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Abstract: We consider a mathematical model of genetic regulatory networks (GRN). This model consists
of a nonlinear system of ordinary differential equations. The vector of solutions X(t) is interpreted as a
current state of a network for a given value of time t. Evolution of a network and future states depend
heavily on attractors of a system of ODE. We discuss this issue for low dimensional networks and show
how the results can be applied for the study of large size networks. Examples and visualizations are
provided.
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1 Introduction
Gene regulatory networks (GRN in short) exist in
any cell of any living organism. GRN are respon-
sible for morphogenesis, regulation of reactions to
changes in the environment, and management of
functioning of any kind. GRN can be imagined as
a discrete object, consisting of elements (genes),
that generally are in continuous interaction with
others elements. This interaction can be roughly
classified and modelled. One can speak about ac-
tivation, inhibition, or no interaction. As a result
of this interaction, the entire network can work
effectively and rapidly.

It is to be mentioned, that there were attempts
to borrow principles of self-organization of GRN
to other areas, for instance, to telecommunica-
tion networks [1], [2] and for the design of artifi-
cial ones. To study GRN, experimental data are
used extensively in combination with some the-
oretical means. In this paper, we will focus on
mathematical models formulated in terms of dif-
ferential equations. Differential equation models,
if adequately selected, can predict future states
of a described phenomenon, based on the given
structure and rules in a model and information
about the current state (or previous states). The
efficacy of mathematical models in different ar-
eas is repeatedly confirmed. In the last decades
mathematical methods of study of GRN are de-
veloped extensively. The interested reader can
consult the review [3], [4], [5], [6] and others, con-
cerning complex biological networks [7], [8], [9].

Due to difficulties in directly studying GRN,
mathematical models are used. To describe the
evolution of GRN, dynamical models, formu-
lated as systems of ordinary differential equations
(ODE), are used. Systems of ODE can be studied
by traditional methods of mathematical analysis.
Solutions are treated as curves in phase space of
the corresponding dimensionality, which is equal
to the number of elements (genes) in GRN. Tra-
jectories can tend to some geometrical objects
in phase space, which are called attractors. To
understand the principles of GRN, one has to
study first attractors in the respective mathemat-
ical model.

We are motivated by the work [10], where
the authors provide an example of realistic GRN.
This GRN is treated in the conditions of “large
granular lymphocyte leukaemia associated with
blood cancer”. In this model, the cancerous
states are identified with “undesired” attractors.
The current state of GRN is described by the
vector X(t) = (x1(t), . . . , xn(t)), where t is in-
terpreted as time. As a disease progresses, this
vector tends to a “wrong” attractor. The goal of
the controllability problem is to redirect the tra-
jectory X(t) to a “normal” attractor, which in
real life terms means to develop a cure.

In this paper, we describe the mathematical
model of a four-dimensional GRN and consider
the possibilities of control and management of
this GRN. If the current system state, that is,
the vector X(t) is in the basin of attraction of
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Figure 1: Sigmoidal function

an “undesired” attractor, the system (which cor-
responds to a living organism) will tend to an 
“undesired” attractor with possibly negative con-
sequences. The problem is, using adjustable pa-
rameters, to redirect the vector X(t) from an “un-
desired” attractor to a normal one. Mathemat-
ically (in a model) this can be sometimes done 
by skillfully tuning the system. More discussion 
on this subject can be found in [10]. In the sys-
tem considered in [10], the dimensionality of the 
system is not too large (60 nodes, of which three 
nodes only were attractive). The sigmoidal function 
is presented in Figure 1.

2 Problem Formulation
Our model is formulated in terms of the system 
of ODE of the form




x′1 = 1
1+e−µ1(w11x1+w12x2+...+w1nxn−θ1) − x1,

x′2 = 1
1+e−µ2(w21x1+w22x2+...+w2nxn−θ2) − x2,

...
x′n = 1

1+e−µn(wn1x1+wn2x2+...+wnnxn−θn) − xn,

(1)
This system contains the function f(z), where
the argument z is substituted by formations like
−µ1(w11x1 + w12x2 + w13x3 − θ1). The function
f(z) may be any sigmoidal function, which is sup-
posed to be strictly monotone with f(−∞) = 0
and f(+∞) = 1. We use the function f(z) =

1
1+e−z .

The regulatory matrix contains information
about relation between elements of a network
(any element can be positive, negative, or zero,
meaning activation, inhibition, or no relation).

W =




w11 w12 ... w1n

w21 w22 ... w2n

...
wn1 wn2 ... wnn


 . (2)

The so called equilibria (or, alternatively, crit-

ical points) can be found from the system




x1 =
1

1 + e−µ1(w11x1+w12x2+...+w1nxn−θ1)
,

x2 =
1

1 + e−µ2(w21x1+w22x2+...+w2nxn−θ2)
,

...

xn =
1

1 + e−µn(wn1x1+wn2x2+...+wnnxn−θn)
,

(3)
Stable equilibria, that is, equilibria that attracts
nearby points of the phase space, consisting of
points (x1, . . . , xn), are the simplest attractors.
Example will be provided in the next sections.

Remark. System (3) had appeared in [11]
(see also [12]), in connection with the theory of
neuronal networks. It was used also when de-
signing telecommunication networks [13], [1], [2].
Chaotic behaviour was studied in [19], [20].

In what follows we use the qualitative meth-
ods, such as phase space analysis, linearizations
around the equilibria and the nullclines method.
Examples were studied using computer tools for
quantitative analysis and visualizations. Calcula-
tions were carried out and graphics were created
using the program Wolfram Mathematica.

3 Two-element GRN
We consider first the two-element network. The
current state of this network is described by
the two-dimensional vector X(t) = (x1(t), x2(t)).
This vector can change in time t and our goal is to
follow these changes and to predict where it goes
in the future. The vector X(t) is conveniently vi-
sualized in the (x1, x2)-plane, which is the phase
plane for the system (4). The evolution of X(t) is
governed by the system of differential equations,
where on the left side the derivatives are, which
can be interpreted as directions for the move-
ments of x1(t) and x2(t), and on the right side
are formulas for computation these derivatives.
If the initial state X(0) is given, the trajectory is
defined in phase plane, which generally tends to
an attractor. Our goal is to clarify the number,
nature, location and properties of attractors.

The system of ODE has the form
{

x′1 = 1
1+e−µ1(w11x1+w12x2−θ1) − x1,

x′2 = 1
1+e−µ2(w21x1+w22x2−θ2) − x2,

(4)

The regulatory matrix is

W =
(

w11 w12

w21 w22

)
, (5)

where w11 and w22 are auto-activation of x1 and
x2, w12 is the impact of x2 on x1 and, w21 is the
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Figure 2: The vector field and nullclines, matrix
W as in (6)

impact of x1 on x2. We recall that positive wij

means activation, while negative is for inhibition,
and zero value means no relation. The absolute
value of wij measures the intensity of influence.

Having this in mind, let us investigate the
phase portraits of the system (4). First, let the
regulatory matrix be

W =
(

1 1
1 1

)
, (6)

This is called full activation. In the picture be-
low we see the vector field, defined by the respec-
tive system (4). Trajectories (x1(t), x2(t)) have
to follow the vector field. Any trajectory can be
understood as parametrically defined (by time t)
curve in phase plane. Looking at the picture, the
observer can get impression of the general behav-
ior of trajectories. There are also two nullclines.
Nullclines (two of them) are curves, where the
vector field is directed horizontally or vertically.
The point of intersection of nullclines is special.
The vector field is zero there. The respective tra-
jectory is a point, and the corresponding solu-
tion is constant, can be written as x1(t) = a,
x2(t) = b, where a, b are the coordinates. We see,
that two side points are attractive. Our conclu-
sion is that in this case the attractor is a union
of two attractive equilibria. It is to be added,
that equilibria can exist only in the unity cube
Q2 = {(x1, x2) : x1 ∈ (0, 1), x2 ∈ (0, 1)}.

Let us switch to the case

W =
(

1 2
−2 1

)
, (7)

The phase portrait for this case is depicted in
Figure 3. We see circular vector field, which need
not necessarily produce closed (circular) trajecto-
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Figure 3: The vector field, nullclines and the
periodic attractor, matrix W as in (7)

ries. But this is the case for our choice of param-
eters. There is a single equilibrium (cross-point
of two nullclines) in Figure 3. This point is not
attractive, despite of the fact, that trajectories
are winding around it. The trajectories spiral
out of this critical point. On the other hand,
the unity cube Q2 is the so called invariant set
for system (4). This means that the vector field
on the boundary of Q2 is directed inside Q2. So
no trajectory can escape Q2. As a result of these
two opposite trends, the closed trajectory exists,
which corresponds to the periodic solution. We
see, that this trajectory is attractive. So it is the
so called limit cycle. It is a new kind of attractors.
Periodic solutions correspond to biological oscil-
lations, and generally they arre of great interest
both for mathematicians and biologists.

Remark. More on two-dimensional systems
can be found in [14], [15], [16], [18]. Extension
of [14] to the n-dimensional case is in [17]. To
be able for one to repeat the numerical experi-
ments above, other parameters should be known.
In both cases µ1 = µ2 = 10, in the examples cor-
responding to Figure 2 and Figure 3 the values
of θ are respectively θ1 = θ2 = 1 and θ1 = 1.5,
θ2 = −0.5.

4 Three-element GRN
In this section we treat the three-dimensional net-
works, described by the system





x′1 = 1
1+e−µ1(w11x1+w12x2+w13x3−θ1) − x1,

x′2 = 1
1+e−µ2(w21x1+w22x2+w23x3−θ2) − x2,

x′3 = 1
1+e−µ3(w31x1+w32x2+w33x3−θ3) − x3.

(8)

It is an easy matter to provide examples of attrac-
tors, that are sets of attractive equilibria. Their
number is finite always and cannot be greater
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than 27. Instead of considering attractive equilib-
ria, we will look for attractive closed trajectories
in three-dimensional phase space. We will need
some formulas. The three-dimensional nullclines
are defined by the equations





x1 =
1

1 + e−µ1(w11x1+w12x2+w13x3−θ1)
,

x2 =
1

1 + e−µ2(w21x1+w22x2+w23x3−θ2)
,

x3 =
1

1 + e−µ3(w31x1+w32x2+w33x3−θ3)
.

(9)

Any of these equations defines a three-
dimensional surface. On a certain nullcline the
vector field, defined by the system (8), is directed
in either x1, or in x2, or in x3 direction. The cross-
points of nullclines are equilibria, where the vec-
tor field is zero. At least one equilibrium must ex-
ist and all equilibria are in the three dimensional
unity cube Q3 = {(x1, x2, x3) : x1 ∈ (0, 1), x2 ∈
(0, 1), x3 ∈ (0, 1)}.

Consider system (8), where the regulatory ma-
trix is

W =

(
k 1 −1
−1 k 1
1 −1 k

)
. (10)

The matrix (10) contains the so called inhibitory
cycle, represented by the matrix

W =

( 0 0 −1
−1 0 0
0 −1 0

)
. (11)

This last matrix tells us that the respective net-
work is arranged according the scheme

x1 ⇐ x3 ⇐ x2 ⇐ x1,

where ⇐ means repression (inhibition). This cy-
cle leads to periodic oscillations. More discussion 
on this subject can be found in [23], [24], [25],
[26]. Let us return to (10) and set k = 1.2. The 
periodic attractor emerges, as we see in Figure 4. 
Figure 5 shows the graphs of x1(t), x2(t), x3(t). 
One can deduce that at the beginning these so-
lutions were not periodic, but then they tend to 
the periodic attractor. The attractor in 3D is 
presented in Figure 6. Lastly, the solutions of x1,x2,x3 
are presented in Figure 7.

Computations show that the attractor in the 
form of a periodic solution exists for any k ∈ (0.9, 
3.5) for appropriately chosen θi. In all cases µ1 = 
µ2 = µ3 = 5.

Consider k = 3.2. The periodic attractor ex-
ists. There is at least one attractive equilibrium. 
Therefore attractors of different kind can coexist.

0.0

0.5

1.0
X1

0.0

0.5

1.0

X2

0.0

0.5

1.0

X3

Figure 4: Attractor in 3D, k = 1.2
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Figure 5: Solutions x1(t), x2(t), x3(t), k = 1.2
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Figure 6: Attractor in 3D, k = 3.2
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Figure 7: Solutions x1(t), x2(t), x3(t), (solid,
dotted, dashed), k = 3.2
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Remark. More on three-dimensional systems
can be found in [19], [21], [22]. Parameters θi

for any i were chosen as θi = 0.5k in order the
equilibrium to be at the center of Q3, that is, at
the point (0.5, 0.5, 0.5).

We conclude that attractors in the form of pe-
riodic solutions, coexisting with attractive point
equilibria, are possible in three-dimensional sys-
tems (networks).

5 Four-element GRN
Consider the fourth-element network and model
of the form




x′1 = 1
1+e−µ1(w11x1+w12x2+w13x3+w14x4−θ1) − v1x1,

x′2 = 1
1+e−µ2(w21x1+w22x2+w23x3+w24x4−θ2) − v2x2,

x′3 = 1
1+e−µ3(w31x1+w32x2+w33x3+w34x4−θ3) − v3x3,

x′4 = 1
1+e−µ4(w41x1+w42x2+w43x3+w44x4−θ4) − v4x4,

(12)
where the regulatory matrix is

W =




w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44


 . (13)

The attractors are possible in the form of sta-
ble equilibria. Periodic trajectories are possible
also. We can use the previous example of two-
dimensional system to show the periodic attrac-
tor.

Let the regulatory matrix be in the form of

W =




1 2 0 0
−2 1 0 0
0 0 1 2
0 0 −2 1


 . (14)

Consider the system (12), where the coefficients
wij are as in (14), µi = 10, i = 1, 2, 3, 4, θ1 =
θ3 = 1.2, θ2 = θ4 = −0.7. The attractor is a
four-dimensional object, which cannot be viewed,
but the two-dimensional (less informative) and
three-dimensional projections are available. Two
projections are depicted in Figure 8 and Figure
9.

By slightly changing the diagonal elements in
(14), consider the new regulatory matrix

W =




0.4 2 0 0
−2 0.5 0 0
0 0 0.7 2
0 0 −2 0.8


 . (15)

Other parameters are left unchanged. The new
system (12) has another attractor. Some projec-
tions of a solution (the initial values are x1(0) =
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Figure 8: (x1, x4)-projection of the 4D attractor.
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Figure 9: (x1, x2, x3)-projection of the 4D attrac-
tor
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Figure 10: (x3, x4)-projection of the 4D solution.
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Figure 11: (x1, x3)-projection of the 4D solution.

x3(0) = 0.3, x2(0) = x4(0) = 0.7) tending to this 
new attractor are depicted in the below four fig-
ures from Figure 10, Figure 11, Figure 12, and Figure 
13. Similarly, the graphs of each component of the 
attractor is presented in Figure 14.

The three dimensional projections of the four-
dimensional attractor follow.

To be confirmed that this attractor (with the 
matrix (15)) let us construct the graphs of each 
component xi(t), i = 1, 2, 3, 4 of the attractor. In 
the below picture the graphs of each component 
of the attractor are depicted, x1(t) thin black, 
x2(t) thin blue, x3(t) thick black, x4(t) thick blue.

6 Conclusion
The same method of constructing attractors can 
be used for higher dimensional systems. Any 
combinations of 2D, 3D, 4D attractors can be 
combined in a high dimensional system, which 
will be uncoupled. The respective matrix W 
would be a block matrix with block elements 
along the main diagonal. This would be the start-
ing point of finding attractors in realistic large 
systems, filling the zero spaces by appropriate val-
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Figure 12: (x1, x2, x3)-projection of the 4D so-
lution.
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Figure 13: (x2, x3, x4)-projection of the 4D solu-
tion.
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Figure 14: The graphs of each component of the
attractor
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ues. It is worth to mention, that the network in
the work [10] consists of only sixty elements with
only 195 adjustable parameters.
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