U . In 

this case the system (2) disappears fully, but 

information about a circuit appears in the 

generalized objective function (4). This is a 

modified traditional strategy of optimization. In this 

case other trajectory corresponds to MTSO in a 

space of parameters. Flow-charts both TSO and 

MTSO are represented on Fig. 12 and Fig. 13 
correspondingly. 

Dynamic properties of designing process were 

analyzed in [32] on the basis of the entered function 

of Lyapunov of process of optimization. The 

presence of the correlation was marked between 

processor time of optimization of circuit and 

properties of function of Lyapunov of process of 

optimization. It was showed that the function of 

Lyapunov can be defined on the basis of the 

generalized objective function of process of 

optimization ( )UXF ,   by means of the formula (5). 

 

 
 

Fig.12. Algorithm of TSO. 
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Fig. 13. Algorithm of MTSO. 

 

It was showed [32] that on the basis of analysis 

of conduct of derivative function of Lyapunov it is 

possible to find optimum switch points of control 

vector U that is a basis of quasi optimal strategy and 

allowing to minimizing the CPU time. 

We will define elementary structures which serve 

for the flow-chart construction of quasi optimal 
algorithm. There are two such structures.  

We will define the first structure as a traditional 

strategy of optimization for one step of optimization 
procedure (TSO1). This structure includes: 

1. One step of the unconstrained optimization is in 

space 
KR  of the independent variables: 
 

′ = ′ + ⋅+
X X t H

s s

s

s1 ,   (7) 

where ′ ∈X R
K , H is direction of decreasing of 

objective function ( )C X , determined one or 

another method of descent. 

2. Solution of the system of nonlinear equations 

that is the mathematical model of electronic circuit 
 

( ) 0=Xg j
,   j M= 12, ,..., .   (8) 

 

As a result of reproducing of both these steps we 

get the new values of all co-ordinates of vector X. 

The second elementary structure is the modified 

traditional strategy of optimization for one step of 

optimization procedure (MTSO1) and it includes one 

step of procedure of unconstrained optimization in 

space N
R  of independent variables 

 

  X X t Hs s

s

s+ = + ⋅1 ,    (9) 
 

where H is direction of decreasing of the 

generalized objective function  ( )F X . A vector of 

H is the function of objective function ( )F X .  

 On the basis of ideas, presented in [32] and the 

determinations defined above, one of possible 
variants of quasi optimal algorithm is developed 

Clearly, that TSO1 and MTSO1 will realize the own 

strategy on one step of the method of optimization. 

We will consider in future, that these strategies are 

defined as separate blocks and can be used in call 

algorithms. The flow chart of quasi optimal 

algorithm is presented in Fig. 14.  

 

 
 

Fig.14. Quasi optimal algorithm
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It is assumed that this variant of algorithm is based 
only on two switching of control vector. Initial 

switching points of control vector of S1 and S2 are 

set, where for example S1=1 and S2=S1+n. The 
parameter of n can take on values 1, 2, ... . An 

algorithm begins with MTSO. Then it is switching 

on TSO in the point of S1. TSO is executed till 

switching on MTSO in the point of S2. MTSO is 

further executed to the moment of T1+ jmax, where T1 

is set a number in a range 10 – 40, and by a jmax 
number in a range 20 – 80. The values of derivative 

function of Lyapunov W1(t) are memorized from the 

step T1 till the step T1+ jmax. Then all calculation 
repeats oneself at the change of switch points on the 

step dS. The values of relative derivative function of  

Lyapunov are again memorized, but it already W2(t). 
A calculation repeats oneself at a next change on the 

step of dS and W3(t) is determined. The analysis of 

the got results then make and the value of basic 
criterion of C are produced. 

 

6 Basic Criterion of Principal 

Algorithm 
We will consider the results of analysis of designing 

process of nonlinear circuit represented on Fig. 15.  

At designing of this amplifier, the quasi optimal 

strategy of designing has a time gain more than 

1600 times comparing with traditional approach 
[33].

 
Fig.15. Operational amplifier. 

 

 

We will consider dependences of functions of 

W(t) on the initial interval of designing process. 

These dependences are resulted in Fig. 16. 

 

 
 

Fig.16. W(t) for some switching points. 

 

The curve 4 corresponds to the optimal point of 

switching. Three first curves correspond to the 

points of switching before the optimal point. Three 

last curves correspond to the points of switching 

after the optimal point. Distance between the dotted 
curves is increasing as approaching to the optimum 

switch point when the corresponding switch point 

lies before the optimum point. Opposite, a distance 

between continuous curves, which correspond of 

switching after an optimum point, is diminished as 

moving off from an optimum point. It is a good 
criterion to define an optimum switch point. 

We will enter the function of P, determined as a 

difference of values of function of W(t) for two 
nearby curves of Fig. 16 in certain moment of time 

of t. The function P has an argument m, which can 

be defined as a number of the corresponding curve 
(1, 2,…), i.e. P is the function of discrete argument. 
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This function was built for two different values of 
time of t1 and t2, certain on a Fig. 16. Time of t1 

corresponds to 20th step of optimization procedure 

after a switching point and time of t2 corresponds to 
40th step. The corresponding curves (continuous) 

are represented in Fig. 17. 

This function increases at approaching to the 

optimum point of switching of control vector. 

Attaining a maximum the function of P is 

diminished in further. We will define another 
function of Q, that is a discrete derivative of the 

function of P (Q=P(m+1) -P(m)) and which is built 

on the same figure. The conduct of function of Q is 
such, that it can afford basic for making of basic 

criterion of quasi optimal algorithm. 

 

 
 

Fig.17. P and Q functions of curve number m. 

  

 If we choose as a criterion of C the product of 

values of function of Q in two nearby points of the 
argument (C=Q(m)xQ(m+1)), a positive value C 

testifies that an optimum switch point is not yet 

attained, and the negative value corresponds to an 
optimum switch point. Thus, calculating the value 

of functions of P and Q and checking the value of 

criterion of C into an algorithm, we can exactly 
define an optimum switch point of control vector. 

The quasi optimal strategy will be realized after 

authentication of optimum points of switching. All 

these details are reflected in an algorithm that 

presented in Fig. 12. 

The developed quasi optimal algorithm give  a 
time gain approximately on 25% less than quasi 

optimal strategy of designing, that allows to get the 

real time gain approximately in 1200 times as 
compared to TSO. 

 

7 Conclusion 

The problem of the construction of minimal-time 

algorithm of designing can be solved adequately on 

the basis of the control theory. The design process is 

formulated as the controllable dynamic system. The 
Lyapunov function of the design process and its 

time derivative include the sufficient information to 

select more perspective design strategies from 
infinite set of the different design strategies that 

exist into the general design methodology. The 

special function W(t) was proposed to predict the 

structure of the time optimal design strategy. This 

function can be used as a main tool to construct the 

optimal sequence of the control vector switch 
points. This is the basis for the optimal design 

algorithm construction for the system design. 

Additional expense of computer time, which 
related to the search of optimum switch points of 

control vector, diminishes gain in time that 

corresponds to the quasi optimal strategy. However, 
taking into account circumstance that quasi optimal 

strategy allows getting the general gain in processor 

time in a few hundred or thousands. A quasi optimal 

algorithm, i.e. practical realization of quasi optimal 

strategy, gives the gain of the same order. 
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