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Abstract: - Using of Thyristor Controlled Series Capacitor (TCSC) as a Flexible AC Transmission System 
(FACTS) creates various interests for the customer of the network, and each adds to the growth of the power 
transmission potential of new and existing systems. These interests involve stability enhancement in the system, 
tunning of voltage, poise of imagine power, load sharing among shunt lines, and decrease in losses of the 
transmission system. This article introduces a new hybrid approach that evolved from integrating chaotic charts 
and the sea-horse optimizer. The suggested approach is known as the Chaotic Sea-Horse Optimizer (CSHO). 
The developed approach accounted for as metaheuristic technique, specifically the Sea-Horse Optimizer 
(SHO). The SHO is an approach that imitates the sea-horse life in the sea for shifting, seeking to breed and 
prey. This article illustrates that the CSHO technique is utilized to find TCSC constants in a multimachine 
network. The developed approach confirms the performance against various operating conditions. 
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1   Introduction 
TCSC is a significant component of FACTS which 
is adopted widely via new power network 
companies with extended transmission lines. It has 
multiple functions to control and operate power 
grids, including power flow scheduling; loss 
reduction; yielding voltage support; short circuit 
current limitation; damping sub-synchronous 
resonance (SSR); mitigating the power fluctuations; 
and improvement of transient constancy [1], and [2]. 
The implementations of TCSC for attenuation of 
power fluctuations and constancy strengthening is 
seen in [3] and [4]. 

In latest former years, distinct scholars have 
raised approaches for shaping TCSC to promote the 
attenuation of electromechanical power fluctuations 
in grids like artificial neural networks [5], [6], and 
[7], fuzzy methods [7], [8], [9], [10], [11], [12], 
[13], and [14], robust control [15], [16], [17], [18], 
and [19], linear quadratic gaussian [20], and [21], 
discrete control [22], phasor-based [23], frequency 
response [24], Pole placement [25], [26], [27], [28], 
and [29], nonlinear control [30], and [31], and 
hierarchical control [32]. 

The implementation of metaheuristic techniques 
in regulating the TCSC has provided promising 
characteristics. Distinct metaheuristic approaches 
have been implemented in TCSC recently, like 

genetic algorithm [33], [34], [35], [36] , [37], [38], 
and [39], particle swarm optimization [39], [40], 
[41], and [42], bacteria foraging [43], and [44], 
bacterial swarm optimization [45], gravitational 
search algorithm [46], virtual bees algorithm [47], 
group search optimization [48], and dwarf 
mongoose [49]. Even though distinct metaheuristic 
approaches have been approved to tune TCSC, there 
remains plenty of work for exploration to find the 
best TCSC parameters. Therefore, this paper 
illustrates a TCSC parameter adjustment technique 
with a novel metaheuristic approach called SHO 
which is enhanced by the presence of a chaotic 
approach [50], and [51]. This mongrel approach is 
known as the CSHO approach which is targeted to 
enhance the characteristics of the SHO approach at 
the equilibrium center among exploitation and 
exploration [52]. The developed technique is a 
combination of SHO and chaotic techniques. The 
addition of this paper can be reported briefly as 
follows: 
1.  A hybrid approach is introduced, namely CSHO 

that has a novel balance between the 
exploitation and exploration phases.  

2.  The developed CSHO is implemented to get the 
TCSC constants in a multimachine system.  
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This paper contains various partitions, 
particularly: partition 2 introduces the modeling of 
the power grid, and TCSC and describes the test 
system under study. Partition 3 explains the SHO 
approach and the CSHO. Partition 4 contains the 
objective function. The discussion of outcomes is 
given in part 5. The final section consists of the 
findings and future works. 

 
 

2   Problem Formularization 
 
2.1  Power System Pattern  
The complicated nonlinear pattern coupled with m  
generators correlated power grid is constituted by 
the following group of differential nonlinear 
equalizations:  

                         (1) 
X   is the state factors values, U  is the entry factors 

values of.  , while U  is the 

TCSC production signs in this research.   
are the rotor speed and angle, consecutively. 

 , fdE  and qE ′
 

are excitation, field, and the 

inner potential consecutively.  
 

The linearized gradual model about a certain 
condition is applied commonly to TCSC layout of. 
Consequently, the state framework including n  
TCSCs is created as: 

                        (2)  
 

As  mm 55 ×  matrix called A that similar to 
Xf ∂∂ /  , nm×5  matrix called B that similar to 
Uf ∂∂ / . All matrices are considered at an appointed 

working value.
 

X  vector of
 

15 ×m  state and
 U vector of 1×n  inner values. 

 
2.2  Controller TCSC Layout 
A classic TCSC composes of a specific series 
capacitor shunted with a thyristor-dominated reactor 
(TCR). The TCR is created of a series reactor 
connected to a duplex directional thyristor exit that 
is triggered with an angle phase shift α  from 90 to 
180o regarding to capacitor potential. For power 
flow and steadiness examination work, a TCSC is 
shaped like a varying reactance. The TCSC 
reactance equalization is indicated as below: 

 
                                                                               (3) 

ref
TCSCX  is TCSC fixed reactance; sK  and sT are 

the TCSC gain and time constant. 
 

Figure 1, shows the suggested TCSC regulator 
construction. Its variables are designed via different 
optimization approaches. Distinct suggested inner 
signs for FACTS to attenuate the swaying of the 
system. Signs that hold precious data around the 
mechanical mode are suggested as inner signs. The 
real power of the transmission line is considered a 
successful inner sign in [44] for TCSC controller 
layout. For this point, the real transmission line 
power is elected here as the inner sign. Moreover, 
pass 5-7 is treated as the finest position to locate the 
controller of TCSC in this article as shown in [44], 
and [45]. 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Block diagram of TCSC 
 
2.3  Investigated System 
A test system of nine nodes and three generating 
units is described in Figure 2. The loading 
conditions and system data are seen in [2]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Investigated network 
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3   SHO Approach 
The SHO is motivated by the seahorse’s survival in 
seeking for the chased victim and reproduction in 
their environment. The exploitation and exploration 
notion are set to recognize the deductive technique 
in the SHO approach to embrace the social 
attitude of shift and inspection for seahorse chased 
victims. The final phase of breeding is carried out 
when the two components have finished. The SHO 
approach is modeled as follows: 

            (4) 

             (5) 
 

 ))   (f(XeliteSh iminarg=                                    (6) 
 
where 𝐷𝐷𝑖𝑖𝑚𝑚 is the variable size and 𝑁𝑁 is the 
population dimension. The top and bottom limits are 
named 𝑈𝑈𝐵𝐵 and 𝐿𝐿𝐵𝐵 that are arbitrary outcomes at 
every result. Arbitrary rate between 0 and 1 is 
symbolized by 𝑅𝑅𝑎𝑎𝑛𝑛𝑑𝑑. eliteSh is the individuals that 
possess the least scale of convenience. SHO 
assumes the motion shape and seeks to chase victim 
and mate of seahorse’s life [50] and [51]. 
 
3.1  Seahorse Motion Behaviour  
The regular tabulation turns of a reference accounts 
in the seahorse’s motion paradigm. Exploitation and 
exploration equilibrium using duo studies having a 
border setting by 0, [50]. 
 
Case 1: the operator shifts toward the 𝑋𝑋𝑟𝑟𝑙𝑙𝑖𝑖𝑡𝑡𝑟𝑟 in a 
heliacal motion altering the angle of rotation 
permanently to broaden the topical answer zone. 
Case 1 will be expressed as below: 

 

           (7) 

                                            (8) 

                                          (9) 

                                         (10) 

                                                     (11) 
 

veu θρ ×=                                                      (12) 

                                     (13) 

                              (14) 

 
The rod length identified by the logarithmic 

helical regular. 𝑤𝑤 and K are arbitrary values [0, 1]. 𝑠𝑠 
equals to 0.01, 𝑢𝑢 and 𝑣𝑣 (casual = 0.05 for both) are 
designated by    with a casual value [0, 2]. 
 
Case 2: In oceans, a seahorse executes a Brownian 
movement that simulates the movement stretch of 
another one aiming to obtain a superior navigate as 
following: 

                                                          (15) 

   x
i )

2

2
exp(

2
1

−=
π

β                     (16) 
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where  iβ is the arbitrary step value of the 

Brownian movement. A fixed amount 𝑙𝑙 (casual = 
0.5). 1r appeared as an arbitrary amount, [50]. 

 
3.2  Foraging Attitude of Seahorse  
While seahorses’ food-searching ride two probable 
scenarios are found, failure or success. The status is 
successful if the value of 2r > 0.1 as the seahorse 

proceeds quicker than the chased victim. Failure 
status places with varied behavior. The seahorse’s 
failure or success status in food searching is formed 
as follows: 

   
 r if tnewXteliteXrandtnewX

r if  teliteXtnewXrandteliteX
tnX













≤+×−−

−+×−
=+

02))())()()1(

02))()1())()(((
)1(

αα

αα 
(18) 

                                               (19) 
 

newX is the seahorse's modern location. 𝑇𝑇 is the 

superior iteration. 2r  is an arbitrary set [ 0 , 1 ][51].  
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3.3  Attitude of Seahorse Breeding  
Seahorses are splitted into two sex types at the time 
of breeding, namely female and male with the same 
value of composition:  

                       (20) 

                          (21) 
 

Sorted   sortX  amounts deliver the outcome in 

arising arrangement.  and  are 
selected by random. In the SHO approach, every 
pair results in one child. 

 FatherXrMotherXriX 3)31( +−=                 (22) 
 
where 3r  is an arbitrary number [0, 1].  

 
3.4 The Chaotic Sea-Horse Optimizer 
 (CSHO)  
Various papers have utilized distinct sorts of chaotic 
charts to help the aim of optimization algorithm. 
Chaotic charts are efficient in manner and statistics 
based on randomness [51] and [52]. Relish 
attitude is altered via parameter variations. As little 
variations in parameters make several results. In this 
paper, the logical chaotic representation is utilized 
to change the 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑 at equalization (8). So, the 
logical chaotic representation mathematical equation 
is as following: 

     (23) 
 
while 𝑎𝑎 equal 4. The chaotic chart parameters have a 
domain of [ 0, 1]. Equalization (8) becomes 
equalization (24) as follows: 

  iy πθ 2log ×=                           (24) 

 
 
4   Cost Function 
A performance indicator can be determined by using 
the Integration of Time multiplied by the Absolute 
Error (ITAE) of the deviation in speed of every 
generating unit. The advantage of this selected 
performance indicator is that it requires lower 
dynamic information about the plant. Other 
indicators, such as the Integration of Square Error 
(ISE) and Integration of Time multiplied by Squared 
Error (ITSE), are less suitable due to squaring the 
error results in unrealistic assessments. 
Additionally, the Integration of Absolute Error 

(IAE) is less qualified compared to the ITAE which 
provides a more factual error evaluation [53], [54], 
and [55].      
 
Consequently, the cost function TJ  is written to be: 

}{ t
simt

d tTJ ∫ ∆+∆+∆=
0

)132312* ωωω               (25) 

 
Classic limits of the optimized factors are [1-

100] for K and [0.06-1] for both iT1 , and iT3 . 
Optimization tasks depend on the cost function TJ  

can be written as: reduce TJ  according to: 

max
i K i K min

iK ≤≤
     

 

max
1i T 1i T min

1iT ≤≤      

max
3i T 3i T min

3iT ≤≤                                      (26) 
 
This research depends on the optimal tuning of 

TCSC utilizing the CSHO approach. The objective 
of the optimization is to lower the cost function to 
enhance the network execution in relation to 
overshoots and settling time for various working 
events and finally lay a low-order controller for 
successful application. 
 
 
5   Results and Simulations 
In this part, the supremacy of the developed CSHO 
approach in layout TCSC compared to optimized 
TCSC with SHO is introduced. Table 1 gives the 
system damping ratio, and eigenvalues of 
electromechanical modes with various loading 
events.  
 
Table 1. Modes and ζ  for various operating events 

and algorithms 
 SHOTCSC CSHOTCSC 

Light 

load 

 

-3.97 9.26j,0.39 

-1.9 6.22j,0.29 

-0.71 0.66j,0.73 

-4.03 9.03j,0.41  

-2.01 6.18 j,0.31 

-0.76 0.64j,0.76 

Base 

case 

-3.23 11.2j,0.28 

-1.27 6.22j,0.2 

-0.73 0.72j,0.71 

-3.4 11.1j,0.29 

-1.4 6.18j,0.22 

-0.78 0.74j,0.73 

Heavy 

load 

-3.66 11.71j,0.3 

-0.78 5.57j,0.14 

-0.94 0.78j,0.77 

-3.83 11.4j,0.32 

-0.81 5.33j,0.15 

-0.99 0.76j,0.79 
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It is obvious that the damping ratios related to 
CSHOTCSC are more sizeable than those related to 
SHOTCSC. Thus, compared with SHOTCSC, 
CSHOTCSC greatly improves the system stability. 
Outcomes of TCSC constants corresponding to the 
developed cost function utilising SHO and CHSO 
are reported in Table 2. 
 
Table 2. Controller Parameters for CSHO and SHO 

approaches 
 CSHO SHO 

TCSC K=7.5232 

 T1=0.5684 

 T3=0.2991 

K=5.3625 

T1=0.6965 

 T3=0.3878 

 
5.1  Outcome for Base Loading  
The efficacy of the controller for serious disturbance 
is verified by the implementation of a three-phase 
fault of six cycle duration at 1.0 seconds close to 
node 7. Figure 3 and Figure 4, give the outcome of 

12ω∆ and 13ω∆
 

due to this fault under base 
loading event. It can be shown that the network with 
the developed CSHOTCSC is steadier than 
SHOTCSC. Additionally, the average needed 
settling time to alleviate the oscillations of the 
system is around 4 seconds with CSHOTCSC, and 
4.6 seconds for SHOTCSC so the suggested TCSC 
is qualified for providing sufficient attenuation to 
the low fluctuations. 
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Fig. 3: Outcome of 12ω∆  for base loading 
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Fig.  4: Outcome of 13ω∆ for base loading 
 
5.2  Outcome of Light Loading  
Figure 5 and Figure 6, give the network outcome for 
light loading events with the same TCSC factors. It 
is understandable from Figure 5 and Figure 6, that 
the developed CSHOTCSC has a good depressing 
attitude to oscillatory modes of the network and 
speedily equilibrates it. Moreover, the average 
stability time of oscillations is

 sT =2.10, and 2.60 
seconds for CSHOTCSC, and SHOTCSC, 
subsequently. Thus, the developed CSHOTCSC 
outlasts the SHOTCSC controller in alleviating 
fluctuations and diminishing stability time 
effectively. As a consequence, the developed 
CSHOTCSC extends the limit of network hardness. 
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Fig. 5: Outcome of 12ω∆  for light loading 
 

WSEAS TRANSACTIONS on ELECTRONICS 
DOI: 10.37394/232017.2025.16.8 Ehab Salim Ali

E-ISSN: 2415-1513 77 Volume 16, 2025



0 1 2 3 4 5 6

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
x 10

-3

Time in second

C
ha

ng
e 

in
 w

23
 (

ra
d/

se
co

nd
)

 

 
CSHO
SHO

 
Fig. 6: Outcome of 23ω∆  for light loading 
 
5.3  Outcome of Heavy Loading  
Figure 7 and Figure 8, present the network outcome 
for heavy loading event. These figures denote the 
notability of the CSHOTCSC in lessening the 
stability time and attenuating the oscillations of the 
test network. Also, the average stability time of 
these oscillations is

 sT  =5.10, and 6.0 seconds for 
CSHOTCSC, and SHOTCSC subsequently. Thus, 
the CSHOTCSC controller improves markedly the 
damping attitude of the test network. In addition, the 
stability time of the developed TCSC is lesser than 
that in [44]. 
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Fig. 7: Outcome of 12ω∆  for heavy loading 
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Fig. 8: Outcome of 13ω∆ for heavy loading 

 
 
6   Conclusions 
A new optimization mechanism known as the 
CSHO approach, for the optimal layout of TCSC 
factors, is suggested in this article. The TCSC 
factors tuning process is organized as an  
optimization problem and the CSHO approach is 
exercised to find the best factors. The stability 
performance of the test system is reinforced to 
minimize the time-domain cost function. Simulation 
outcomes emphasize the supremacy of the suggested 
CSHOTCSC compared with SHOTCSC in 
granting a good damping attitude to system 
fluctuations through a broad scope of loading 
events. Employment of the discussed approach and 
the latest optimization approaches to more realistic 
networks and using various FACTs is the outlook 
domain of this research. 
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