
Osteoporosis, which originates from Greek, is literally
translated as porous bone, [1]. According to World 
Health Organization, low bone mass and microarchitectural 
degeneration of bone tissue are the characteristics of 
osteoporosis, a progressive systemic skeletal disease that 
increases bone fragility and fracture susceptibility, [1]. 

Osteoporosis “is a metabolic bone condition in which 
osteoclastic bone resorption is not counteracted at the cellular 
level by osteoblastic bone synthesis. As a result, bones 
become brittle and weak, putting them at risk of fracture. 
Traditional osteoporosis pathophysiology centered on 
endocrine factors such as estrogen shortage or vitamin D 
deficiency, as well as secondary hyperparathyroidism. 
Although osteoporosis can affect persons of any age or 
gender, it is typically an age-related disease that affects 
women more than males” [2]. 

Osteoporosis is diagnosed by dual-energy X-ray 
absorptiometry (DXA), which measures bone mineral density 
(BMD). Therefore, checking for osteoporosis can have a big 
impact on how patients turn out. However, because 
osteoporosis is hidden until severe fragility fractures, 
osteoporosis is mostly misdiagnosed, and DXA screening for 
osteoporosis has been underutilized [3]. Patients frequently 
underestimate the severity of the sickness and, as a result, 
refuse to volunteer for the screening program [4]. 

There is a growing consensus that other screening 
approaches are needed to overcome the shortcomings of DXA 
as an osteoporosis diagnosis method. Adults frequently 

undergo Abdominal-Pelvic Computed Tomography (APCT) 
to examine a variety of disorders during routine health check-
ups or to follow up on previously identified conditions. Even 
if only a tiny percentage of these scans were for osteoporosis 
screening opportunistically, there would be a significant 
impact. APCT has shown promising results in opportunistic 
osteoporosis screening in several studies [5], [6], [9]. 

Artificial intelligence (AI) and Deep Learning (DL) is 
used for image interpretation for osteoporosis classification 
[7]. In a 2019 review paper, AI advancements have aided in 
the detection of osteoporosis [8]. The following methods were 
employed: dental radiographs [9], [13], spine radiographs 
[7], [14], hand and wrist radiographs [10], [11], [12], [13].  

This study uses a dataset of knee radiographs (i.e., 
knee-Xray images) to apply and compare the training time 
of two robust transfer learning model algorithms. The 
transfer learning models applied were GoogLeNet, and 
VGG-16. In addition, “to compare the diagnostic 
performance of the two models, several state-of-the-art 
neural networks metric was used.” 

In order to estimate the prevalence of osteoporosis in
postmenopausal women, machine learning techniques were 
applied [14]. The researchers constructed a non-linear model 
using regression support vector machines (SVM) for a sample 
of 305 postmenopausal women to ascertain the association 
between BMD, diet, and lifestyle variables. A preliminary 
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Fig. 1. Osteoporosis case and normal case. 

The dataset, after statical augmentation using python 
augmentation functions, comprises 323 normal knee 
radiograph images and 323 osteoporotic knee radiograph 
images of patients. Table I shows the splitting of image data 
into a train, test and validation data. 

TABLE I.        IMAGE DISTRIBUTION 

Class Total Training Validation Testing 

Normal(0) 323 207 52 65 
Osteoporosis(1) 323 207 52 65 

In “most image data, the pixel values are integers with 
values ranging from 0 to 255. Since neural networks only 
analyze inputs with modest weight values, inputs with large 
integer values can interfere with or slow down the learning 
process.” Therefore, picture normalization is a recommended 
practice: pixel values range between 0 and 1. The images in 
the dataset were normalized(rescaled) using the python 
ImageDataGenerator method and passing rescale=1. /255 as 
its argument. 

The two image formats considered in this study are RGB 
images and Grayscale images. The dataset consists of images 
in RGB format. An RGB (red, green, blue) image is a three-
dimensional byte array that stores a unique color value for 
each pixel. RGB image arrays consist of width, height, and 
three-color channels. An RGB image can be regarded 
logically as three independent images (a red scale image, a 
green scale image, and a blue scale image) placed on top 
of each other, as shown in Fig. 2. 

Fig. 2. RGB Image Representation. 

An image in RGB format increases the complexity of the 
model. This is why it is preferable to use grayscale images 
over RGB to simplify computation. 
A grayscale image, as illustrated in Fig. 3, it does not contain 
color information rather, it contains only information related 

assessment of BMD in the study women was also used to 
decide whether densitometry testing was required (based on a 
questionnaire with questions largely regarding dietary habits). 
Regression trees were used to identify which elements were 
most crucial, and SVMs were used to build a mathematical 
model that reflected the relationship. The most important 
things for postmenopausal women to do to prevent bone 
density loss include consuming extra calcium, getting enough 
sun, managing their weight, exercising regularly, and eating 
enough calories [14]. 

The authors in [15], based on identified risk factors, 
established a modern, effective bone disease prediction 
model. Then, using Pre-training and fine-tuning, it was 
possible to identify the early risk factors for determining the 
start of bone problems. During the pre-training phase, the most 
important risk factors are combined with model parameters to 
calculate contrastive divergence, which reduces record size. 
The results of the previous phase were compared using the 
ground truth values "g1" and "g2," where g1 represented 
osteoporosis and g2 represented a rate of bone loss. Deep 
Belief Network (DBN) was used to generate the model, which 
was then compared to models created before and after critical 
feature identification. The study's findings suggested that 
including relevant variables could increase the 
prediction model's effectiveness, [15]. 

The authors in [16] created and assessed DL approaches 
for osteoporosis classification using Dental Panoramic 
Radiographs (DPR). In this work, various CNN models for 
osteoporosis discriminating accuracy were tested using 
panoramic radiograph pictures that had been categorized 
based on BMD value (T-score). The effects of transfer 
learning and fine-tuning a deep CNN model were also 
evaluated in terms of classification performance. Deep CNN’s 
have been found to be useful for classifying images, but 
because they need a lot of training data, it is challenging to 
apply them to radiographic medical imaging data. Transfer 
learning is a popular strategy for training deep CNN’s without 
"overfitting" when the target dataset is significantly smaller 
than the basis dataset [17]. 

3. Materials and Methods
3.1 Data Acquisition 

The dataset was gotten from a public dataset repository for 
machine learning called Kaggle. The name of the Kaggle repo 
is “Osteoporosis Knee X-ray Dataset”, version 1, uploaded on 
the 16th of September, 2021 accessible via 
www.kaggle.com/stevepython/datasets. The number 
of images was increased using data augmentation. Fig. 1 
shows two images from the dataset indicating osteoporosis 
cases and normal cases. 

3.2 Image Scaling 

3.3 Image Formats 
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to pixel brightness. The grayscale data matrix values are then 
used to indicate intensities. 

Fig. 3 Grayscale Image Representation

Overfitting can be reduced by using a technique called 
data augmentation. “Overfitting occurs when a“model learns 
a function with a relatively large variance to perfectly model 
the training data” [21]. For this study, the Keras 
ImageDataGenerator python class was used to perform data 
augmentation using a variety of augmentation techniques as 
itemized below: 

1. Standardization
2. Rotation
3. Shifts
4. Brightness changes, among others

Fig. 4. GoogLeNet Model [24]. 

Fig. 5. VGG-16 Model [20]. 

3.4 Data Augmentation 

The Keras ImageDataGenerator class is intended to give 
real-time data augmentation, which is said to be its key 
advantage. Every epoch, the model is given fresh versions of 
the images thanks to the ImageDataGenerator class. 

3.5 Transfer Learning Model Architecture 

Three transfer learning model architectures were applied: 
GoogLeNet, VGG-16, and ResNet-50. All the layers of the 
pre-trained model were made to be non-trainable. However, 
some of the layers could be re-trained to increase performance 
but at the cost of a higher chance of model overfitting. For this 
model, as the loss metric, binary_crossentropy was used as the 
dataset target has two classes (i.e., binary classification 
problem). RMSprop is the chosen optimizer, and its learning 
rate is 0.001. Each model underwent 10 epochs of training. 

The GoogleNet is a 22-layer deep convolutional 
neural architecture that addressed computer vision issues such 
as object recognition and image classification in the 
ImageNet It has achieved 93.9% accuracy in the top 5 
results [18], [19]. Fig. 4 shows the GoogLeNet model's 
architecture. 

VGG16 is CNN architecture. Having 16 layers and 
is distinguished by its simplicity by having just a stack 
of 33 convolutional layers on top of each other, with 
the max-pooling layers handling the rising depth and 
volume size. A softmax layer comes after two fully linked 
layers with 4096 nodes each [20]. In ImageNet, the 
VGG16 model obtained top-5 test accuracy “of 92.7%. 
Fig. 5. Shows the VGG-16” model architecture [20]. 
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We experimented with the osteoporosis patient knee x-
rays dataset. In all transfer learning models, the dataset was 
split into 80:20 ratio for training and testing. The overall 
accuracy obtained for all the classifiers on the dataset is 
summarized in Table II. Each model underwent 10 epochs of 
training. For all models, as the loss metric, 
binary_crossentropy was used as the dataset target has two 
classes (i.e., binary classification problem). RMSprop is the 
chosen optimizer, and its learning rate is 0. 001. The Keras 
evaluate function was invoked on the compiled model with the 
test data as an argument to evaluate the accuracy of the 
models. 

The confusion matrix for the transfer learning models is 
presented in “Fig. 6, Fig. 7, Fig. 8, and Fig. 9” 

 

 

 
Fig. 6. Confusion Matrix for GoogLeNet Model on Grayscale. 
 
 
 

 

 
Fig. 7. Confusion Matrix for VGG-16 on Grayscale 

 
Fig. 8. Confusion Matrix for GoogLeNet on RGB 

 
 

 
Fig. 9. Confusion Matrix for VGG-16 on RGB 

 

The following deep learning classification metric were 
used to further understand the performance of the models on 
the two modalities of the image formats. 

 
Sensitivity = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
            (1) 

 
Specificity = 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 +𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
    (2) 

 
Accuracy” = 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑎𝑙𝑙  𝑐𝑎𝑠𝑒𝑠
      (3) 

 
Precision” = 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
      (4) 

 
F1”      =      2 x 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                   (5) 

 

Table II and Table III show the accuracy, epoch, and 
training time of the models on grayscale images and RGB 

4. Results 

4.1 Confusion Matrix 

4.2 Classification Metrics 
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images respectively. Table IV provides a comparison of our 
work with similar works on accuracy 

TABLE II. RESULTS OBTAINED FOR GRAYSCALE IMAGES      

Ac Se/Re Sp Pr F1-
Score 

Time 

(minutes)

GoogLeNet 0.90 0.91 0.90 0.89 0.90 42 
VGG-16 0.87 0.86 0.86 0.87 0.86 37 

TABLE III. RESULTS OBTAINED FOR RGB IMAGES  

Ac Se/Re Sp Pr F1-
Score 

Time 

(minutes)

GoogLeNet 0.84 0.85 0.84 0.83 0.85 50 
VGG-16 0.79 0.81 0.81 0.78 0.79 44 

*AC: ACCURACY, SE: SENSITIVITY  RE: RECALL, SP: SPECIFICITY

TABLE IV.       COMPARISON WITH OTHER SIMILAR WORK 

Paper Method Ac Se Sp 

Our Paper GoogLeNet 0.90 0.91 0.90 
Our Paper VGG-16 0.87 0.86 0.86 

N. Yamamoto et 
al., [21]

ResNet-18 0.79 0.86 0.86 

N. Yamamoto et 
al., [21]

ResNet-34 0.84 0.88 0.86 

K. S. Lee et al., [22] VGG-16-
Fine-Tuning 

0.84 0.90 0.81 

K. S. Lee et al., [22] CNN with 3 
layers 

0.66 0.68 0.65 

S. Sukegawa et al., [23] ResNet-50 0.83 0.75 0.90 

*AC: ACCURACY, SE: SENSITIVITY, SP: SPECIFICITY

The behavior of the models in terms of speed over several 
iterations can be better visualized in the following figures. 

Fig. 7. Time Chart for Grayscale Training. 

Fig. 8. Time Chart for Grayscale Training. 

Fig. 9, Fig. 10, Fig. 11, and Fig. 12 shows the training and 
validation accuracy for all deep learning models used. 

Fig. 9. Train/Accuracy Graph for GoogLeNet on Grayscale Images. 

. 
Fig. 10. Train/Accuracy Graph for VGG-16 on Grayscale Images. 
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4.3 Training Time Chart 

4.4 Training and Validation Accuracy Graph 
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Fig. 11. Train/Accuracy Graph for GoogLeNet on RGB Images. 

 

 
Fig. 12. Train/Accuracy Graph for VGG-16 on RGB Images. 

 

 Five folds were randomly selected from the training 
dataset of the chosen images. This prevented bias or 
overfitting while performing a 5-fold cross-validation on the 
model training. The dataset was split into independent 
training and validation sets within each fold using an 80 to 20 
split. A validation set that was completely different from the 
other training folds was chosen in order to assess the training 
state throughout training. Once one model training phase was 
complete, the other independent fold was utilized as a 
validation set, and the previous validation set was recycled as 
part of the training set to evaluate the model training. 
 

 

This study uses a dataset of knee radiographs (i.e., knee-
Xray images) to apply and compare the training time of two 
robust transfer learning model algorithms. The transfer 
learning models applied were GoogLeNet, and VGG-16.  

ImageDataGenerator was used to augment the dataset and 
increase the number of training data to provide a variety of 
images for the models. The dataset was split into two 
subcategories using python opencv library: Grayscale Images 
and Red Green Blue (RGB) images. From the scikit learn 
python analysis, the training time of the GoogLeNet model on 
grayscale images and RGB images was 42minutes and 50 
minutes respectively. The VGG-16 model training time on 

grayscale images and RGB images was 37 minutes and 44 
minutes respectively. In addition, to compare the diagnostic 
performance of the two models, several state-of-the-art neural 
networks metric was used. 

Osteoporosis is caused not just by low bone mineral 
density, but also by other factors such as age, gender, weight, 
height, and so on. These are clinically important risk factors 
for osteoporosis. For future work, we would like to extend our 
methods by adding patient variables such as age, and gender, 
amongst others, as clinical covariates to create an ensemble 
model with the transfer learning models. 
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