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MEXICO

Abstract: Fast optimal estimates are often required in control and signal processing. In this paper, we discuss an
approach to optimal finite impulse response (OFIR) filtering for discrete time-variant systems using finite measure-
ments. The mean square error is minimized to obtain the batch OFIR algorithm which requires measurements on
an a finite horizon ofN points. Fast iterative algorithm is found using recursions. It is shown that each recursion
has a predictor/corrector Kalman filter (KF)-like format with special initial conditions. In this sense, the KF is
considered as a special case of the proposed iterative OFIR filtering algorithm whenN approaches infinity for
known initial conditions. It has been confirmed by simulation that the iterative form of the OFIR filter operates
much faster than the batch form.
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1 Introduction

The real-time state modelxk = Akxk−1 + Bkwk,
whereAk andBk are the system matrices,xk is the
system state, andwk is the noise vector, is commonly
used in signal processing when prediction is not an
issue [1, 2]. Employing this model, many filtering al-
gorithms have been designed and employed. Among
them, the finite impulse response (FIR) is a method
using finite most recent measurements to compute the
system states [3–5]. Due to this interesting filtering
structure, many useful advantages are achieved such
as better robustness against temporary modeling un-
certainties and higher immunity against errors in the
noise statistics. This has generated profound research
studies in optimal FIR filtering [6–21].

For example, the unbiased FIR (UFIR) filter and
smoother were proposed in [3] for polynomial sys-
tems. In [9], ap-shift UFIR filter (UFIR) was de-
rived as a special case of the optimal FIR (OFIR)
filter. Here, the unbiasedness was checked a poste-
riori and the solution thus belongs to CU. Soon af-
ter, the UFIR filter [9] was extended to time-variant
systems [12, 15]. For nonlinear models, an extended
UFIR filter was proposed in [17] and unified forms for
FIR filtering and smoothing were discussed in [18].
The method of determining the optimal horizon in the
UFIR filter was discussed in [19], and the optimal un-
biased FIR filter was proposed in [20], where the re-

sulting method is proposed by minimizing the mean
square error (MSE) constrained by the unbiasedness
condition. An important advantage of UFIR filtering
is that the noise statistics are not required and noise
reduction is provided by averaging. Therefore, the es-
timation horizon for the UFIR filter must be optimal.

It has been shown that the OFIR filter is full-
horizon, to mean that the estimation errors decrease
with the increase in the estimation horizon. This quite
useful property implies that one does not need to com-
pute an optimal horizon: a relatively large one can en-
sure a good performance. Since the OFIR approach
uses the noise statistics, its gain is more complex than
that of the UFIR filter which ignores noises. Up to
now, fast iterative OFIR filtering has been developed
only for time-invariant models [21]. It still remains an
open problem for time-varying ones.

In this paper, the batch and iterative forms of the
OFIR filter are derived for discrete time-variant sys-
tem model with Gaussian white noise. Compared to
the infinite impulse response (IIR) filters, the pro-
posed method inherits advantages of FIR structures
and is more robust against temporary modeling un-
certainties. On the other hand, compared to the UFIR
filter given in [9], the OFIR filter does not strictly re-
quires the optimal horizon. This is because the opti-
mal performance of the OFIR filter is guaranteed by
large averaging horizons.
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2 State-Space Model and Prelimi-
naries

In the state space, we consider a linear discrete time-
variant system described by

xk = Akxk−1 +Bkwk , (1)

yk = Ckxk +Dkvk , (2)

wherexk ∈ R
n is the state vector,Ak ∈ R

n×n,
Bk ∈ R

n×u, Ck ∈ R
q×n and Dk ∈ R

q×v are
system matrices, andyk ∈ R

q is the measurement.
The process noisewk ∈ R

u and measurement noise
vk ∈ R

v are zero mean Gaussian,E{wk} = 0 and
E{vk} = 0, mutually uncorrelated and have known
covariances,R = E{wkw

T
k } andQ = E{vkv

T
k }.

The FIR estimator can be expressed as a linear
combination of finite samples of measurements on the
horizon ofN of points in the form of

x̂k|k = KkYk,l, (3)

wherel = k −N + 1 is the starting point of the hori-
zon,N is the horizon length,̂xk|k is the estimate,Yk,l

is a vector measurements collecting on a horizon[l, k],
andKk is the filter gain determined by a given perfor-
mance criterion.

Compared with the IIR structure, a distinct fea-
ture of FIR estimator is thatN most recent measure-
ments are employed at each time step, while only
one most recent measurement is used in IIR (Kalman)
form. This leads toO(N) complexity. However,
some good properties such as the BIBO stability and
better robustness are achieved. We formulate the
problem as follows: Given the model, (1) and (2),
we would like to derive the batch form and iterative
form of the OFIR filter in minimum mean square er-
ror (MMSE) sense, and provide a comparison with the
UFIR filter ignoring noise statistics and KF.

3 OFIR Filtering Algorithm

In order to derive the OFIR filter on a horizon ofN
past measurements froml to k, we represent (1) and
(2) in a batch form as

Xk,l = Ak,lxl +Bk,lWk,l , (4)

Yk,l = Ck,lxl +Hk,lWk,l +Dk,lVk,l . (5)

Here,Xk,l ∈ R
Nn, Yk,l ∈ R

Nq, Wk,l ∈ R
Nu and

Vk,l ∈ R
Nv are specified as, respectively,

Xk,l =
[

xTk x
T
k−1 · · ·x

T
l

]T
, (6)

Yk,l =
[

yTk y
T
k−1 · · ·y

T
l

]T
, (7)

Wk,l =
[

wT
kw

T
k−1 · · ·w

T
l

]T
, (8)

Vk,l =
[

vTk v
T
k−1 · · ·v

T
l

]T
. (9)

The extended model matrixAk,l ∈ R
Nn×n, pro-

cess noise matrixBk,l ∈ R
Nn×Nu, observation ma-

trix Ck,l ∈ R
Nq×n, auxiliary process noise ma-

trix Hk,l ∈ R
Nq×Nu and measurement noise matrix

Dk,l ∈ R
Nq×Nv are all time-variant and dependent on

the current timek and the horizon lengthN . Model
(1) and (2) suggests that these matrices can be written
as, respectively

Al
k = [Al+1

k

T
,Al+1

k−1

T
, · · · ,Al+1

l+1

T
, I]T , (10)

Bk,l =














Bk Ak
kBk−1 · · · Al+2

k
Bl+1 Al+1

k
Bl

0 Bk−1 · · · Al+2

k−1
Bl+1 Al+1

k−1
Bl

...
... · · ·

...
...

0 0 · · · Bl+1 Al+1

l+1
Bl

0 0 · · · 0 Bl















,

(11)

Ck,l = C̄k,lAk,l, (12)

Hk,l = C̄k,lBk,l, (13)

Dk,l = diag (DkDk−1 · · ·Dl) , (14)

with

Aζ
ψ =

{

AψAψ−1 · · ·Aζ , if ψ > ζ

Aψ, if ψ = ζ
, (15)

C̄k,l = diag (CkCk−1 · · ·Cl) , (16)

whereψ > ζ. Note that the state equation specified by
(4) and (5) at the initial pointl isxl = xl+Blwl, sug-
gesting thatwl is zero-valued. That is, the initial state
xl is required to be known or estimated optimally. In
the following, we concentrate our attention to develop
the optimal FIR estimator for the above system.

3.1 Batch Computational Form

By combining (5) with (3), we provide

x̂k|k = Kk (Ck,lxl +Hk,lWk,l +Dk,lVk,l) . (17)

Now, our objective is to compute the optimal gainK̂k

to minimize the covariance of estimation error in the
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minimum MSE sense. In other words, the following
cost function must be minimized

K̂k = argmin
Kk

E
{

(

xk − x̂k|k
) (

xk − x̂k|k
)T

}

.

(18)
To compute (18), the orthogonality principle can be
employed. Specifically, the optimal filter gain̂Kk

should guarantee the estimation errorxk − x̂k|k is un-
correlated with any of the measurementsYk,l, and
also to any of the linear combination of these mea-
surements. In this sense, an equivalent way to rewrite
(18) is

E
{(

xk − K̂kYk,l

)

(Yk,l)
T
}

= 0 , (19)

in whichxk can be constructed as

xk = Al+1

k xl + B̄k,lWk,l , (20)

whereB̄k,l is the first row vector ofBk,l. Substituting
(5) and (20) into (19), using the fact that the initial
statexl, systems noise vectorWk,l and measurement
noiseVk,l are pairwise independent, and taking the
expectation and rearranging the terms, (19) becomes

Al+1

k
Θx,lC

T
k,l + Z̄w,k = K̂kZx+w+v,k , (21)

where auxiliary matrices are

Θl = E
{

xlx
T
l

}

, (22)

Zx,k = Ck,lΘlC
T
k,l , (23)

Zw,k = Hk,lE
[

Wk,lW
T
k,l

]

HT
k,l , (24)

Zv,k = Dk,lE
[

Vk,lV
T
k,l

]

DT
k,l , (25)

Z̄w,k = B̄k,lE
[

Wk,lW
T
k,l

]

HT
k,l , (26)

Zx+w+v,k = Zx,k + Zw,k + Zv,k . (27)

NotationsZx,k, Zw,k andZv,k denote the covariances
of initial state, systems and measurement noise re-
spectively, which are intuitively symmetric and invert-
ible. Referring to these properties, we multiply both
sides of (21) from the right-hand side withZ−1

x+w+v,k

and find the optimal gain in the form of

K̂k = (Al+1

k
ΘlC

T
k,l + Z̄w,k)Z

−1

x+w+v,k
. (28)

Further multiplyingΘl on the right hand of (28) with
the identity matrix(CT

k,lCk,l)
−1CT

k,lCk,l, from the

left-hand side, the optimal filter gain̂Kk can be equiv-
alently rewritten in a more compact way as

K̂k = K̄kZx,kZ
−1
x+w+v,k + Z̄w,kZ

−1
x+w+v,k , (29)

where
K̄k = Al+1

k

(

CT
k,lCk,l

)−1
CT
k,l . (30)

In fact, K̄k is the unbiased filter gain. By substitut-
ing (30) into (3) and averaging both sides, one may
find out that the unbiasedness constraintE

[

x̂k|k
]

=
E [xk] is guaranteed [16]. In order to compute (29),
the covariance of initial state is required to be deter-
mined. Toward this end, the following discrete alge-
braic Riccati equation (DARE) [24] can be developed.

Yk,lY
T
k,lZ

−1

w+v,k
Zx,k − Zx,kZ

−1

w+v,k
Zx,k

−2Zx,k − Zw+v,k = 0 (31)

where
Zw+v,k = Zw,k + Zv,k . (32)

4 Iterations

To avoid constructing and computing the vectors and
matrices withN -dependent dimensions, the iterative
form for the OFIR filter can be summarized as fol-
lows.

Theorem 1 Given the discrete time-variant state
space model (1) and (2) with zero mean and mutually
independent noise vectorswk and vk having Gaus-
sian distributions and known covariances, the itera-
tive form for the OFIR filter can be stated by

Nl = Θl +BlRBT
l , (33)

x̂l = NlC
T
l Z

−1

x+w+v,l
yl , (34)

x̂i = Aix̂i−1 +NiC
T
i

(

Q̃i +CiNiC
T
i

)−1

× (yi −CiAix̂i−1) , (35)

wherei ranges froml+1 to k, Ni is computed recur-
sively by (67), and the initial mean square stateΘl

can be obtained by solving (31).

To find an iterative form for (28), takingi as an iter-
ative variable, and employing (10), (12) and (13) and
decomposingCi,l, Hi,l, andDi,l as, respectively,

Ci,l =
[

(CiA
l+1
i )T CT

i−1,l

]T

, (36)

Hi,l =

[

CiBi CiAiB̄i−1,l

0 Hi−1,l

]

, (37)

Di,l =

[

Di 0

0 Di−1,l

]

. (38)

Then, we get

Zx,i =

[

CiA
l+1
i ΘlA

l+1
i

T
CT
i CiA

l+1
i ΘlC

T
i−1,l

Ci−1,lΘlA
l+1
i

T
CT
i Ci−1,lΘlC

T
i−1,l

]

(39)
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Zw,i =

[

CiB̄i,lRiB̄
T
i,lC

T
i CiAiZ̄

T
w,i−1

Z̄Tw,i−1A
T
i C

T
i Zw,i−1

]

,(40)

Zv,i =

[

DiQDT
i 0

0 Zv,i−1

]

, (41)

where
Z̄w,i−1 = B̄i−1,lRi−1H

T
i−1,l . (42)

By introducing∆i, Fi andUi as, respectively,

∆i
∆
=

[

Q̃i 0

0 Zx+w+v,i−1

]

, (43)

Ui
∆
= Al+1

i ΘlA
l+1
i

T
+ B̄i,lRiB̄

T
i,l , (44)

Fi
∆
= Al+1

i ΘlC
T
i,l + B̄i,lRiH

T
i,l , (45)

Q̃i
∆
= DiQDT

i , (46)

one accordingly getsZx+w+v,i = ∆i +Φi, where

Φi =

[

CiUiC
T
i CiAiFi−1

FTi−1A
T
i C

T
i 0

]

. (47)

With the matrix inversion lemma(X + Y)−1 =
X−1−X−1(I+Y−1X)−1Y−1X [22,23], the inverse
of Zx+w+v,i can be represented as

Z−1
x+w+v,i = ∆−1

i −∆−1
i (I+Φi∆

−1
i )−1Φi∆

−1
i .

(48)
Following this line, we decomposēBi,l as B̄i,l =
[

Bi AiB̄i−1,l

]

, the termZ̄w,i can be decomposed in
an equivalent way as

Z̄w,i =
[

B̄i,lRiB̄
T
i,lC

T
i AiZ̄w,i−1

]

. (49)

Using (49), we have

Al+1
i ΘlC

T
i,l = Al+1

i Θl

[

(CiA
l+1
i )T CT

i−1,l

]

=
[

Al+1
i ΘlA

l+1
i

T
CT
i Al+1

i ΘlC
T
i−1,l

]

.

(50)

Combining (49), (50) with (45), yields

Fi =
[

UiC
T
i AiFi−1

]

. (51)

On the other hand,Ui can also be computed recur-
sively as

Ui = Ai

(

Al+1
i−1

ΘlA
l+1
i−1

T
)

AT
i

+
[

BiR AiB̄i−1,lRi−1

]

×
[

BT
i B̄T

i−1,lA
T
i

]T

= AiUi−1A
T
i +BiRBT

i . (52)

Using (48), (51) and (52), and taking into account the
fact thatK̂i−1 = Fi−1Z

−1
x+w+v,i−1, we have

K̂i =
[

UiC
T
i AiFi−1

]

×
[

∆−1
i −∆−1

i (I+Φi∆
−1
i )−1Φi∆

−1
i

]

=
[

UiC
T
i Q̃

−1
i AiK̂i−1

]

−
[

UiC
T
i Q̃

−1
i AiK̂i−1

]

×
(

I+Φi∆
−1
i

)−1
Φi∆

−1
i . (53)

After some rearrangements, we arrive at

K̂i =
[

UiC
T
i Q̃

−1
i AiK̂i−1

]

S−1
i , (54)

where

Si = I+Φi∆
−1

l
=

[

Si11 Si12
Si21 Si22

]

, (55)

with

Si11 = I+CiUiC
T
i Q̃

−1
i , (56)

Si12 = CiAiK̂i−1 , (57)

Si21 = FTi−1A
T
i C

T
i Q̃

−1
i , (58)

Si22 = I . (59)

Using the Schur complement ofSi11, the inverse ma-
trix can be computed by

S−1
i =

[

S̄−1
i11 −S̄−1

i11Si12
−Si21S̄

−1
i11 I+ Si21S̄

−1
i11Si12

]

, (60)

where

S̄i11 = Si11 − Si12S
−1
i22Si21

= I+CiNiC
T
i Q̃

−1
i , (61)

Ni = Ui −AiK̂i−1F
T
i−1A

T
i . (62)

Substituting (61) into (54), and using (52), (53) and
(55), leads to

K̂i =
[

Gi AiK̂i−1 −GiCiAiK̂i−1

]

, (63)

where

Gi = NiC
T
i

(

Q̃i +CiNiC
T
i

)−1

. (64)

According to (3), the OFIR estimatêxi can be com-
puted recursively by

x̂i =
[

Gi AiK̂i−1 −GiCiAiK̂i−1

]

[

yi
Yi−1,l

]

= Aix̂i−1 +Gi (yi −CiAix̂i−1) . (65)
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Figure 1:Estimation errors for an accurate model: (a) the
first state and (b) the second state.

By settingi = i+ 1, we have

Ni+1 = Ui+1 −AiK̂iF
T
i A

T
i . (66)

Using the recursions ofUi, K̂i andFi, arrive at

Ni+1 = AiNiA
T
i +BiRBT

i −AiGiCiNiA
T
i ,

(67)
where the propertyUi = UT

i is employed. Substitut-
ing Gi with (64) and settingi = i− 1, we find

Ni = AiNi−1A
T
i +BiRBT

i −AiNi−1C
T
i

×
(

Q̃i +CiNi−1C
T
i

)−1

CiNi−1A
T
i ,(68)

which completes the proof.

5 Examples and Applications

In this section, we are going to show that the iterative
OFIR form proposed can reduce the computation time
considerably and without affecting the estimation ac-
curacy.

Towards this end, we employ a two-state poly-
nomial state space models (1) and (2) specified with
Bk = [1, 1]T , Dk = 1, Ck = [1, 0], and

Ak =

[

1 (1 + dk)τ
0 1

]

, (69)

whereτ is a constant in unit of time, anddk varies
with time. Note that this kind of systems is commonly
used to describe the “velocity jumps” in moving tar-
gets and “frequency jumps” in oscillators.

In the first simulation, we verify the fact that the
iterative form described by theorem 1 can produce the
same estimate as the batch form. The model param-
eter dk is set asdk = 20 if 160 ≤ k ≤ 200 and
dk = 0 otherwise. The variances of the process noise
and measurement noise areσ2w = 10−4 andσ2v = 102,

10
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Larger than sampling time

Figure 2: Computational times of different method as
functions of estimation horizonN .

respectively. All the parameters of system model, in-
cluding the variances of noises, are known completely
in the entire estimation process. The estimation hori-
zon was chosen asN = 60 and the batch OFIR (de-
noted as B-OFIR), iterative OFIR (I-OFIR), and KF
estimates were obtained over 2000 subsequent points.

The estimation errors in a typical run are given
in Fig. 1. As can be seen, both the I-OFIR and B-
OFIR produce equal estimates and the KF and OFIR
filter perform very close to each other. Of a special
importance, we notice that the OFIR filter is low sen-
sitive to the horizon length. Even with a time-invariant
constantN , it can produce acceptable suboptimal esti-
mates. In contrast, the performance of the UFIR filter
strongly depends on the averaging horizon.

The computation time is another critical issue of
FIR estimators which order is typically much higher
than that of IIR estimators such as the KF. To show
that the OFIR estimator can also operate fast, we next
compare the batch and iterative OFIR filters to the KF
in terms of the computation time using the same com-
puter and software. The results are shown in Fig. 2.
Definitely, the batch OFIR structure is worst, espe-
cially whenN is set such that the computation time
exceeds the sampling time; that is whenN > 8 in
Fig. 2. But the iterative OFIR algorithm demonstrates
quite good properties for real-time applications, al-
though it still loses to the KF. Note that the iterative
OFIR algorithm can operate as fast as the KF if to or-
ganize iterations using parallel computing.
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6 Conclusions

In this paper, we have developed an approach to pro-
vide fast iteration computation of OFIR estimates of
time-variant systems using recursions. As a special
feature of the algorithm proposed we notice that it is
more general than the KF. Namely, the KF appears
to be a special case of the iterative OFIR algorithm
when the averaging horizon is infinite. Simulations
have demonstrated that the iterative OFIR filter form
operates much fasted than batch form without affect-
ing the estimation accuracy.

The work of Y. S. Shmaliy was supported by the
Royal Academy of Engineering under the Newton Re-
search Collaboration Programme NRCP/1415/140.
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