
An Anti-Noise Gearbox Fault Diagnosis Method based on Multi-Scale 

Transformer Convolution and Transfer Learning 
 

JINLIANG WU, XIAOYANG ZHENG, XINGLONG PEI 

School of Artificial Intelligence,  

Chongqing University of Technology,  

Pufu Avenue, Longxing Town, Yubei District, Chongqing, 

CHINA 
 

Abstract: - Gearbox fault diagnosis methods based on deep learning usually require a large amount of sample 

data for training, and these data are usually ideal experimental data without noise. However, due to the 

influence of complex environmental factors, a large number of effective fault samples may not be available and 

the sample data can be interfered with by noise, which affects the identification accuracy of fault diagnosis 

methods and the stability of diagnosis results. To improve the resistance to noise while achieving high 

diagnosis accuracy, a multi-scale Transformer convolution network (MTCN) based on transfer learning is 

proposed in this paper. Concretely, a multi-scale coarse-grained procedure is incorporated to capture different 

and complementary features from multiple scales and filter random noises to some extent. Meanwhile, the 

Transformer composed of an attention mechanism is utilized to extract high-level and effective features and the 

transfer learning strategy is applied to overcome the limitation of insufficient fault samples for model training. 

Finally, the experiments are conducted to verify the effectiveness of the proposed method. The results show 

that the proposed method has higher accuracy and robustness under noisy environments compared with 

previous methods. 
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1 Introduction 
Fault diagnosis is an essential and indispensable 

measure to realize the health monitor and ensure the 

safe operation of mechanical systems in modern 

society. As an important and common component of 

mechanical equipment, the gearbox has been 

extensively applied in various fields such as 

transportation, agriculture production, space flight, 

aviation, and so on, [1]. Due to the influence of 

various working environmental conditions and load 

intensity, the gearbox is vulnerable to various faults 

which could lead to accidents and loss, [2]. 

Consequently, it is of critical significance to 

research to realize high-accuracy fault diagnosis for 

gearboxes.  

At present, gearbox intelligent fault diagnosis 

methods are mainly divided into two categories: 

traditional fault diagnosis method and deep 

learning-based fault diagnosis method. In the 

traditional fault diagnosis methods, features are 

usually extracted manually from original vibration 

signals and then fed into machine learning models to 

obtain fault diagnosis results. For example, 

empirical mode decomposition and support vector 

machine are combined to diagnose the faults of gear 

reducer in [3]. To realize gearbox fault diagnosis, 

deep Boltzmann machines are developed for deep 

representations of the statistical parameters of the 

wavelet packet transform in [4]. To solve the 

problem with non-linearity and high dimension, a 

wavelet support vector machine and immune genetic 

algorithm are developed in [5]. To obtain 

quantitative indicators of gear shaft deterioration, 

the wavelet transform technique is used and EM 

algorithm and optimal Bayesian method are used for 

model parameters estimation in [6]. However, 

owing to the limitations of shallow structure and 

manual feature extraction, the traditional fault 

diagnosis method is hard to learn complex nonlinear 

relations and intrinsic fault features. 

Deep learning methods can solve the problem of 

low nonlinear performance of the shallow neural 

network and have superior generalization ability. 

Due to its unique advantages and potential in 

automatic feature extraction and pattern recognition, 

more and more deep learning methods have been 

widely applied to the research of gearbox fault 

diagnosis.  Qiu et al., [7], used a deep convolutional 

neural network (DCNN) to extract the features from 

both vertical and horizontal vibration signals of five 
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different degradation states, achieving higher 

accuracy with lower computational time cost 

compared with traditional diagnosis methods.  

Zhang et al., [8], introduced a novel method based 

on recurrent neural network (RNN) to exploit the 

temporal information of time-series data and learn 

representative features from constructed images 

which are converted into two-dimensional images 

from one-dimensional time-series vibration signals 

and used a multilayer perceptron (MLP) to 

implement fault recognition.  Yu et al., [9], 

proposed a new deep belief network (DBN), which 

inserts confidence and classification rules into the 

deep network structure to enable the model to have 

good pattern recognition performance and can 

adaptively determine the network structure and 

obtain a good understanding of the features learned 

by the deep network.  

The method based on deep learning mentioned 

above has achieved certain success in some 

applications, but there are still certain limitations. 

Owing to the structure of RNN, it’s hard to realize 

the parallelization between training samples and has 

the problem of long memory loss, [10]. Although 

CNN has a superior extraction ability for local 

features, it’s not good at learning features from a 

long-time sequence of signal data, [11]. In the case 

of large-scale and complex datasets, it’s difficult for 

DBN to exhibit a satisfactory performance due to its 

structural characteristics, [10]. Different from the 

structure of traditional CNN and RNN, Transformer 

has a new special network architecture solely based 

on attention mechanisms and abandons recurrence 

and convolutions structure entirely, [12]. To be 

specific, all the related operations in the 

Transformer network are order-independent and 

parallelizable. With the rapid development of the 

Transformer network, it has been widely applied 

and demonstrated its outstanding performance in 

many fields, such as image processing, [13], pose 

recognition, [14],  autonomous driving, [15], and 

natural language processing, [16], [17].   

Moreover, owing to the interaction and coupling 

effects among different components and subsystems 

of the gearbox, the measured vibration signals 

collected from sensors installed on the house usually 

contain multiple intrinsic oscillatory modes, [18]. 

Consequently, the vibrations signals contain 

complex patterns at multiple time scales and 

inherent multi-scale characteristics, [19], [20]. Due 

to the limitation of the inherent structure, it’s hard 

for traditional CNN or RNN to capture multi-scale 

features from vibration signals.   

Furthermore,  there is usually an assumption that the 

training data and test data have the same or similar 

distribution when training a deep learning network 

model for fault diagnosis, [21]. However, due to the 

complex working environment and variable load 

conditions in real industrial applications, it’s 

probably hard to obtain adequate fault data for 

training network models. Although Transformer has 

shown more powerful learning ability, it will also 

suffer from performance decline when there are 

insufficient fault samples for training models. To 

overcome this problem, an alternative approach is to 

use the transfer learning strategy to train the 

network model. By using the transfer learning 

strategy, the network model can be pre-trained in 

the source domain dataset which provides a massive 

amount of prior knowledge for training, and then the 

model can be fine-tuned in target domain dataset 

whose data amount is small and effective fault data 

is insufficient. Therefore, this paper proposed a 

multi-scale Transformer convolution network 

(MTCN) based on transfer learning for gearbox 

fault diagnosis. The main contributions of this paper 

are summarized as follows: 

1) A novel MTCN model is proposed by 

combining multi-scale coarse-grained processing, 

Transformer and CNN. 

2) The proposed method can capture different 

and complementary features from vibration signals 

at multiple  scales in parallel. 

3) The use of transfer learning strategy enables 

the proposed model to be trained on a target dataset 

with limited effective fault samples.  

The rest of this paper is organized as follows.  The 

related method theories are introduced in Section 2. 

The details of the proposed MTCN architecture is 

elaborated in Section 3. The results of the 

comparative experiment to evaluate the proposed 

model against some other common methods is 

analyzed in Section 4. The conclusion of this paper 

is drawn in Section 5. 

 

 

Fig. 1: The structure of transformer encoder 

layer 
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2 Related Theories 

2.1 Scaled Dot-Product Attention  
As a core module of the Transformer encoder, 

scaled dot-product attention is used to map a query 

vector and a set of key-value vector pairs to an 

output vector, [12]. To be specific, the input of 

scaled dot-product attention is composed of the 

query and keys of dimension
kd and values of the 

dimension 
kd . The query with all keys is computed 

by dot-product and the dot-product result is scaled 

by dividing 
kd . After that, it’s optional to add a 

mask on the scaled result. Finally, the output 

computed as a weighted sum of the values is 

obtained by applying a softmax function, which is 

calculated as: 

( , , ) ( )
T

k

QK
Attention Q K V softmax V

d
        (1) 

where Q , K , V are queries, keys, and values 

matrices respectively, and 
kd is the scaling factor. 

2.2 Scaled Dot-Product Attention  
Multi-head attention applied in the transformer 

enables the model to focus on the feature 

information from different representation sub-spaces 

at different positions, [12], which enhances the 

expression capability of each attention layer. 

Concretely, the queries, keys, and values are linearly 

projected h times to obtain different linear 

projection results.  Then, the attention function is 

performed on each linear projected version of 

queries, keys, and values in parallel. At last, the 

final values are obtained by projecting the 

concatenated result from each calculated output of 

the attention function.  It can be described as: 

1( , , ) ( ,..., ) O

hMultiHead Q K V Concat head head W
 (2) 

( , , )Q K V

i i i ihead Attention QW KW VW
 (3) 

where model kd dQ

iW


R ,  model kd dK

iW


R , model vd dV

iW


R , 

modelvhd dOW


R are the parameter matrices of linear 

projections and h  is the number of parallel attention 

layers. 

2.3 Transformer Encoder 
In the architecture of the Transformer, the encoder 

is composed of a stack of identical layers. As shown 

in Fig. 1, there are two sublayers in the structure of 

the transformer encoder. The first sublayer is a 

multi-head self-attention mechanism and the second 

sub-layer is a simple, position-wise fully connected 

feed-forward network. Around each of the two sub-

layers, a residual connection and layer 

normalization are employed to mitigate the 

degradation of the network and enhance the 

robustness separately.  

Fig. 2: The structure of proposed MTCN 
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3 Proposed Method 
To realize the high-accuracy fault diagnosis even 

under strong noisy environments and to solve the 

limitation of the rare effective fault data in certain 

cases, a multi-scale transformer convolution 

network based on transfer learning is proposed 

creatively in this paper.  As shown in Fig. 2, the 

structure of the proposed model consists of three 

parts. 

In order to enable the proposed model to learn 

multi-scale features, a simple coarse-grained 

procedure is incorporated in the structure, which has 

the advantages of lower complexity and 

computational cost compared with traditional multi-

scale transformation, [18]. Concretely, for a given 

vibration signal series 1{ ,..., ,..., }i Nx x x x , the 

computed output result of a multi-scale coarse-

grained procedure is calculated as: 

( )

( 1) 1

1
,1

js
s

j i

n j s

N
y x j

s s  

  
(4) 

where s  is the scale factor, N  is the length of input 

data. As shown in Fig. 2, the scale factors are set as 

1, 2, 4 respectively in this paper. 

Moreover, the original vibration signals can be 

smoothed and down-sampled by the coarse-grained 

operation. This operation is a kind of simple low-

pass filtering process through moving average with 

a non-overlapped window, resulting in filtering 

certain high-frequency perturbations and random 

noises to some extent, [18].  

In the multi-scale feature learning layer, 

multiple transformer encoders and convolution 

layers are employed to learn complementary and 

high-level features from the coarse-grained signals 

with different time scales in a parallel manner. Since 

the multiple stacked attention layers in the 

transformer have a strong learning ability and 

parallel ability, the signals after being processed by 

the coarse-grained procedure are sent into the 

transformer encoder to obtain high-level features. 

However, the form of the input of the standard 

transformer encoder is a token embedding of  1D 

sequence, which is not suitable for vibration signals. 

To solve this, a given signal sample 

1[ ,..., ,..., ] M

i Mx x x x R , it is reshaped into 2D

patches 1 2{ ; ;..., }N N L

p p p px x x x  R , where L  is the 

length of each patch and /N M L     is the length 

of the 2D patches. To acquire the patch embedding 

modelN d
z


 ΅ ,  the 2D patches px is calculated by a 

learnable linear projection as: 

pz x E (5) 

where modelL d
E


R  is the linear projection and modeld  

is the dimension of the vector. 

Additionally, to retain the positional information 

about the relative or absolute position of the patches 

in sequence, the positional encoding is computed as 

follows: 

model2 /

( ,2 ) sin( /10000 )
i d

pos iPE pos (6) 

model2 /

( ,2 1) cos( /10000 )
i d

pos iPE pos  (7) 

where i  is the dimension, pos  is the position, and 

pos kPE  represents a linear function of posPE for any 

fixed offset k . 

The resulting sequence of the patch 

embeddings with positional information serves as 

the input of the Transformer encoder which is 

composed of a sole layer in this paper. The 

operation of the Transformer layer can be expressed 

as: 

( ( ) )z LN MSA z z   (8) 

( ( ) )z LN FFN z z    (9) 

where MSA  is the muti-head self-attention, FFN  is 

a simple fully connected feed-forward network, and 
LN is the layer normalization.  

For the Transformer encoder in this paper, the layer 

number is set as 1, the number of heads in the multi-

head attention is 4  and the dimension of the feed-

forward network is 200. Followed by the 

Transformer encoder, a convolution block that 

contains a convolution layer, a batch normalization 

layer, and a max pooling layer is employed to 

process the output sequence. In the convolution 

layer, the kernel size is 3, the padding is 1 and the 

stride is 1. The activation function is ReLU and the 

pool size and the stride are 4 and 2 in the max 

Fig. 3: Illustration of the coarse-grained 

procedure for s = 2, 3 
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pooling layer. For the output from each scale, the 

final outputs are concatenated together to be fed into 

the classification layer to finish fault diagnosis.  

Lastly, it is worth mentioning that Fig. 3 illustrates 
the coarse-grained procedure for s = 2, 3

To solve the problem that a large number 

of effective fault samples for training are not 

available in certain cases, the proposed method 

MTCN is trained by transfer learning. Concretely, 

the MTCN is pre-trained with randomly initialized 

parameters on the source domain dataset which 

processes rich fault samples. . Then the classifier 

of the MTCN is modified to adapt to the new 

target task and the parameters of the MTCN are 

fine-tuned in the target domain dataset with a 

limited number of training samples. Fig.4 

presents the flowchart of the proposed model 

for gearbox fault diagnosis and the general 

procedure can be concluded as the following six 

steps: 

Step1: The source domain dataset and 

target domain datasets are collected from 

different experimental facilities. 

Step2: The training dataset and testing 

dataset are obtained by dividing the source domain 

dataset and target domain datasets and each 

sample is processed through FFT. 

Step3: The MTCN model is constructed with a 

multi-scale coarse-grained layer, 

Transformer encoder, CNN, and classification layer. 

Step4: The MTCN model with 

randomly initialized parameters is pre-trained and 

verified in the source domain dataset. 

Step5: The classifier of the MTCN model 

is modified to adapt to the target task. 

Step6: The parameters of the MTCN 

model after pre-trained are fine-tuned in the 

training dataset in the target domain and 

verified its performance in the testing dataset. 

Fig. 4: The flowchart of the proposed model for 

gearbox fault diagnosis 

 (a)                                               (b)  
Fig. 5: Experiment platform of CWRU bearing 

dataset. (a) Experiment rig; (b) Schematic 

illustration 

4 Experiment 
In this section, the experiments to verify the 

performance and effectiveness of the proposed 

model and the analysis of the comparative results 

are elaborated on in detail. 

4.1 Data description and Experiment Setup   
The experiment data is from two datasets of 

different mechanical facilities, including the Case 

Western Reserve University (CWRU) bearing 

dataset, [22] and the Southeast University (SEU) 

gearbox dataset, [23]. 

The CWRU bearing dataset is a benchmark 

dataset that has been extensively applied in the area 

of fault diagnosis. As shown in Fig. 5, the 

experiment platform of the CWRU bearing dataset 

is mainly composed of a motor, torque transducer, 

and dynamometer. Motor is used to provide power 

and change workloads. Torque transducer converts 

the physical change of torque into an accurate 

electrical signal. Dynamometer is used to measure 

power.  The accelerometer is installed on the drive 

end and fan end of the motor housing and the 

vibration signal data is collected with a sampling 

frequency of 12kHz. Through electric discharge 

machining (EDM), the single-point faults are 

introduced on the bearing inner ring, bearing outer 

ring, and rolling elements with fault diameters of 

0.007 inches, 0.014 inches, and 0.021 inches, 

respectively. According to different fault locations, 

bearing fault types can be divided into an inner-race 

fault (IF), Outer race fault (OF), and rolling body 

fault (Ball fault). All bearings were tested at four 

different motor loads (0, 1, 2, and 3hp) 

corresponding to bearing speeds of 1797, 1772, 

1750, and 1730rpm, respectively. Therefore, there 

are ten types for each load condition, including nine 

fault types and one normal type. 
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 The gearbox dataset provided by Shao et al., 

[23] is acquired through Spectra Quest's Drivetrain 

Dynamic Simulator (DDS). As shown in Fig. 6, the 

experiment platform is composed of a brake, motor, 

parallel gearbox, planetary gearbox, motor 

controller, and brake controller. The brake and 

brake controller are used for braking. The motor and 

motor controller are used to change the running load 

state. For the parallel gearbox, each gear rotates 

with its fixed central axis, while the planetary 

gearbox is composed of a planetary carrier, inner 

ring gear, sun gear, and several planetary gears. To 

measure the load, a torque sensor is installed 

between the motor and the planetary gearbox. On 

the surface of the DDS experimental platform, seven 

vibrating sensors are installed to collect the 

vibration signal data. Six sensors are used to 

measure the vibration of the planetary gearbox and 

the parallel gearbox in x, y, and z directions 

respectively and one sensor is adopted to measure 

the driving motor. Moreover, the speed and load 

configuration are set as 20Hz-0V and 30Hz-2V. As 

listed in Table 1, the gearbox has two fault 

components which are bearing and gear and they all 

have four fault types separately. As a result, there 

are eight fault types and one health type in the 

gearbox dataset. 

 

 
 In order to train the proposed model by using 

transfer learning strategy, the dataset mentioned 

above is applied as the source domain dataset and 

target domain dataset respectively. To be specific, 

the CWRU-bearing dataset is set as the source 

domain dataset. The amount of each fault type in the 

CWRU bearing dataset is 2400 and 1600 samples of 

it are randomly selected to use as a training set and 

the rest samples are adopted as a testing set. The 

SEU gearbox dataset is set as the target domain 

dataset. For the 9 types in the SEU gearbox dataset, 

each of them has 300 samples. 200 samples are 

randomly selected to constitute the training set and 

the rest are used as the testing set. For each data 

sample in the dataset, it contains 1024 data points 

which is the half result obtained through FFT.  

 In the pre-training stage, the Adam optimizer 

with a learning rate of 1e-4 is adopted to train the 

proposed model in the source domain dataset. 

Moreover, the batch size is set as 600 and the 

training epoch is set as 200. In the fine-tuning stage, 

the classifier of the proposed model is modified to 

adapt to the target task according to the number of 

fault type in the target domain dataset. Similarly, the 

Adam optimizer is used to fine-tune the parameters 

of the proposed model and the learning rate is set as 

1e-4. The train epoch is set as 50 and the batch size 

is set as 100 in this stage. Additionally, to avoid the 

impact of the difference from the running 

environment, all computations in the experiments 

are performed on the same device condition with 

Windows 10, Intel core I7-11700K, 32GB RAM, 

RTX 3080 Ti GPU 12G, Pytorch 1.10.0 and Python 

3.6. 

 

4.2 Diagnosis Results Analysis  
In order to verify the performance and effectiveness 

of the proposed model and to avoid the randomness 

and occasionality of the experiment, ten trials are 

carried out for the proposed model to obtain the 

diagnosis results. 

 

 
 

 Fig. 7 shows the details of the training and 

testing diagnosis results from the ten trials in the 

 

Fig. 7: Diagnosis results of 10 trials using the 

proposed model 

Table 1.  Fault type information of gearbox dataset 
Fault  

component 
Fault type Description 

Gear 

Chipped Crack occurs in the feet. 

Miss One of feet is missed. 

Root Crack roots in the feet. 

Surface Wear occurs in the surface. 

Bearing 

Ball Crack occurs in the ball. 

Outer Crack occurs in outer ring. 

Inner Crack occurs in inner ring. 

Combo Crack occurs in inner and 
outer ring. 

 

 
       (a)                                               (b)  

Fig. 6: Experiment platform of SEU gearbox 

dataset. (a) Experiment rig; (b) Schematic 

illustration 
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target domain dataset of the transfer experiment. To 

be specific, the training diagnosis accuracy of the 

ten trials all reach 100% and the smallest diagnosis 

accuracy of the testing is still up to 99.80%.  It can 

be clearly seen that the proposed model obtains 

outstandingly high accuracy both in training and 

testing in the target domain dataset. 

 

 
Moreover, the confusion matrix with the 

classification accuracy and misclassification error of 

each fault type from the trial with the smallest 

testing accuracy is presented in Fig.8. Its horizontal 

axis refers to the predicted label and the ordinate 

axis represents the actual label of the testing sample. 

The result shows that the classification accuracy of 

each fault type is up to 100% and there is no 

misclassification error, which demonstrates that the 

proposed model processes excellent recognition 

capability for fault patterns. 

 

 
 Furthermore, in order to visually explain the 

adaptive feature learning ability of the proposed 

model, the learned features are visualized by using 

the t-distributed stochastic neighbor embedding (t-

SNE) which can effectively project the dimension of 

high-level features into lower dimensions and 

realize feature visualization. Fig. 9 presents the 

feature visualization results of the transformer 

encoder layer and convolution layer. There are nine 

colors in the figure, representing nine fault types of 

the gearbox respectively.  Because each fault type 

comes from two different working conditions, there 

are two clusters for each fault type. It can be seen 

that the output features of the Transformer encoder 

layer are enough to be divisible and distinguishable 

and the convolution layer enhances the effect, which 

confirms that the proposed model has an excellent 

ability to extract useful features and can distinguish 

different fault types effectively. 

 

 
 On the other hand, in order to illustrate the 

influence of different parameter settings on the 

diagnosis accuracy of the proposed method, nine 

groups of different experiments are carried out on 

the proposed method. As shown in Table 2, the 

training accuracy is relatively high under different 

parameter settings, but when the training batch size, 

epoch, and learning rate are relatively small, the test 

accuracy will be reduced due to its influence. 

Appropriately increasing the batch size and epoch of 

training can improve the test accuracy, but when it 

is increased to a certain extent, it will have little 

impact on the test accuracy. For example, with the 

same learning rate, the training batch size and epoch 

of No.7 have increased a lot compared with No.5, 

but the final test accuracy has not been improved. 

Table 2.  Results with different parameter settings 

No. 
batch 
size 

Training 
epoch 

Learning 
rate 

Training 
accuracy (%) 

Testing 
accuracy  (%) 

1 

500 150 

0.0001 100 99.56 

2 0.001 100 99.25 

3 0.01 99.99 98.94 

4 

600 200 

0.0001 100 99.97 

5 0.001 100 99.70 

6 0.01 99.96 99.48 

7 

700 250 

0.0001 100 100 

8 0.001 100 99.70 

9 0.01 99.93 99.42 

 

 

Fig. 9: Features visualizations of the feature learning 

layer of the proposed model via the t-SNE. (a) 

Transformer encoder layer (b) Convolution layer 

 

Fig. 8 Confusion matrix of the trial with the smallest 

testing accuracy 

WSEAS TRANSACTIONS on ELECTRONICS 
DOI: 10.37394/232017.2022.13.15 Jinliang Wu, Xiaoyang Zheng, Xinglong Pei

E-ISSN: 2415-1513 121 Volume 13, 2022



 
  

In the end, to study the robustness and effectiveness 

of the proposed model under a noise environment, 

eight groups of control experiments are carried out. 

To simulate the noisy sample, each vibration signal 

sample is added with the additive Gaussian white 

noise of different signal-to-noise ratio(SNR) which 

is defined as follows: 

1010log ( )
signal

noise

P
SNR

P
              (10) 

 

where signalP  and noiseP  are the power of the signal 

and noise respectively. Generally, the smaller the 

SNR value, the greater the impact of noise on the 

signal, so the worse the effect of fault diagnosis. 

Noise with SNR ranging from - 6 to 6 is added to 

the vibration signal samples of the control 

experiment from the first group to the seventh 

group, and the last group without adding noise to 

represent the fault diagnosis under normal 

conditions.  

 In the comparative experiments, four different 

excellent fault diagnosis methods are adopted to 

compare with the proposed method. The details of 

these four methods can be summarized as: (1) 

WDCNN, [24],: Raw vibration signals are used as 

input and the wide kernels are applied in the first 

convolutional layer for extracting features and 

suppressing high-frequency noise. (2)   TCNN, 

[25],: A modified version of WDCNN, where 

dropout techniques, kernel numbers, and fully-

connected layers are added. (3) MSCNN, [18]: Fault 

features are extracted from raw vibration signals at 

different scales in a parallel way by combining 

multi-scale learning with CNN. (4) TCN, [10]: 

Transformer encoder with two layers is combined 

with three same CNN blocks to realize fault 

diagnosis.  

 For each method, it is executed 10 times, and 

the average value of the 10 trials is taken as the final 

result. As shown in Table 3 and Fig. 10, the 

proposed model and the comparative model all 

perform outstanding results reaching to 99% when 

the vibration signals are not added with noise. 

However, as the SNR value gradually decreases, the 

performance difference between models becomes 

more and more obvious. The diagnosis accuracy of 

WDCNN and TCNN declines remarkably. The 

MSCNN performs well when SNR is - 4 dB and - 2 

dB, but it still performs poorly when SNR is - 6 dB. 

The proposed method and MSCNN all use multi-

scale learning, but the accuracy of the proposed 

model doesn’t change significantly with the 

decrease of SNR. Compared with the state-of-art 

fault diagnosis model TCN, the proposed method 

has fewer layers and blocks and it obtains superior 

performance of 92.98% accuracy in extremely noisy 

conditions of -6 dB which is higher than TCN. As a 

result, the comparison experiment demonstrates that 

the proposed model not only possesses high-

accuracy fault diagnosis for the gearbox but also can 

effectively extract fault features under a noise 

environment. 

 

 

5 Conclusion 
To realize the high accuracy of gearbox fault 

diagnosis and to deal with the limitation of the rarity 

of fault samples in certain cases, a novel multi-scale 

Transformer convolution network based on a 

transfer learning strategy named MTCN is proposed 

creatively in this paper. The coarse-grained 

procedure incorporated in the proposed model can 

not only enable the MTCN to learn complementary 

 

Fig. 10: Comparisons of diagnosis accuracy with 

different SNR value. 

Table 3. The average diagnosis accuracy(%) and the standard deviation with different SNR values. 

Methods 
SNR(dB)        

-6 -4 -2 0 2 4 6 Not added 

WDCNN[24] 61.07±8.30 72.99±6.31 80.98±6.49 87.21±5.99 91.34±4.94 94.85±3.08 97.41±1.98 99.05±0.05 

TCNN[25] 69.54±9.18 79.13±8.15 87.23±6.89 91.62±5.26 95.22±3.28 97.37±2.02 98.43±1.49 99.91±0.05 

MSCNN[18] 82.57±1.41 88.48±1.48 92.48±1.02 95.14±0.56 97.03±0.35 98.15±0.30 98.57±0.29 99.21±0.03 

TCN[10] 91.17±0.65 95.41±0.48 97.57±0.37 98.88±0.29 99.45±0.18 99.78±0.10 99.88±0.05 99.98±0.02 

The proposed method 92.98±0.81 96.17±0.36 98.06±0.24 99.01±0.15 99.42±0.18 99.53±0.23 99.77±0.10 99.96±0.06 
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multi-scale features but also can filter high-

frequency perturbations and random noises to some 

extent. The proposed MTCN can extract rich fault 

features and perform accurate pattern recognition 

through the superior learning capability of the 

Transformer and enhance the efficiency of training 

by using a transfer learning strategy. Through the 

analysis of the comparative experiments, the result 

demonstrates that the proposed model achieves a 

higher fault diagnosis accuracy and is robust to 

noise interference. Since the fault samples in 

practice are probably unbalanced, the future work of 

this research is to expand the capability of the 

proposed MTCN on unbalanced datasets. 
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