
Almost every installation of cognitive IEEE-802.X wireless
communication standards [1] which are designed and 
implemented for Supervisory Control and Data Acquisition 
(SCADA) based Digital Wireless Wide Area Networks 
(SCADA-DWWAN) including Industrial Control Network 
standards (DCS-Net) suffer from both co-channel interference 
(CCI) as well as bandwidth congestion for most of the multiple
user stations or multi-access orthogonal transceiver stations
[1], [16], [12]. Undiversified relaying, manual discrepancies
in the network resource management as well as
channel equalization errors lead to congestion and latency in
secondary channels [1], which causes disruption and
biasing in the utilization of the primary channel
bandwidth, leading to spectrum losses [16]. Full-duplex
switched-mode transmissions [11], [15] suffer the worst
bandwidth discrepancy [1], [15] which occurs due to relay-
buffer losses, bandwidth congestion and latency [1], [11],
[15]. Field studies [1], [7] and simulation tests [16] show
that ‘proper sensing and allocation’ of sub-band resources
in the Physical layer, Data-Link layer as well as Network
layer of the different ‘secondary station users’ in each of the
multiple access primary channels (PHY,MAC,FTP)

using ‘cooperative’ and ‘adaptive’ spectrum sensing and
sharing is likely to help mitigate the spectrum deficiencies
caused by congestion which will collaboratively enhance the 
stability and fidelity of the network system. Although 
conventional artificial intelligence based models including 
machine learning prototypes [1], [16] as well as deep
learning neural network prototypes [16] and numerous 
convolutional neural network prototypes [16] have been 
designed, proposed and virtually tested in real time 
simulations, yet static convergence errors as well as 
dynamic decision errors show high rates of false-alarm and 
heuristic lags especially ranging over high frequency 
operational bands (350Mhz - 480Mhz) [1], [2]. Since
industrial supervisory and control networks mostly focus 
and rely upon precise controllability as well as high 
observation accuracy, hence Artificial Neural Networks 
(ANN’s) utilizing adaptive learning, training and decision 
models are potentially likely to provide reliable solutions 
[1][16]. In our study, we have tested two popular ADALINE 
(Adaptive Linear Neuron) [6], [9], [13] based neural
network models for application in ‘spectrum sensing’ [5] as 
well as ‘spectrum allocation’ [12], [15] which are
operationally semi-supervised,  dynamic  decision  models  and
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have been formulated and simulated in an 
IEEE-802.22x SCADA-DWWAN based virtual transmission 
environment [1]. A novel Hidden Markov type stochastic 
gradient based training model [3] has been infused upon 
the standard “Widrow-Hoff Learning Method” 
implemented over Steepest Gradient Descent / Ascent (or 
Delta-learning) Rule using tuned kernel widths [13], 
thereby providing high dynamic learning adaptability 
as well as improved convergence during semi-supervised 
regression. To ensure good controllability and equalised 
error interpolation, two novel Kalman optimization models 
[6], [9] have been implemented upon a Least Mean Square 
(LMS) based spectrum sensing neuron [5] as well as a 
Kernelized Recursive Least Square (KRLS) based spectrum 
decisive neuron [12], [15]. An “affinity detection 
and clustering” based feature extraction approach [2], [4] is 
utilized for the sensing “or extraction” of Sub-Band Nyquist 
clusters from a spatial Constellation sequence [10] carrying 8-
bit / 256-Quaternary Amplitude Modulation signals over an 
orthogonal multiple access transmission channel [11], [12], 
[15]. Applying a maximally correlative entropy equalization 
[17], [13] concept, or “maximum-correntropy” condition, 
an adaptive channel diversity [11], [12], [15] based relaying 
and pipelining model is implemented which trains and 
decides the sub-channel spectrum allocation margins 
(or “Shannon sub-bands”) according to an Eigen-space 
MLSE (Minimum Least Square Estimation) minimization 
approach [8], [17], known as “Perron-Frobenius” model [17]. 
Thus, channel detection is achieved by identifying the 
cumulative entropies as well as mass ensemble distributions 
(CMF) in terms of some frequency convolved Energy 
Spectrum Distributions (ESD) by sequentially 
identifying and approximating the envelope side-band levels 
using Fourier Bessel Transforms and Huang-Hilbert 
Transforms [14] upon the sequentially identified Nyquist 
clusters with our proposed Markov-ADALINE type KRLS 
Neuron. An adaptively equalized routing prototype employs an 
Automatic Repeat Request (ARQ) based switch [15], [17], 
[22] over an adaptive orthogonal frequency division multiple 
access (OFDMA) virtual channel [7], [11], [15] for dedicated 
downlink relaying by estimating and aggregating the Maximal 
Signal-to-Noise Ratio (SNR) for each orthogonal sub-user 
links with a proposed ANN approach [3] against the 
minimum Bit Error Ratio (BER) paths by normalizing and 
mixing the Maximal sub-channel SNR Gains [7], [15] 
over each route using a Maximal Ratio Combination 
approach. A semi-supervised approach has been 
formulated and proposed by authors [11], [12] by 
updating the cost transition vectors using some ergodic 
Lagrangian determinants. This concept is being virtually 
implemented by our proposed Steepest Gradient Ascent/
Descent based Hidden Markov Determinants (or 
Liapunov State Minimization Determinants, “LSMD”) with 
respect to the ergodically but asymmetrically distributed 
“Perron-Frobenius” Eigen State Space Reduction (Eigen-SSR) 
Model [3], [17].

Finally, generic training and learning performances have 
been obtained, visualized and then virtually tested with 
reference to the overall improvement in bandwidth equalization 
[17], [20] as well as spectrum sensing [8] over the 
entire multiple access transmission channel [1], [15]. 

In this work, we report the design of an ANN based
spectrum sensing and allocation system designed for a virtual 
SCADA-DCS framework. The design considers an adaptive 
Automatic Repeat Request (ARQ) mechanism in support of an 
Adaptive OFDMA network layout, as depicted in the block 
diagram in Fig. 1. Furthermore, the system uses Successive 
Interference Cancellation (SCI) which provides improved 
interference cancellation for bandwidth optimization [12]. 

2. Proposed Work

Fig. 1. Block Diagram for Kalman-SGD/SGA ADALINE 

2.1 Spectrum Sensing 

Constellation sequences which are obtained from a 
synchronous rake receiver channelling 8-bit octal words 
encoded over 256-Quaternary Amplitude Modulation (256-
QAM) carrier signals are fed to a Kalman-optimized Least 
Mean Square ADALINE (LMSE) [6], to obtain the stochastic 
weights identifying each constellation cluster sequence using 
Steepest Gradient Descent rule (SGD), as shown in the block 
diagram in Fig. 1. A novel Hidden Markov training model [3] 
is implemented to optimize the sequencing and interpolation 
speeds as well as minimize the convergence errors while 
sampling the SGD training samples (or batches) for 
improvising the convergence speeds and regression efficiency 
of the SGD model. Thus, the ‘Nyquist clusters’ are identified 
and extracted from the constellation sequences by employing a 
novel Affinity Propagation [2], [4] clustering method 
which detects the maximum availability measures (or 
maximum similarity measure between auto-correlation 
and auto-covariance) of each sequences between each 
constellation points [10] in order to identify and 
‘automatically link the constellation points’ into ‘groups’ 
of separate sequential clusters or ‘common correntropy 
symbols’ carrying similar information, known as ‘Nyquist-
Bands’. By implementing an interpolative Fourier-Bessel 
Transform upon the identified and extracted Nyquist-clusters 
followed by Hilbert Transform using the novel Markov 
Trained SGD model under Gaussian Q-function limits, the 
gradient of the individual energy spectrum densities 
(ESD) or entropy transition levels corresponding to 
each of the ‘ergodically identified’ or ‘sensed’ clusters 
are being detected and are converged to identify the 
number of ‘channel transitions’ corresponding to each of the 
discrete energy levels in terms of cumulative mass function 
distribution (CMF). This detected ensemble
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distribution corresponds to the aggregate Secondary User sub-
bands against each Primary Channel User.  

Fig. 2. Generic logic flow model of ADALINE 

Let us consider the standard logic flow model of our 
proposed ADALINE Neuron as depicted in Fig.2.The Widrow-
Hoff interpolation levels obtained for a parabolic sample signal 
implementing Steepest Gradient Descent (SGD) can be 
approximated as given in Fig.3. Let us consider the general 
MQAM signal entropy function as given by,- 

 Φ√
2∈

𝑇𝑠
(𝑎𝑖 𝑐𝑜𝑠

2𝜋𝑡

𝑇𝑠
+ 𝑏𝑖 𝑠𝑖𝑛

2𝜋𝑡

𝑇𝑠
) 

Fig. 3. General pattern of Newtonian Interpolation for SGA/SGD 

Where, ∈   is the Minimum amplitude or lowest entropy 
signal and (𝑎𝑖 , 𝑏𝑖 )  are the Eigen co-factors of any random
signal constellation point determined according to the 
respective coordinate location (Euclidean distance from each 

local centroids) . Let us consider a norm L = √𝑀 , for any M-
coded Orthogonal QAM Signal (here, M = 256). 

The local centroids corresponding to each individual 
constellation Nyquist Cluster can be determined with the ith 
message points cardinally located as the binary tuple vector 

(𝑎𝑖√∈ , 𝑏𝑖√∈ ), where Eigen co-factors are an element of the
{LxL} matrix given by ,- 

(𝑎𝑖 , 𝑏𝑖 ) = [

(−𝐿 + 1, 𝐿 − 1) (−𝐿 + 3, 𝐿 − 1) … (𝐿 − 1, 𝐿 − 1)
(−𝐿 + 1, 𝐿 − 3)

⋮
(−𝐿 + 3, 𝐿 − 3)

⋮
… (𝐿 − 1, 𝐿 − 3)

⋮
(−𝐿 + 1,−𝐿 + 1) (−𝐿 + 3,−𝐿 + 1) … (𝐿 − 1,−𝐿 + 1)

]   (2)  

     Let us consider the following typical S-T Windowed 
Constellation [16] , as shown in Fig. 4, standard for any M-
QAM Signal undergoing AWGN Noise and Rayleigh Fading, 
given by authors [16], for (xm, yn) tuples , where h = (x, y) 
denotes the I/Q coordinates of the 256-QAM / 8-bit Signal , - 

Fig. 4. S/T Windowed Constellation for MQAM Signal [16] 

The constellation In-Phase / Quadrature (I/Q) coordinates 
can be expressed as given by authors [10]  , - 

(xm , yn )   = [(2n-1) +1-√𝑀 ].d + [2.mod(m , 2) -1]. ( 𝑎
2
) 

-[2(m -1) + 1 - √𝑀 ]. ( 𝑏
2
)                            (3) 

where ,  d  is the cluster point Euclidean distance from local  

centroids;    and (m, n)      [1, …… ,√𝑴 ] ; 

2.2 Spectrum Allocation 

Corresponding to the CMF Levels, the signals extracted 
from each of the detected 256-clusters are being weighted by a 
Maximum Likelihood Sequence Estimator (MLSE) according 
to the individual aggregate ratios between Signal Power to 
Noise Power ratios (SNR) as well as Bit Error Rates (BER) for 
each ‘identified’ cluster [2], [8], [7]. Then, a clocked 
register phase-normalizes each of the serial cluster 
packets by co-phasing them (using a sequential clock 
synchronous phasing circuit) and feeding them serially 
to an ARQ assembly controlled by a Kernelized [9], [13] 
Recursive Least Square (KRLS) ANN. Further, 20-virtual 
users comprising of 16-secondary users and 4-primary 
channel users have been implemented for parallel signal 
pipelining. The optimum transmission and reception 
capacity corresponding to each channel sub-user is 
determined using the delay information with respect to the 
maximal diversity ratios, or SNR gains mixed with 
minimum BER paths [7], [15], which is identified and 
approximated from the envelope energies (ensemble 
entropies)  by the Eigen-Space Minimization [17][8] 
model using HMM determinants [3], prior to each 
acknowledgement and non-acknowledgement key (ACK/
NACK) [11][12]. Thus, using sequential/regressive training of 
the switching rates using a novel ‘Lagrangian-
Determinant’ [12] for a Markov-trained Hybrid-ARQ [3]
[17], average Shannon Bands (sub-bands) are being 
determined corresponding to each primary/secondary 
station groups to achieve optimized sharing of the 
bandwidth while ensuring minimum buffer wastage as well 
as minimum critical latency. Hilbert frequency transforms [14] 
are used and learning curves are characterized for 
evaluating the performance and fidelity of our proposed 
architecture. 

3. Proposed Methodology and Design
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     Thus, the similarity matrix, for each constellation point can 
be determined as [2][4]: 

 ϒ(m,n)  = ║(xm , xn )2 – (ym , yn)2║  (4) 

Let, tuple vector : hk = [ℎ𝑘 ℎ𝑘−1 ℎ𝑘−2    ℎ𝑘−3 … ℎ𝑘−𝑁] 
T 

We know for  LMS-SGD :     𝑑𝑘(𝑛)̃ = wT
N (n)* hN (n)  (5) 

ѐk (n) =  hk (n) - 𝑑𝑘(𝑛)̃  (6) 

𝑤𝑁 (n+1) = 𝑤𝑁 (n) - α ѐk 
*(n) hN (n)  (7) 

Where, 𝑤𝑁   is the weight vector, 𝑑𝑘(𝑛)̃   is the
equalizer learning output, ѐk (n) is the iteration step error, 
hk (n) is the desired asymptote (local maxima of the SGD) 
and α is the convergence ratio or step size factor for an 
Ergodic distribution, and N  size of input constellation (m,n) 

The weight update function taken for normalized batches is,- 

𝑤𝑁  (n+1) = 𝑤𝑁 (n) – 
1

2
α
𝛿ѐ2𝑘

𝛿𝑤𝑁
= 𝑤𝑁 (n) + α ѐk (n) 

𝑑𝑇𝑛

𝑑𝑛 𝑑
𝑇
𝑛

  (8) 

 Let ∑ (𝑥~𝑛)
2/𝜆
0   denote the state covariance matrix of

the weight transition vector, where λ  is the eigenvalue of the 
state covariance matrix and 𝑅𝑁𝑁  denote the input correlation
matrix. Convolving Kalman Filter rule in LMS / KRLS 
Widrow-Hoff Condition, we derive the posterior Kalman state 
space model as given below ,-  

α(n) =  𝑑𝑘(𝑛) - hk 
T(n) . 𝑤𝑁  (9) 

 𝑤𝑁 (n+1) = λ𝑤𝑁 +λ [
∑ (𝑥~𝑛
2/𝜆
0 ) ℎ𝑘(𝑛) 𝛼(𝑛)

ℎ𝑘
𝑇(𝑛) ∑ (𝑥~𝑛

2/𝜆
0 ) ℎ𝑘(𝑛) + 𝑒𝑘(𝑛) 

]    (10) 

 ∑ (𝑥~ 𝑛 + 1)
2/𝜆
0   =  λ2 ∑ (𝑥~ 𝑛)

2/𝜆
0  - �̈�𝑘 +  𝜇𝑘(n)  (11) 

�̈�𝑘   =   [
λ2  ∑ (𝑥~𝑛

2/𝜆
0 )  ℎ𝑘(𝑛) ℎ𝑘(𝑛)

𝑇  .  ∑ (𝑥~𝑛
2/𝜆
0 )𝐻

ℎ𝑘
𝑇(𝑛) ∑ (𝑥~𝑛

2/𝜆
0 ) ℎ𝑘(𝑛) + 𝑒𝑘(𝑛) 

]  (12) 

𝜇𝑘(𝑛)  =   hk 
T(n).  𝑅𝑘𝑘

−1(𝑛 − 1).   hk (n)  (13) 

To estimate the Affinity Correlation margins in order to 
iteratively determine the Minimum Entropy distances between 
each constellation propagation path, let us first derive the 
reduced correntropy determinants for Kalman-LMS/KRLS 
traced AP/SGD as we obtain the adaptive training state model,- 

�̈�(n)= ϒk (n)[
𝜕∑ (𝑥~𝑛

2/𝜆
0 )

𝜕λ
] - 𝑅𝑘𝑘

−1(𝑛 − 1) hk-1(n). 𝑤𝑘(n)    (14)

[𝜎𝑤(𝑛 + 1)]
2 =  [𝜎𝑤(𝑛)]

2 (1 −
ℎ𝑘(𝑛) /𝑁

ℎ𝑘(𝑛)+𝑒𝑘(𝑛)/ [𝜎𝑤(𝑛)]
2) + 𝜇𝑘 (15)

𝑤𝑁(𝑛 + 1) = 𝑤𝑁(𝑛) + 
 [𝑑𝑘(𝑛)∗�̈�(𝑛)]+ϒ𝑘 

ℎ𝑘(𝑛)+ 𝑒𝑘(𝑛) / [𝜎𝑤(𝑛)]
2  (16) 

The recursive hyper-parameters or gradient interpolation 
determinants for affinity propagation clustering [4] to “extract” 
the constellation correntropy clusters for MQAM Const.n are,- 

Responsibility / Availability  margins  : (r
(∗)
→ a)  ,  -

𝑟(𝑁)(𝑚, 𝑛) = (1 − 𝛽)( ϒ(𝑚, 𝑛) −
𝑚𝑎𝑥 
𝑘 ≠ 𝑛

{𝑎(𝑚, 𝑛) +

 ϒ(𝑚, 𝑛)} + {𝛽 ∗ 𝑟(𝑁−1)(𝑚, 𝑛)}  (17) 

𝑎(𝑁)(𝑚, 𝑛) =

{

(1 − 𝛽)(min (0, 𝑟(𝑚, 𝑛) + ∑
max (0, 𝑟(𝑘, 𝑛)))) +

{𝛽 ∗ 𝑎(𝑁−1)(𝑚, 𝑛)}
𝑁
𝑘≠{𝑚,𝑛}

𝑖𝑓  (𝑚 ≠ 𝑛)  ;
𝑜𝑟

(1 − 𝛽) ∗ {∑ max (0, 𝑟(𝑘, 𝑛))) +𝑁
𝑘≠(𝑛) {𝛽 ∗ 𝑎(𝑁−1)(𝑚, 𝑛)}

𝑖𝑓 (𝑚 = 𝑛)  ;

Where,  𝛽 :[0,1]  is the exponential damping fraction known 
as the “regression factor”. Bigger values of (𝛽)  lowers the 
possibility of oscillation as well error in the iteration process, 
and also kernelizes the epoch points. Here, 𝑟  denotes the 
responsibility margin and 𝑎  denotes the availability margin. 

The next step is to identify the ensemble densities (or 
Energy Spectrum Density) for each identified clusters in terms 
of their band distribution, and then determining their 
cumulative Gaussian entropy levels for channel estimation. In 
order to improve convergence speeds as well as dynamic 
efficiency, authors [3] have proposed and implemented a 
Markov Trained, Eigen-Space induction  model upon the 
conventional Kalman-LMS approach in order to “dynamically 
reduce” the training batch sizes during each LMS iteration.  

For an Ergodic model, Markov State model is given as [3], - 

𝜃𝑘+1
(ϒ) = 𝜃𝑘

(ϒ) – ϒ.[f’(𝜃′𝑘 (ϒ)) + 𝜂𝑘+1. 𝜃𝑘
(ϒ)  

Provided,   ℎ𝑛 = ϗ𝑘+1́  . 𝜃𝑘+1 + ѐk (n)  (18) 

Where, 𝜂   is the regression factor ;  ϗ𝑘+1́   is the state
convergence factor, �̈�(n) in HMM Model space. ϒ  is the 
similarity determinant obtained by taking the Wronskian 
Determinant for each 𝑅𝑁𝑁 .

For any epoch nodal point, along the principal trajectory, 
𝜃𝑘

(ϒ) : k ∈ (𝑖, 𝑗 ≤ 𝑁), the Markovian STM (State Transition
Model) is normally given as [3] ,- 

𝜃𝑘+1
(ϒ)   =

1

𝑘+1
∑ 𝜃𝑗  
𝑘 
𝑗=0 (k) 

Thus the Most Likelihood Estimator (MLE) for Markovian 
STM masked over any orthogonal signal is given [3] as,- 

𝐸𝑘 (𝜃𝑘 - 𝜃𝑘+1)  =  ∑ [𝜃𝑘+1 − ∑ 𝜃𝑘  
𝑛
𝑗=1 {

ϗ𝑘+1́

 𝜎𝑤(𝑘)
}
𝜂𝑘+1

]𝑚
𝑖=1 𝐼𝜃𝑘≤𝜃𝑖

=    𝜂𝑘+1 ∑ ∑ 𝜃𝑘
𝑛
𝑗

𝑚
𝑖 𝜇𝑘 (i,j)    =   Ϙ (𝜂𝑘+1)

To find the Eigen Space Model, authors [3] have provided 
Liapunov determinants to determine any general Minimization 
Model for Markovian MLSE Interpolation which can be used 
identically in place of Lagrangian Correctors [11][12][15] for 
predicting and correcting decision margins in terms of both 
LMS and KRLS Markovian approximation as given by ,-  

Г1
ϗ�́� (𝜃𝑘 , 𝑛) = - 𝜂 ∑ 𝐸𝑘

𝑁
𝑗=𝑛 𝜃′𝑘{(ϗ𝑘+1́ . ϗ𝑘+1́  

𝐻)𝑗 − 𝜆𝐼)(𝜃𝑘 - 𝑒𝑘)

Г1
ϗ�́� (𝜃𝑘 , 𝑛) = 𝜂 ∑ 𝐸𝑘

𝑁
𝑗=𝑛 𝜃′𝑘 . ϗ𝑘+1́ 𝑗

. 𝑒𝑘𝑗  (19) 

Thus, the Maximum Correntropy condition described in terms 
of Eigen-Space minimization criterion is derived by us 
according to the ODE-MSE ensemble distribution given by 
authors [3] as  , - 
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‖− 𝜂∑𝐸𝑘

𝑁

𝑗=𝑛

𝜃′𝑘+1 {
ϗ𝑘+1́

 𝜎𝑤(𝑘)
}
𝜂𝑘+1

{(ϗ𝑘+1́ . ϗ𝑘+1́  
𝐻)𝑗 − 𝜆𝐼)‖

≤  Ϙ (𝜂2
𝑘+1

+  𝜂𝛽 ){Г(𝜃𝑘  −  𝑒𝑘) + 1}

Applying Wronskian Space model for input correlation matrix , 
𝑅𝑁𝑁 , the minimization model in term of co-variance margin

{�̈�𝑘 }can be further expressed as , - 

𝐸𝑛 * W
𝑁
↔ (𝜃𝑘( ϒ), 𝜎𝑤(𝑛)) = (1 − 𝜆𝑤 .η) W (𝜃𝑘 {

ϗ𝑘+1́

 𝜎𝑤(𝑘)
}
𝜂𝑘+1

+ Ϙ (𝜂2
𝑘+1

+  𝜂𝛽 )  (20) 

And the weight update condition according to the “Perron-
Frobenius” condition [17][8] can be obtained as , - 

- 𝜆𝑤 .η + Ϙ (𝜂2
𝑘+1
 ) + Ϙ (𝜂𝛽 ) ≤  𝜆𝑤(𝑛 + 1) .η  (21) 

To apply maximum correntropy decision model in a Kalman-

KRLS [9][13] ADALINE model, the following standard 

algorithm is considered . Here, f(∘) corresponds to a 

transformation function like Fourier-Bessel Transform as well 

as Huang-Hilbert Transform [14] for Gaussian Q-determinant. 

Upper and lower bounds are determined according to 

maximum MSE Probabilities as derived by authors [3] . 

The experimental works are carried out as per the flow
logic as depicted in Fig. 5. The schematic is implemented using 
Matlab-R/2022(a) compiler with a VeriLog assembly design. 

Fig. 7. AP Clustering based on Maximum Correntropy Margins 

iterative minimization of the Euclidean Norm (Sec.III). For 
convenience, only an S/T windowed [16] portion is displayed. 

Fig. 8.  Energy Spectrum Density and Entropy Level Detection 

The Gaussian Energy Spectrum Density (ESD) extraction, 
as shown in Fig. 8, has been determined using a Second Order 

Initialize 
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Iterate and Update Cost Function (J(*)) 
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Determine Markovian Convergence 
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2

4. Simulation Results

4.1 Transmitted and Received Signal Constellation 

Fig. 6. Received Constellation Scatter plot for Rake Receiver 

A 256-QAM/8-bit digital, orthogonally encoded signal is 
transmitted over a Rayleigh Fading channel with Active White 
Gaussian Noise (AWGN) margin of +10.4dB, as depicted in 
Fig. 6. Baud speed is set up to 2.2Mbps 
(IEEE-802.22x standard) [1], [16] , and channel capacity is 
14.2Mbps with a total channel bandwidth capacity of 
15Mhz [1]. Spatial constellation plot is obtained by a rake 
receiver assembled with a synchronous PLL-VCO decoder.   

4.2 Nyquist Cluster Estimation for 256-QAM 
Scatter Plot

     Considering the simulation plot shown in Fig. 7, sequential 
sub-band cluster nodes are recursively “approximated” through  

4.3 Spectrum Ensemble and Channel Entropy 
Detection 
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(a) 

(b) 

 Fig. 9. Eigen-Space Plot for Spectral Estimation (MLSE) 

 

Fig. 10. ARQ Sub-band allocation using MLSE Minimization 

Considering the weight nodal decisions taken by the Eigen-
Space Entropy MLSE plot, which is used for learning and 
minimizing the spectral divergence in the previous subsection, 
the Kernelized Recursive network updates and iterates the 
Automatic Repeat Request (ARQ) switching delays according 
to the corresponding Markovian trained sequences as shown in 

Fig. 5. Schematic layout of Markov Trained Kalman-LMS/KRLS Adaptive Spectrum Equalizer

Fourier-Bessel Transform sequentially traced over each 
identified “Nyquist clusters” as described in Section-(III). 
Upper bound and lower bound ensemble margins have been 
determined using ODE mass function limits as described 
by authors [3]. Thus, applying MLSE-Quantization [8]m 
[17] and Huang-Hilbert norms [14] upon the “extracted” 
ESD, entropy transition levels have been approximated 
and extracted iteratively. 

4.4 Eigen-Space Minimation and Markovian 
Decision Nodes 

Considering the simulation diagrams depicted in Fig. 9, a 
real time graphical visualization of the proposed 
“Perron-Frobenius” MLSE maximization approach [17]m 
[8] has been given as explained in Section-III. Diagram_(a) 
visualizes the minimum spectral dispersion condition 
corresponding to Eigen Spectral gaps for the determined 
ESD and stochastically identified CMF Gaussian 
Entropy levels. Diagram_(b) characterizes the 
conditional Central Node decision taken recursively by 
the Markovian SGD/SGA model for optimum channel 
estimation and diversity channeling as described in the next 
subsection. 

4.5 KRLS-ARQ switching for Maximal Ratio  
Combination 
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Fig. 10. The adaptive cost function [9], [13] determined 
for kernel batch learning models supervises the relaying 
speeds for each OFDMA sub-bands (or Shannon-Bands) . The 
“optimum” relaying speed used for packet-buffer 
transmissions in each orthogonally multiplexed sub-
channel is determined recursively by the KRLS-ARQ 
engine considering a Maximal Ratio Combination [15] 
condition to equalize the SNR gains while minimizing (or 
normalizing) the BER levels for each sub-channel. Thus, 
bandwidth equalization is achieved by regressively 
approximating the channel diversity determinants. 

 Using Huang-Hilbert Transform [14] over the sequentially 
transmitted buffer links, we thus obtain the overall 
Instantaneous Bandwidth Distribution which are artificially 
identified for the Virtually Simulated SCADA-OFDMA 
Transmission Channel [1] . 

Fig. 11. Bandwidth Distribution for Manual Transmission 

 Fig. 12. Bandwidth Distribution for Supervised Adaptive 
Transmission using ANN 

The given plots describe the spectrum utilization over the 
virtual IEEE-802.22x OFDMA adaptive channel. Fig. 11 plots 
the Bandwidth coverage for regular transmissions for the 
SCADA-DCS standard. Fig. 12 plots the same bandwidth 
distribution for spectrum equalized channel. We observe from 
comparison, that an aggregate marginal coverage of ~94.8% is 
achieved after bandwidth equalization, as compared to the 
~48.8% coverage for a maximum bandwidth allotment of 
15Mhz with a maximum capacity of 14.2Mbps, with buffer 
speeds of 2.8Mbps. Thus, an absolute bandwidth improvement 
of nearly 50% has been achieved in the allotted channel 
capacity. It can also be observed that normalization precision 
of the individual sub-channel SNR and BER ratios effect the 
Shannon-Band’s allocation especially in a “reflexive” manner, 

5. Performance Evaluation
5.1 Retransmitted Signal Improvement by 
ANN Equalization 

as over-normalizing or under-normalizing distorts the 
switching diversity decision. 

5.2 Spectrum Equalization Margins and Mean 
Square Errors 

Considering the given plots, the individual 
bandwidth equalization margins with respect to the Mean 
Square Errors (MSE) traced over the entire tracking trajectory 
has been visualized. It can be observed that cascading 
stochastic induction in SGA/SGD based deterministic models 
do not hamper the regular performance of the Delta-Learning 
method. By stochastic gradient induction through Markov 
Training approach, the trained batch sizes reduce considerably 
which assures a large improvement in the dynamic 
responsiveness of conventional SGA/SGD models, as well as 
increasing the convergence speeds for random inputs which 
may or may not be causal in nature. This makes the infusion 
approach suitable for application in real time signal detection 
as well as channel allocations with observable controllability 
under unpredictable transmission environments. 
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Fig. 13. Equalization Margins for Kalman-LMS/KRLS 

     Fig. 13, determines the equalization margins for Kalman-
LMS ADALINE (shown in “green” fonts) as well as Kalman-
KRLS ADALINE (shown in “blue” fonts). The increased 
regression rates for Kalman-KRLS SGD can be understood 
from the MSE levels during nodal transitions as given below. 

Fig. 14. Mean Square Error Distribution for Kalman-LMS/KRLS 

Fig. 14, determines the Learning Accuracies in terms 
of MSE convergence patterns for Kalman-LMS 
ADALINE (shown in “green” fonts) as well as Kalman-
KRLS (shown in “blue” fonts). We can observe that a 
considerably high degree of over-learning and over-training 
situation can be seen for KRLS-SGD in comparison to 
the ergodically transient convergence pattern observed for 
Kalman-LMS SGD. Thus, dynamic adaptability is 
maintained in cluster detection while discreteness in the 
regression pattern can be ascertained for diversity 
allocation, provided the cost functions are iterated properly 
with a proper selection of minimization rates. Improper 
selection of minimization rates can severely destabilize the 
tracking performances as well.  
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6. Conclusion

In this paper, we have implemented and simulated a novel 

Stochastic Markov infusion concept over a Kalman optimized 

Steepest Gradient Ascent / Descent based Adaptive Artificial 

Neural Network to virtually implement a network resource 

allocation based operation in a SCADA-DWWAN based 

transmission standard (IEEE-802.22x) using OSI-4.0 

Architecture. Learning performances have been observed with 

respect to the improvement in bandwidth allocation though 

spectrum equalization approach over an OFDMA-ARQ based 

adaptive multiplexed channel. Results show dynamic 

adaptability, improved efficiency as well as large reduction of 

the training complexity through stochastic infusion in decisive 

ADALINE approaches. 
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