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Abstract: - Numerical stability and numerical dispersion analyses are critical subjects for Finite Difference 
Time Domain (FDTD) method. To perform these analyses, first of all, an equivalency of the FDTD numerical 
dispersion equation for Maxwell’s equations and wave equation is proven in this study. Then, based on those 
calculations, a simplified version of a novel link is developed. Using this simplified version, a stability criterion 
and an amplification factor of the FDTD method are more easily extracted. Therefore, the FDTD stability 
analysis becomes simpler. The theoretical findings are validated by a numerical example of a late time 
simulation interval in the FDTD method. In particular, the effect of a hard FDTD source and a soft FDTD 
source on the growth (amplification) factor is also investigated. 
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1 Introduction 
Finite Difference Time Domain (FDTD) is a 
popular and effective numerical method for the 
solution of complex realistic electromagnetic 
problems, [1], [2]. Therefore, investigations on 
numerical analyses of the FDTD method are a 
valuable concern that can be formulated in two 
folds: numerical stability analysis and numerical 
dispersion analysis, [3]. To perform these two 
analyses, first of all, a numerical dispersion equation 
(NDE) of the FDTD method must be extracted. This 
can be performed in two different ways using 
Maxwell’s equations (ME) or wave equation (WE). 
If the NDEs are different for ME and WE, the 
numerical analyses of any numerical methods in 
electromagnetics will inherently differ for ME and 
WE, [3]. This makes the numerical analyses more 
complex and tiresome. In this sense, one of the 
important examples of the numerical time domain 
methods is the Pseudo Spectral Time Domain 
(PSTD) method. The numerical analyses of the 
PSTD show that the PSTD method behaves 
differently in the case of ME and WE. This is due to 
the eigenvalues of WE PSTD having a second-order 
spatial differentiation matrix compared to ME PSTD 
having a first-order spatial differentiation matrix 
that is closer to the physical models. Therefore, WE 
PSTD is more robust to the numerical deficiencies 
rather than ME PSTD, [4], [5]. For this reason, in 
this paper, this concept is investigated especially for 

the FDTD method. First of all, an equivalency 
(unification) of the FDTD NDE for ME and WE are 
proven. Then, based on those calculations, a 
simplified version of a novel link approach is 
developed. Thus, a stability criterion and an 
amplification factor of the FDTD method are more 
easily extracted. This leads to a more simple 
numerical analysis of the FDTD method. Finally, 
the theoretical findings are validated by a numerical 
FDTD example at the late times. 

The rest of this article is organized as follows. 
The equivalency of the FDTD NDE for ME and WE 
is proven in Section I. In Section II, the details for a 
complex-frequency approach and a novel link 
approach (classical) are revisited. In Section III, the 
details for the extraction of a simplified version of 
the novel link are given. In Section IV, the 
theoretical findings are validated by a numerical 
example of a late-time FDTD simulation result. In 
particular, the effect of a hard FDTD source and a 
soft FDTD source on the growth (amplification) 
factor is also investigated. In Section V, conclusions 
deducted from the theoretical findings and the 
numerical results are discussed. 
 

2 Fundamentals 
The numerical analysis of the FDTD method is 
intensively investigated by classical methods of 
 

 The matrix eigenvalue method, 
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 The energy method, 
 The von Neumann (Fourier) method. 
 
The matrix eigenvalue and the energy method 

require cumbersome calculations. Therefore, the 
most common approach to analyze the stability of 
the FDTD method is von Neumann (or Fourier) 
method. It is based on a decomposition of the fields 
into a discrete complex spatial (position) function 
and a discrete real-time function. The first one is 
represented by an expansion of an exponential 
Fourier series. In the second one, the discrete-time 
function satisfies a quadratic equation. Then, the 
numerical stability results in a unity-or-less growth 
factor of the time function by evaluating the root 
locations of its quadratic equation. However, the 
rigorous (exact) stability criterion of the FDTD 
method cannot be found in this way, [1], [2]. 
Therefore, some alternative approaches (yet 
rigorous) are proposed. They are based on the 
numerical analysis of one of the extracted 
parameters in the FDTD NDE. In this sense, three 
different approaches are 

 
 The complex-frequency approach based on a 

complex-valued 𝜔, 
 The novel link approach based on a complex-

valued ∆𝑡, 
 The simplified novel link approach is based 

on an equivalency of the NDE for ME and 
WE. 

 
In this section, first of all, the complex-frequency 

approach and the novel link approach are aptly and 
briefly revisited. These two approaches have already 
known in the literature, [2], [3]. Then, the simplified 
novel link approach is presented in detail. The 
novelty of this paper is lying on the third approach.  

In order to gain further physical insight and sake 
for simplicity, let us consider the one-dimensional 
(1D) FDTD NDE for WE as 
 

cos(𝜔∆𝑡) = 1 + (
𝑐2∆𝑡2

∆𝑥2 ) (cos(𝑘𝑁∆𝑥) − 1). (1) 

 
In a classical view, the numerical dispersion 
analysis of the FDTD method is based on the 
extraction of a complex-valued numerical wave 
number 𝑘𝑁 = 𝑘𝑁

′ + 𝑗𝑘𝑁
′′ from the 1D NDE as 

 

𝑘𝑁

1

∆𝑥
arccos [1 +

1

𝑆2
(cos(𝜔∆𝑡) − 1)] (2) 

 

where 𝑆 = 𝑐∆𝑡/∆𝑥, 𝜔, and ∆𝑡 are considered real-
valued numbers. ∆𝑥 = 𝜆/𝑁, 𝜆 is the wavelength at 
the given operating frequency 𝑓 (𝜔 = 2𝜋𝑓) and 𝑁 
defines the grid resolution. In this step, an 
alternative compact form of 𝑘𝑁 also can be 
formulated that 
 

𝑘𝑁 =
1

∆𝑥
arccos (

1

𝑆2
(cos (𝑆

2𝜋

𝑁
) − 1) + 1). (3) 

 
Now, a transitional value for 𝑁 = 𝑁𝑡𝑟𝑎𝑛𝑠 at limiting 
cases of arccos(∙) is found as 
 

𝑁 = 𝑁𝑡𝑟𝑎𝑛𝑠 =
2𝜋𝑆

arccos(1 − 2𝑆2)
 (4) 

 
where it is worth noting that the numerical 
dispersion analysis is based on the evaluations of 
𝑁𝑡𝑟𝑎𝑛𝑠 only for its real value. The details for this 
analysis are given in [2]. Therefore, it is not 
repeated here.  

For the FDTD stability analysis, the application 
of the methods based on the parameter extraction 
mentality is similar to the way the extraction of 𝑘𝑁. 
However, the extracted 𝜔 (or ∆𝑡) from the NDE is 
especially evaluated instead of 𝑘𝑁 in the stability 
analysis. In the complex-frequency approach (the 
first way), 𝑘𝑁 and 𝜔 are considered complex-valued 
numbers for the numerical dispersion and stability 
analyses, respectively. However, in the novel link 
approach (the second way), 𝑘𝑁 and ∆𝑡 are 
considered complex-valued numbers for the 
numerical dispersion and the stability analyses, 
respectively. This gives a chance to evaluate the 
NDE in different manners. 
 
2.1 The Complex Frequency Approach 
This approach is also known as a complex 
wavenumber method and is based on the extraction 
of the angular frequency 𝜔 from the NDE, [2]. 
Accordingly, 𝜔 = 𝜔′ + 𝑗𝜔′′ over the discrete wave 
𝑢𝑖

𝑛 = 𝑒−𝑗(𝑘𝑁𝑖∆𝑥−𝜔𝑛∆𝑡) is extracted from the NDE as 
 

𝜔 =
1

∆𝑡
arccos(1 + 𝑆2(cos(𝑘𝑁∆𝑥) − 1)) (5) 

 
where 𝑆, 𝑘𝑁 and ∆𝑡 are considered real-valued 
numbers. The main concept of the complex-
frequency approach in the sense of the input 
parameter (real-valued positive numbers of ∆𝑡 and 
∆𝑥) and the output parameter (the complex-valued 
number of 𝜔) is shown in Fig.1. The complex-
valued number nature of 𝜔 originates from the 
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behavior of the function arccos(∙) its argument is 
given in (5).  
 

 
 
Fig. 1: The main concept of the complex-frequency 
approach. 
 
Upon close scrutiny of the 𝜔 equation, 𝜔′ and 𝜔′′ 
are found as  
 

𝜔′ =
𝜋

∆𝑡
    ;     𝜔′′ =

1

∆𝑡
𝑙𝑛 (−𝜂 − √𝜂2 − 1) (6) 

 
where the stability and the instability correspond to 
the case of 𝜔 = 𝜔′ and 𝜔 = 𝜔′ + 𝑗𝜔′′, respectively 
(𝜂 = 1 − 2𝑆2). Here, it is worth noting that 𝜔 has 
complex values in the unstable region. 

Now, considering 𝜔 being a real-valued number 
(𝜔 = 𝜔′) corresponding to a real-valued number 
range of arccos(∙), the exact FDTD stability 
condition is formulated as 
 

−1 ≤ 1 − 2𝑆2 ≤ 1    ⇒     0 ≤
𝑐∆𝑡

∆𝑥⏟
𝑆

≤ 1 (7) 

 
and considering 𝜔 being a complex-valued number 
(𝜔 = 𝜔′ + 𝑗𝜔′′), the amplification factor (𝑞𝑎𝑚𝑝) 
corresponding to the FDTD instability (𝑆 > 1) is 
found to be 
 

𝑞𝑎𝑚𝑝 = (
𝑐∆𝑡

∆𝑥
+ √(

𝑐∆𝑡

∆𝑥
)

2

− 1)

2

 (8) 

 
where specially for 𝑆 = 1 (∆𝑥 = 𝑐∆𝑡) known as a 
magic time step, 𝑞𝑎𝑚𝑝 = 1 leads to the stable 
algorithm. 

Two main disadvantages of the complex 
frequency approach are 
 

 𝜔 must be thought of as a complex-valued 
number as 𝜔 = 𝜔′ + 𝑗𝜔′′. This causes a loss 
of physical insight for the operational (source) 
frequency and leads to controversial 
consideration in the time-domain solutions 
since 𝜔 = 2𝜋𝑓 is a real-valued input 
parameter in reality as not a system (model) 
parameter in the FDTD method. 

 It does not have the ability to perform the 
numerical dispersion analysis and the stability 
analysis simultaneously. The stability analysis 
and the dispersion analysis have to be 
independently performed in this way. Let us 
explain this situation in detail as 𝑘𝑁 is 
assumed to be a complex-valued number 
while 𝜔 is assumed to be a real-valued 
number in the numerical dispersion analysis 
whereas 𝜔 is assumed to be a complex-valued 
number while 𝑘𝑁 is assumed to be a real-
valued number in the stability analysis. It 
means that two analyses must be performed, 
independently. There is no link between these 
two numerical analyses. All these 
disadvantages are resolved by proposing a 
novel link approach in [3]. 

 
2.2 The Novel Link Approach 
This approach is based on the consideration of a 
complex-valued number of a discrete unit time step 
as ∆𝑡 = ∆𝑡′ + 𝑗∆𝑡′′ while keeping 𝜔 is a real-valued 
positive number not as before the complex-valued 
number of 𝜔 = 𝜔′ + 𝑗𝜔′′ in the complex-frequency 
approach for the stability analysis of the FDTD 
method, [2]. This is a more reasonable way since the 
complex-valued 𝜔 causes in loss of physical insight 
for the operational (source) frequency in the time 
domain. Moreover, 𝜔 is an input parameter (not a 
model parameter of the system), and its values are 
already known from the beginning that it must be a 
real-valued number rather than the complex-valued 
number due to its reality. The novel link approach 
resolves this conflict by accepting 𝜔 as the real-
valued number. The main concept of the novel link 
approach as input (real-valued positive numbers of 
𝜔 and ∆𝑥) and an output parameter (a complex-
valued number of ∆𝑡) is shown in Fig.2.  
 

 
 
Fig. 2: The main concept of the novel link approach. 
 

The novel link approach is based on the 
evaluation of 𝑁𝑡𝑟𝑎𝑛𝑠 that can be a real-valued 
number or a complex-valued number. This way is 
completely different from the previous technique 
since 𝑁𝑡𝑟𝑎𝑛𝑠 is never used in the complex frequency 
approach. In fact, 𝑁𝑡𝑟𝑎𝑛𝑠 is extracted from the 
numerical analysis that is based on the extraction of 
𝑘𝑁. It means that a link is constructed between the 
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numerical dispersion analysis and the stability 
analysis in the novel link approach. To summarize 
this method, let us revisit 𝑁𝑡𝑟𝑎𝑛𝑠 as 
 

𝑁𝑡𝑟𝑎𝑛𝑠 =
2𝜋𝑆

arccos(1 − 2𝑆2)
 (9) 

 
where considering 𝑁𝑡𝑟𝑎𝑛𝑠 being a real-valued 
number, the exact FDTD stability condition is 
 

−1 ≤ 1 − 2𝑆2 ≤ 1    ⇒     0 ≤
𝑐∆𝑡

∆𝑥⏟
𝑆

≤ 1 (10) 

 
where arccos(1 − 2𝑆2) has the real values in the 
[−1,1] range of arccos(∙) function. 

On the other hand, considering 𝑁𝑡𝑟𝑎𝑛𝑠 being a 
complex-valued number, ∆𝑡 becomes 
 

∆𝑡 = ∆𝑡′ + 𝑗∆𝑡′′ =
1

𝑁𝑇𝑓
 (11) 

 
where 𝑓 is a real-valued number (𝜔 = 2𝜋𝑓) and 𝑁𝑇 
defines the time resolution, [3]. By analyzing a 
complex-valued number 𝑁𝑇 = 𝑁𝑡𝑟𝑎𝑛𝑠/𝑆 in detail, 
∆𝑡′ and ∆𝑡′′can be calculated that 
 

∆𝑡′ =
1

2𝑓
   ;  ∆𝑡′′ =

1

2𝜋𝑓
𝑙𝑛 (−𝜂 − √𝜂2 − 1). (12) 

 
By using ∆𝑡′′, the amplification factor 
corresponding to the FDTD instability (𝑆 > 1) is 
 

𝑞𝑎𝑚𝑝 = (−𝜂 − √𝜂2 − 1)
𝑛

= (𝑆 + √𝑆2 − 1)
2𝑛

 
(13) 

 
where let us set 𝑛 to 1 for evaluation of the unit time 
step effect. Then, 𝑞𝑎𝑚𝑝 is obtained as 
 

𝑞𝑎𝑚𝑝 = (
𝑐∆𝑡

∆𝑥
+ √(

𝑐∆𝑡

∆𝑥
)

2

− 1)

2

. (14) 

 
This formula is the same as the previously published 
one of the complex frequency approaches, [2]. Two 
main advantages of the novel link approach are 
 

 𝜔 is considered a real-valued number while∆𝑡 
becomes the real- or the complex-valued 
number in the analyses. This is more 
meaningful for reality since ∆𝑡 is a system 
(model) parameter and its behavior cannot be 

predicted and restricted from the beginning 
due to the fact that it is unknown, yet. 

 The dispersion analysis and the stability 
analysis can be linked with the real-valued 𝜔 
which gives a chance to unify the numerical 
analysis of the FDTD method. It is also worth 
noting that the novel link approach does not 
base on a simple extraction of ∆𝑡 from the 
NDE. This is not simply possible since ∆𝑡 is 
present two times in the transcendental form 
of the NDE. Therefore, a numerical root-
finding technique must be used for the 
calculation of ∆𝑡. However, this is not a 
valuable step for the analytical calculations. 
Therefore, it cannot be extracted directly 
analytically as opposed to 𝑘𝑁 and 𝜔 that they 
are present only one time in the NDE. The 
critical role of the novel link approach is 
shown in Fig.3. Accordingly, the numerical 
dispersion analysis and the stability analysis 
are unified in the novel link approach when 
they must be independently considered in the 
classical von Neumann (Fourier) method and 
the complex-frequency approach. 

 

 
Fig. 3: The critical role of the novel link approach. 

 
 
3 The Simplified Novel Link 

Approach 
The simplification of the novel link is based on 
proving the equivalency of the NDEs for ME and 
WE. For this aim, more generally, let us consider 
the 3D NDE for Maxwell’s equations 
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1

𝑐2∆𝑡2
sin2 (𝜔

∆𝑡

2
)

=
1

∆𝑥2
sin2 (𝑘𝑁𝑥

∆𝑥

2
)

+
1

∆𝑦2
sin2 (𝑘𝑁𝑦

∆𝑦

2
)

+
1

∆𝑧2
sin2 (𝑘𝑁𝑧

∆𝑧

2
) 

(15) 

 
and also, the 3D FDTD NDE for the wave equation 
 

cos(𝜔∆𝑡) − 1

𝑐2∆𝑡2
=

cos(𝑘𝑁𝑥∆𝑥) − 1

∆𝑥2

+
cos(𝑘𝑁𝑦∆𝑦) − 1

∆𝑦2

+
cos(𝑘𝑁𝑧∆𝑧) − 1

∆𝑧2
 

(16) 

 
where, at first glance, it seems that they are 
completely different from each other. Now, 
considering a trigonometric relation of 
 
cos(2𝑋) = 1 − 2 sin2(𝑋)      ⇒ 

    sin2(𝑋) =
1

2
(1 − cos(2𝑋))  

(17) 

 
where 𝑋 = 𝜔∆𝑡 or 𝑋 = 𝑘𝑁𝑖∆𝑥 (𝑖 = 𝑥, 𝑦, 𝑧) and 
applying the following relation for the NDE of ME 
 

sin2 (𝜔
∆𝑡

2
) =

1

2
(1 − cos(𝜔∆𝑡)) (18) 

 

sin2 (𝑘𝑁𝑖

∆𝑥

2
) =

1

2
(1 − cos(𝑘𝑁𝑖∆𝑥)) (19) 

 
and substituting them into the ME NDE with a 
multiplication of minus two, it becomes 
 

cos(𝜔∆𝑡) − 1

𝑐2∆𝑡2
=

cos(𝑘𝑁𝑥∆𝑥) − 1

∆𝑥2

+
cos(𝑘𝑁𝑦∆𝑥) − 1

∆𝑦2

+
cos(𝑘𝑁𝑧∆𝑥) − 1

∆𝑧2
 

(20) 

 
where it is clear that this form extracted from ME is 
exactly equal (unified) to the NDE of WE without 
any approximation. They are exactly the same 
equations. This makes it possible to remove a 
complexity in which the same and unique numerical 
analysis is valid and enough for ME or WE. 
Extracting the equivalency of the 2D and 1D NDEs 
of ME and WE is a straightforward job. Therefore, 
it is not shown here. Using this idea, a novel link 

proposed in the previous section can be simplified 
as shown in the next section. For this aim, first, to 
gain further physical insight and to sake for 
simplicity, let us again consider the NDE for the 1D 
Maxwell’s equations as (𝑘𝑁 = 𝑘𝑁𝑥) 
 

sin2 (𝜔
∆𝑡

2
) = 𝑆2 sin2 (𝑘𝑁

∆𝑥

2
)      ⇒ 

    sin (𝜔
∆𝑡

2
) = 𝑆 sin (𝑘𝑁

∆𝑥

2
) 

(21) 

 
where it is necessary to remember that this form of 
the ME NDE is equivalent to the WE NDE. 
However, the WE NDE (in the form of cos(∙)) is 
used only for the stability analysis in the literature. 
Now, for the first time, the ME NDE proving its 
equality to the WE NDE is used for the stability 
analysis that enables us to find out the simplified 
novel link. The simplification of the novel link is 
based on using arcsin(∙) function instead of 
arccos(∙) function since the equality of the NDE 
between ME and WE gives this opportunity. For 
further progress, let us extract 𝑘𝑁 = 𝑘𝑁𝑥 again from 
(2121)  given 
 

sin (𝜔
∆𝑡

2
) = 𝑆 sin (𝑘𝑁

∆𝑥

2
)      ⇒ 

    𝑘𝑁 = 𝑘𝑁𝑥 =
2

∆𝑥
arcsin (

1

𝑆
sin (𝜔

∆𝑡

2
)) 

(22) 

 
where after some mathematical steps, it becomes 
(𝑆 = 𝑐∆𝑡/∆𝑥) 
 

𝑘𝑁 = 𝑘𝑁𝑥 =
2

∆𝑥
arcsin (

1

𝑆
sin (𝑆

𝜋

𝑁
)) . (23) 

 
Now, evaluating the argument of this simplified 
version of 𝑘𝑁 at the limit values, 𝑁𝑡𝑟𝑎𝑛𝑠 being a 
real-valued positive number 
 
1

𝑆
sin (𝑆

𝜋

𝑁
) = +1    ⇒     𝑁𝑡𝑟𝑎𝑛𝑠 =

𝜋𝑆

arcsin(𝑆)
 (24) 

 
where the only +1 limit value is used in the 
numerical analysis since the −1 limit value leads to 
the negative ∆𝑡. The details are given in Appendix I. 
Here, this form of 𝑁𝑡𝑟𝑎𝑛𝑠 is inherently much simpler 
than the previous ones based on the WE NDE since 
the argument of arcsin(∙) is only 𝑆 rather than 𝜂 in 
the novel link approach. 

Now, first of all, consider a region that arcsin(𝑆) 
in the denominator of 𝑁𝑡𝑟𝑎𝑛𝑠 takes only the real-
valued positive values as 0 ≤ 𝑆 ≤ 1 (𝑆 must be a 
positive valued number because 𝑐, ∆𝑡, and ∆𝑥 
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cannot have negative values, individually). 
Importantly, this also corresponds to the causality 

principle. Then, the exact FDTD stability condition 
is extracted as follows 
 

0 ≤
𝑐∆𝑡

∆𝑥⏟
𝑆

≤ 1   ⇒    ∆𝑡 ≤
∆𝑥

𝑐
 (25) 

 
where 𝑆 must be in the interval of [0,1] for the 
stable solution. In this way, the extraction is 
performed in an easier way than the previous two 
methods given in the earlier sections. 

Second, let us extract the amplification factor of 
the FDTD method. Considering 𝑁𝑡𝑟𝑎𝑛𝑠 being a 
complex-valued number, it can be proven that, [7] 
 

arcsin(𝑆) = −𝑗 ln (𝑗𝑆 + √1 − 𝑆2)

=
𝜋

2
− 𝑗 ln (𝑆 + √𝑆2 − 1) 

(26) 

 
then, 𝑁𝑡𝑟𝑎𝑛𝑠 becomes 
 

𝑁𝑡𝑟𝑎𝑛𝑠 =
𝜋𝑆

arcsin(𝑆)

=
𝜋𝑆

𝜋/2 − 𝑗 ln(𝑆 + √𝑆2 − 1)
. 

(27) 

 
Now, reconsidering 𝑆 over the parameters of ∆𝑡 =
1/(𝑁𝑇𝑓) and ∆𝑥 = 𝜆/𝑁 as [3] 
 

𝑆 = 𝑐
∆𝑡

∆𝑥
= 𝑐

1/𝑁𝑇𝑓

𝜆/𝑁
  ⇒  𝑁𝑇 =

𝑁(= 𝑁𝑡𝑟𝑎𝑛𝑠)

𝑆
 (28) 

 
where 𝑁 = 𝑁𝑡𝑟𝑎𝑛𝑠 shows the limit value of 𝑁. Then,  
 

𝑁𝑇 =
𝑁𝑡𝑟𝑎𝑛𝑠

𝑆
=

𝜋

𝜋/2 − 𝑗 ln(𝑆 + √𝑆2 − 1)
 (29) 

 
using this relation, the discrete unit time step ∆𝑡 is 
formulated as 
 

∆𝑡 = ∆𝑡′ + 𝑗∆𝑡′′ =
1

𝑁𝑇𝑓

=
𝜋/2 − 𝑗 ln(𝑆 + √𝑆2 − 1)

𝜋𝑓
 

(30) 

 
where 𝜔 is assumed to be a real-valued number as 
an input parameter. Upon close scrutiny of the ∆𝑡 
equation, ∆𝑡′ and ∆𝑡′′ are found to be 
 

∆𝑡′ =
1

2𝑓
   ;   ∆𝑡′′ = −

1

𝜋𝑓
ln (𝑆 + √𝑆2 − 1). (31) 

where it is clearly figured out that the complex-
valued number ∆𝑡 is possible. Here, two ∆𝑡′ for the 
novel link and the simplified novel link approaches 
are already equal to each other. At first glance, it 
seems that ∆𝑡′′ is different from the previous 
extraction of the novel link approach. However, 
their equivalency is proven in Appendix II.  

Now, the amplification factor (𝑞𝑎𝑚𝑝) over Δ𝑡 
corresponding to the FDTD instability (𝑆 > 1) is 
extracted by a discrete plane-wave substitution as 
𝑒−𝑗(𝑘𝑁𝑖∆𝑥−𝜔𝑛∆𝑡)  
 

𝑞𝑎𝑚𝑝 = 𝑒−𝜔𝑛∆𝑡′′
= 𝑒2 ln(𝑆+√𝑆2−1)

= (
𝑐∆𝑡

∆𝑥
+ √(

𝑐∆𝑡

∆𝑥
)

2

− 1)

2

 
(32) 

 
where let us set 𝑛 to 1 for evaluation of the unit time 
step effect. Here, it is clear that the same 
amplification factor is also extracted in an easier 
way without conversion of 𝜂 to 𝑆 as in the novel 
link approach. It is directly formulated as a function 
of 𝑆. Especially, the lower limit of the Nyquist 
criterion corresponding to 𝑁 = 2, (∆𝑥 = 𝜆/2) is the 
worst numerical case of the FDTD method.  

In fact, the stability and the instability occur in 
the case of 𝑁 < 𝑁𝑇  and 𝑁 > 𝑁𝑇, respectively. 
Particularly, the case 𝑁 = 𝑁𝑇 leads to a numerically 
dispersionless solution, corresponding to 𝑆 =
1 (Δ𝑥 = 𝑐Δ𝑡) known as a magic time step. This also 
shows the validity of the simplified novel link 
analysis for ME and WE.  
 
 
4 Numerical Example 
A 1D problem in a lossless simple medium is 
numerically solved for validation of the theoretical 
findings over the amplification factor. The two 
FDTD solutions are obtained by developing two 
independent FDTD codes for WE and ME. The 
parameters of the problem are listed in Table 1. 

In the two numerical experiments, the values of 
𝑁 and 𝑆 are set to 2 (∆𝑥 = 𝜆/2) and 1.0005, 
respectively. The FDTD update equations for the 1D 
ME and the 1D WE are well known and can be 
found in [1], [2]. Therefore, it is not repeated, here. 
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Table 1. The parameters of the problem 
The FDTD unit space step (Δ𝑥 = 𝜆/2) 0.15 m 
The FDTD unit time step (Δ𝑡) 0.5 ns 
The number of unit cells (𝑁𝑥) 33333 
The problem space (𝐿𝑥) 5000 m 
The operational frequency (f) 1 GHz 

 

 
Fig. 4a: Comparison of the FDTD amplification 
factors between the analytical (formulated) solution, 
the ME FDTD solution, and the WE FDTD solution 
(the hard source case). 

 
A hard (or a soft) point monochromatic source is 

located independently in the middle of the problem 
space. An observation point is positioned close to 
the source point. In particular, the effect of the hard 
FDTD source and the soft FDTD source on the 
amplification factor is also investigated. 
Accordingly, the comparison of the analytical 
(formulated) amplification factor and the 
independently FDTD calculated amplification 
factors for ME and WE are shown for the hard 
FDTD source and the soft FDTD source in Fig.4a 
and Fig.4b, respectively.  

The numerical results show that  
- the two FDTD solutions for ME and WE give the 
exactly same results as it is expected from the 
proven analytical results in the previous subsections.  
- the numerically calculated amplification factors 
converge to the analytically (formulated) calculated 
ones. They are in good agreement with the steady-
state regime. This is due to the fact that the obtained 
analytical solutions are valid at the steady state 
regime since the discrete plane wave representation 
is used in the analyses. 
- the convergence speed of the hard source is slower 
than the convergence speed of the soft source. 

Since it is shown in the previous chapter that the 
analytical formulations of the FDTD amplification 
factor for ME and WE are the same, one formula is 

enough for all the analytical calculations. On the 
other hand, its numerical calculations cannot be 
simply performed by a solution of the one FDTD 
equation. This is due to the fact that ME and WE 
have different orders and different codes. The main 
difference is that ME is the first-order equation 
while WE is the second-order equation. 

 

 
Fig. 4b: Comparison of the FDTD amplification 
factors between the analytical (formulated) solution, 
the ME FDTD solution, and the WE FDTD solution 
(the soft source case). 

 
Here, an important example is worthy of mention 
that the order difference has a strong effect on the 
numerical behavior of the method such as the 
Pseudo Spectral Time Domain (PSTD) method, [5], 
[6]. 
 
 
5 Conclusion 
In this study, a simplified version of the previously 
proposed novel link is formulated. This yields the 
simplified stability analysis of the FDTD method. 
The formulation is based on the equivalency of the 
ME FDTD and the WE FDTD numerical dispersion 
equations. Thus, the exact stability criterion and the 
amplification factor of the FDTD method are more 
easily extracted by proving their equivalency. The 
theoretical findings are validated by the two 1D 
numerical examples (independently for ME and 
WE) of the late time simulation interval in the 
FDTD method. In particular, the effect of the hard 
source and the soft source on the FDTD growth 
(amplification) factor is also investigated. 

In the simplified version, the operational 
frequency is kept again as the real-valued number 
which is more physical, and logical and prevents the 
loss of physical insight. The unification concept of 
the dispersion analysis and the stability analysis is 
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also kept in a simpler manner. Thus, all these 
calculations ensure a better and simple 
understanding of the numerical behavior of the 
FDTD method.  

The simplified link concept may provide new 
openings for a better numerical understanding of the 
time domain methods such as the Finite Element 
Time Domain (FETD) method, PSTD method, and 
so on. In future works, this analysis can be extended 
to non-uniform FDTD meshes for more realistic 
media such as lossy and dispersive mediums. 

 
 

6 Appendices 
 
6.1 Appendix I 
Considering the numerical wavenumber in the form 
 

𝑘𝑁 =
2

∆𝑥
arcsin (

1

𝑆
sin (𝑆

𝜋

𝑁
)) (33) 

 
where the argument of arcsin(∙) has two limit 
values as either −1 or +1. Let us analyze the −1 
limit value by inserting it inside the arcsin(∙) as 
 
1

𝑆
sin (𝑆

𝜋

𝑁
) = −1  ⇒     sin (𝑆

𝜋

𝑁
) = −𝑆 

⇒      𝑆
𝜋

𝑁
= arcsin(−𝑆). 

(34) 

 
Using negative argument property of arcsin(∙) 
 
𝑆

𝜋

𝑁
= arcsin(−𝑆) = − arcsin(𝑆) 

⇒      𝑁 = 𝑁𝑡𝑟𝑎𝑛𝑠 =
−𝜋𝑆

arcsin(𝑆)
, 

(35) 

 
transforming 𝑁𝑡𝑟𝑎𝑛𝑠 to its complex equivalent as 
 

𝑁𝑡𝑟𝑎𝑛𝑠 =
−𝜋𝑆

arcsin(𝑆)

=
−𝜋𝑆

𝜋/2 − 𝑗 ln(𝑆 + √𝑆2 − 1)
. 

(36) 

 
Now, reconsidering the parameters of ∆𝑡 =
1/(𝑁𝑇𝑓) and ∆𝑥 = 𝜆/𝑁 
 

𝑆 = 𝑐
∆𝑡

∆𝑥
= 𝑐

1

𝑁𝑇𝑓

𝜆

𝑁

     ⇒ 

    𝑁𝑇 =
𝑁𝑡𝑟𝑎𝑛𝑠

𝑆
=

−𝜋

𝜋/2 − 𝑗 ln(𝑆 + √𝑆2 − 1)
 

(37) 

 

and, using this relation, the discrete unit time step 
∆𝑡 is formulated as 
 

∆𝑡 = ∆𝑡′ + 𝑗∆𝑡′′ =
1

𝑁𝑇𝑓

=
𝜋/2 − 𝑗 ln(𝑆 + √𝑆2 − 1)

−𝜋𝑓
. 

(38) 

 
Equating ∆𝑡, ∆𝑡′ and ∆𝑡′′can be calculated that 
 

∆𝑡′ = −
1

2𝑓
   ;    ∆𝑡′′ =

1

𝜋𝑓
ln (𝑆 + √𝑆2 − 1). (39) 

Here, a detailed analysis is given for the −1 limit 
value in the argument of arcsin(∙). Since this case 
leads to the negative ∆𝑡′ = −1/2𝑓, there is no 
physical correspondence. From the beginning, it is 
declared that ∆𝑡 = ∆𝑡′must be a real-valued positive 
number. 
 
6.2 Appendix II 
Let us reconsider 𝑁𝑡𝑟𝑎𝑛𝑠 and 𝑁𝑇 from the novel link 
approach (𝜂 = 1 − 2𝑆2) 
 

𝑁𝑡𝑟𝑎𝑛𝑠 =
2𝜋𝑆

arccos(𝜂)
     ⇒ 

    𝑁𝑇 =
𝑁𝑡𝑟𝑎𝑛𝑠

𝑆
=

2𝜋

𝜋 + 𝑗 ln(−𝜂 − √𝜂2 − 1)
. 

(40) 

 
Then, ∆𝑡 is found to be 
 

∆𝑡 =
1

𝑁𝑡𝑟𝑎𝑛𝑠𝑓
=

𝜋 + 𝑗 ln(−𝜂 − √𝜂2 − 1)

2𝜋𝑓
 (41) 

 
where ∆𝑡 = ∆𝑡′ + 𝑗∆𝑡′′ is the complex-valued 
number of the real and the imaginary parts 
 

∆𝑡′ =
1

2𝑓
       ;       ∆𝑡′′ =

ln(−𝜂 − √𝜂2 − 1)

2𝜋𝑓
. (42) 

 
Now, let us show 𝑁𝑡𝑟𝑎𝑛𝑠 and 𝑁𝑇 from the 

simplified novel link approach 
 

𝑁𝑡𝑟𝑎𝑛𝑠 = 𝜋
𝑆

arcsin(𝑆)
     ⇒ 

𝑁𝑡𝑟𝑎𝑛𝑠 =
𝜋𝑆

𝜋/2 − 𝑗 ln(𝑆 + √𝑆2 − 1)
 

(43) 

 

∆𝑡 =
1

𝑁𝑇𝑓
=

𝜋/2 − 𝑗 ln(𝑆 + √𝑆2 − 1)

𝜋𝑓
 (44) 
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where again the real and the imaginary parts of the 
∆𝑡 = ∆𝑡′ + 𝑗∆𝑡′′ are 
 

∆𝑡′ =
1

2𝑓
     ;    ∆𝑡′′ = −

ln(𝑆 + √𝑆2 − 1)

𝜋𝑓
. (45) 

 
Here, ∆𝑡′′ seems to be different from the novel 

link. However, one can note that in the novel link’s 
∆𝑡′′ does have 𝜂 instead of 𝑆 as an argument. By 
taking care of 𝜂, the equivalency of the two ∆𝑡′′ can 
be demonstrated as 
 

∆𝑡′′ =
ln(−𝜂 − √𝜂2 − 1)

2𝜋𝑓
      ⇒ 

∆𝑡′′ =
ln(2𝑆2 − 1 − √4𝑆4 − 4𝑆2 + 1 − 1)

2𝜋𝑓

=
ln(2𝑆2 − 1 − 2𝑆√𝑆2 − 1)

2𝜋𝑓
 

(46) 

 

∆𝑡′′ =
ln(𝑆2 + (𝑆2 − 1) − 2𝑆√𝑆2 − 1)

2𝜋𝑓

=
ln (𝑆2 − 2𝑆√𝑆2 − 1 + (𝑆2 − 1))

2𝜋𝑓
 

(47) 

 
Here, let us define 𝑎 = 𝑆 and 𝑏 = √𝑆2 − 1  and 

rearrange the above equation 
 

∆𝑡′′ =
ln(𝑎2 − 2𝑎𝑏 + 𝑏2)

2𝜋𝑓
. (48) 

 
Then, it becomes 
 

ln(𝑎 − 𝑏)2

2𝜋𝑓
=

2 ln(𝑎 − 𝑏)

2𝜋𝑓
=

ln(𝑎 − 𝑏)

𝜋𝑓
 (49) 

 

∆𝑡′′ =
ln(𝑆 − √𝑆2 − 1)

𝜋𝑓

= −
ln(𝑆 − √𝑆2 − 1)

−1

𝜋𝑓

= −
1

𝜋𝑓
ln (

1

𝑆 − √𝑆2 − 1
). 

(50) 

 
Finally, it is clear that this form of ∆𝑡′′ is identical 
to the form of the novel link as 
 

∆𝑡′′ = −
ln(𝑆 + √𝑆2 − 1)

𝜋𝑓
. (51) 
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