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Abstract: Fast optimal estimates are often required in control and signal processing. In this paper, we discuss an
approach to optimal finite impulse response (OFIR) filtering for discrete time-variant systems using finite measure-
ments. The mean square error is minimized to obtain the batch OFIR algorithm which requires measurements or
an a finite horizon ofV points. Fast iterative algorithm is found using recursions. It is shown that each recursion
has a predictor/corrector Kalman filter (KF)-like format with special initial conditions. In this sense, the KF is
considered as a special case of the proposed iterative OFIR filtering algorithm \Wiagproaches infinity for

known initial conditions. It has been confirmed by simulation that the iterative form of the OFIR filter operates
much faster than the batch form.
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1 Introduction sulting method is proposed by minimizing the mean
square error (MSE) constrained by the unbiasedness

The real-time state model, = A;x;_; + Bywy, _condition. An.importgnf[ advantage of U_FIR filtering

where A, and B, are the system matrices;, is the is that the noise statistics are not required and noise

system state, ane;, is the noise vector, is commonly r_educ_:tion is _provided by averaging. Therefore,_the es-
used in signal processing when prediction is not an timation horizon for the UFIR filter must be optimal.
issue [1, 2]. Employing this model, many filtering al-
gorithms have been designed and employed. Among
them, the finite impulse response (FIR) is a method
using finite most recent measurements to compute the
system states [3-5]. Due to this interesting filtering
structure, many useful advantages are achieved such
as better robustness against temporary modeling un-
certainties and higher immunity against errors in the

noisg st_atistic_s. This ha_Ls g_enerated profound research now, fast iterative OFIR filtering has been developed
studies in optimal FIR fllte.rlng [6-21]. , only for time-invariant models [21]. It still remains an
For example, the unbiased FIR (UFIR) filter and  gpen problem for time-varying ones.
smoother were proposed in [3] for polynomial sys-
tems. In [9], ap-shift UFIR filter (UFIR) was de- In this paper, the batch and iterative forms of the
rived as a special case of the optimal FIR (OFIR) OFIR filter are derived for discrete time-variant sys-
filter. Here, the unbiasedness was checked a poste- tem model with Gaussian white noise. Compared to
riori and the solution thus belongs to CU. Soon af- the infinite impulse response (IIR) filters, the pro-
ter, the UFIR filter [9] was extended to time-variant posed method inherits advantages of FIR structures
systems [12, 15]. For nonlinear models, an extended and is more robust against temporary modeling un-
UFIR filter was proposed in [17] and unified forms for  certainties. On the other hand, compared to the UFIR
FIR filtering and smoothing were discussed in [18]. filter given in [9], the OFIR filter does not strictly re-
The method of determining the optimal horizon inthe quires the optimal horizon. This is because the opti-
UFIR filter was discussed in [19], and the optimal un- mal performance of the OFIR filter is guaranteed by
biased FIR filter was proposed in [20], where the re- large averaging horizons.

It has been shown that the OFIR filter is full-
horizon, to mean that the estimation errors decrease
with the increase in the estimation horizon. This quite
useful property implies that one does not need to com-
pute an optimal horizon: a relatively large one can en-
sure a good performance. Since the OFIR approach
uses the noise statistics, its gain is more complex than
that of the UFIR filter which ignores noises. Up to
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2 State-Space Model and Prelimi-
naries

In the state space, we consider a linear discrete time-
variant system described by

Apxp_1 +Biwy,
Cixy, +Dyvy,

Xk

Yk

(1)
(2)

wherex; € R" is the state vectorA; € R™*",
B, € R"™ C, € R and D, € R?* are
system matrices, ang, € R? is the measurement.
The process noiser;, € R* and measurement noise
vy € RY are zero mean Gaussiaf{w;} = 0 and
E{vi} = 0, mutually uncorrelated and have known
covariancesR = E{w,wi} andQ = E{v;v}]}.

The FIR estimator can be expressed as a linear
combination of finite samples of measurements on the
horizon of N of points in the form of

Xk = K Y

3)

wherel = k — N + 1 is the starting point of the hori-
zon, N is the horizon lengthk,, . is the estimateY, ;

is a vector measurements collecting on a horizok,
andKjy is the filter gain determined by a given perfor-
mance criterion.

Compared with the IIR structure, a distinct fea-
ture of FIR estimator is thalv most recent measure-
ments are employed at each time step, while only
one most recent measurement is used in IR (Kalman)
form. This leads toO(N) complexity. However,
some good properties such as the BIBO stability and
better robustness are achieved. We formulate the
problem as follows: Given the model, (1) and (2),
we would like to derive the batch form and iterative
form of the OFIR filter in minimum mean square er-
ror (MMSE) sense, and provide a comparison with the
UFIR filter ignoring noise statistics and KF.

3 OFIR Filtering Algorithm

In order to derive the OFIR filter on a horizon of
past measurements frohto k, we represent (1) and
(2) in a batch form as

Xk,
Y,

Apixi+Br Wy, (4)
Crix;+Hp Wi+ Dg Vi (5)
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Here,Xk,l S RNH, YkJ € RNQ, WkJ € ]RNu and
Vi € RN are specified as, respectively,

Xps = [xpxf_- 'X?]T7 (6)
Y = [yiviayil, 7
Wi = [wiwlwi]', (8)
Vie = Vi, (9)

The extended model matriX;; € RN™>" pro-
cess noise matriBy; € RV™Nu observation ma-
trix Cy; € RN9<" auxiliary process noise ma-
trix Hy; € RN9*Nv and measurement noise matrix
Dy, € RN9<Nv gre all time-variant and dependent on
the current timet and the horizon lengtiv. Model
(1) and (2) suggests that these matrices can be written
as, respectively

T T T
Al = [-’4?—1 7»'4?;11 s T 7-’4511 >I]T7 (10)
By, =
[ By AMBj_y APy ALB; ]
0 By A2B,, ALB,
0 0 B AéﬁBl
| O 0 0 B, ]
(11)
Cr, (:jk,lAk,ly (12)
Hy;, = Cy By, (13)
Dy; = diag(DyDy_---Dy),  (14)
ApAy 1 Ap, ifh > ¢
AL { pAyo1 A (s
v A, ity ¢ 0
Ciy = diag(CrCy_1---Cy), (16)

wherey > (. Note that the state equation specified by
(4) and (5) at the initial pointis x; = x;+B;w;, sug-
gesting thatw; is zero-valued. That is, the initial state
x; is required to be known or estimated optimally. In
the following, we concentrate our attention to develop
the optimal FIR estimator for the above system.

3.1 Batch Computational Form
By combining (5) with (3), we provide
Xk = Ki (Cruxi + Hg y Wy + Dy Vi) - (17)

Now, our objective is to compute the optimal gain
to minimize the covariance of estimation error in the
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minimum MSE sense. In other words, the following
cost function must be minimized

K = argn&iglE {(xk — fik|k) (xk — fck‘k)T} .

(18)
To compute (18), the orthogonality principle can be
employed. Specifically, the optimal filter gaii{;,
should guarantee the estimation e@r— X, is un-
correlated with any of the measuremens, ;, and
also to any of the linear combination of these mea-
surements. In this sense, an equivalent way to rewrite
(18) is

E { (Xk - KkYk,l> (Yk,l)T} =0, (19
in whichx;, can be constructed as
= A% 4+ By, Wiy, (20)

whereBM is the first row vector 0B, ;. Substituting

(5) and (20) into (19), using the fact that the initial
statex;, Systems noise vectdV;,; and measurement
noise V;; are pairwise independent, and taking the
expectation and rearranging the terms, (19) becomes

A?l@w,zCZ,l +Ziwi = KiZoswior, (21)
where auxiliary matrices are

®, = E{xx/}, (22)

Zoi = Cri©,CLy, (23)

Zyr = HE[W,W[HL, (24)

Zox = Dy,E [V Vi D] 17 (25)

Zyy = BrE [Wi,Wi |Hf,, (26)
Zyiivk = Lo+ Zyp+Zyy. (27)

NotationsZ, j., Z,, », andZ, ;, denote the covariances
of initial state, systems and measurement noise re-
spectively, which are intuitively symmetric and invert-
ible. Referring to these properties, we multiply both
sides of (21) from the right-hand side wmﬁww

and find the optimal gain in the form of

Ky, = (AN O,CL + Zy k)2, ]

rt+w+v,k * (28)

Further multiplying®; on the right hand of (28) with
the identity matrix(C},Cy)~'C} Cy,, from the

left-hand side, the optimal filter gal;, can be equiv-
alently rewritten in a more compact way as

Kk - Kkzm kzm+w+v k + Zw kzm_l’.w_l’.v k> (29)
where .
K, = AN (CL,Cry) CL. (30)
E-ISSN: 2732-9976 13
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In fact, K;, is the unbiased filter gain. By substitut-
ing (30) into (3) and averaging both sides, one may
find out that the unbiasedness constraintxy,,| =

E [xi] is guaranteed [16]. In order to compute (29),
the covariance of initial state is required to be deter-
mined. Toward this end, the following discrete alge-
braic Riccati equation (DARE) [24] can be developed.

Yy lYk lZw+v kz —Z, kzw-i—v lcz
_2Zx,k - Zw-l—v,k =0 (31)
where
Zw—l—v,k = Zw,k + Zv,k . (32)

4

To avoid constructing and computing the vectors and
matrices with/N-dependent dimensions, the iterative

form for the OFIR filter can be summarized as fol-

lows.

[terations

Theorem 1 Given the discrete time-variant state
space model (1) and (2) with zero mean and mutually
independent noise vectoxg, and v, having Gaus-
sian distributions and known covariances, the itera-
tive form for the OFIR filter can be stated by

0, +B RBZT,
)A(l = NlCl

(33)

IE+w+U i (34)

~ -1
% = Ak +NCT (Q+cNel)
X (yi — CZ‘AZ'}A(Z‘_l) s (35)
wherei ranges from + 1 to k, IN; is computed recur-

sively by (67), and the initial mean square st&de
can be obtained by solving (31).

To find an iterative form for (28), takingas an iter-
ative variable, and employing (10), (12) and (13) and
decomposingC; ;, H; ;, andD; ; as, respectively,

T
Cu = [(CA CL] . @9
[ CBi CiAB;_1;
me = | P ORP L e
[ D, 0
D = | DHJ' (38)
Then, we get
_ cAtl@A Tl c At ect
Y cweAt el cech,
(39)
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C;B,R,B],CI CAZ], ,
Buwi = [ Zg,zelAiTCiT Zyi1 (40)
_ [ D:QDI o
z. - | P00 (@1)
where - -
Zyi1 =B R H ;. (42)

By introducingA;, F; andU; as, respectively,

43
0 Z:cherv,ifl ( )

U, & AteutT 4 B, R;Bj,, (44)
F, 2 Altte,cl, + B RH],, (45)
Q = DQD!, (46)

one accordingly get&, ., .; = A; + ®;, where

= | prATCT o

. (47

With the matrix inversion lemmdX + Y)™! =
X - X"HI+Y1X)"1Y~1X [22,23], the inverse
of Z,+w+v,i CaN be represented as

Zfl

ot = AT -ATN I+ @A) A

(48
Following this line, we decomposB;; as B;; =
[B; A;B,_1,], the termZ,,; can be decomposed in
an equivalent way as

Z,; = By R;B],C] AiZ,,; 1] . (49)

Using (49), we have

Ao, = Afe|(CiAT el |
= [A§+1@lAi+1TCiT Aﬁﬂglcf_u] :
(50)
Combining (49), (50) with (45), yields
F; = [U,C] A;F; 4] . (51)

On the other handlJ; can also be computed recur-
sively as

U = A (Ao’ AT
+ [B;R A;B;_1 R; 1]
< [BI BY ,,AT]"
= AU, ;AT + B,RB!. (52)
E-ISSN: 2732-9976 14
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Using (4§), (51) and (52), and taking into account the
fact thatK; | = F;_1Z,, ., 1, we have

K, = [U,C! AF;_]
x [A7 - ATH I+ @A) @A
= [UiCiTQi_l AiKzel]

- [UiC?Qfl AiKi—l]

x (I+ &A1) @A77 (53)
After some rearrangements, we arrive at
K; = [UiCiTQi_l AiKzel] St (54)
where
_ Sit1 Si2
Si:I+<I>iA1:[ : : ] 55
t Sio1 Sio2 (°5)
with
Siin = I+ CiUiCZTQ;l ; (56)
Sia = CiAK; 1, (57)
Sio1 = F?—1A1TC;'FQ;1 ; (58)
Siz2 = 1. (59)

Using the Schur complement 8f;,, the inverse ma-
trix can be computed by

_ St —S 1S
S;!'= al L , (60
g —Si21S;;1 I+ Si1S;; S (60)
where
Sit1 Si11 — Si12S;55Si21
= I1+CN;C/Q; !, (61)
N, = U,—AK,_ FT AT (62

Substituting (61) into (54), and using (52), (53) and
(55), leads to

K; = |:Gi AK; | — GiCiAiKz’—l} , (83)
where
G =NCT (QrenNel) . (64

According to (3), the OFIR estimate;, can be com-
puted recursively by

X; = [Gi AiKi—l_GiCiAiKz’—l} [YYi ]
i—1,1

= AXi1+ G (yi — CiAX_1) . (65)
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20

First state

Es$imatian errors

Estimation errors

Figure 1:Estimation errors for an accurate model: (a) the
first state and (b) the second state.

By settingi = ¢ + 1, we have

Nij1 = Uiy — A KFTAT (66)

Using the recursions df;, K; andF;, arrive at

(67)
where the propert{J; = UZT is employed. Substitut-
ing G; with (64) and setting = ¢ — 1, we find

N, = AN, ;A7 +BRB! - AN, C}
~ —1
X (Qi + CzNz—1CZT> C;N;_1A)(68)

which completes the proof.

5 Examplesand Applications

In this section, we are going to show that the iterative
OFIR form proposed can reduce the computation time
considerably and without affecting the estimation ac-
curacy.

Towards this end, we employ a two-state poly-
nomial state space models (1) and (2) specified with
B, =[1,1]7,Dy =1,C; = [1,0],and

|\

wherer is a constant in unit of time, and, varies
with time. Note that this kind of systems is commonly
used to describe the “velocity jumps” in moving tar-
gets and “frequency jumps” in oscillators.

In the first simulation, we verify the fact that the
iterative form described by theorem 1 can produce the
same estimate as the batch form. The model param-
eterd, is set asd;, = 20 if 160 < k£ < 200 and
d; = 0 otherwise. The variances of the process noise
and measurement noise arg = 10~* ando? = 107,

1
0

(L+dg)T

1 (69)

|
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Batch OFIR

Larger than sampling time

i j
V/\’\\;M/%

Computation time, s

Lo
10'
N

10°

Figure 2: Computational times of different method as
functions of estimation horizofV.

respectively. All the parameters of system model, in-
cluding the variances of noises, are known completely
in the entire estimation process. The estimation hori-
zon was chosen a¥ = 60 and the batch OFIR (de-
noted as B-OFIR), iterative OFIR (I-OFIR), and KF
estimates were obtained over 2000 subsequent points.

The estimation errors in a typical run are given
in Fig. 1. As can be seen, both the I-OFIR and B-
OFIR produce equal estimates and the KF and OFIR
filter perform very close to each other. Of a special
importance, we notice that the OFIR filter is low sen-
sitive to the horizon length. Even with atime-invariant
constantV, it can produce acceptable suboptimal esti-
mates. In contrast, the performance of the UFIR filter
strongly depends on the averaging horizon.

The computation time is another critical issue of
FIR estimators which order is typically much higher
than that of IR estimators such as the KF. To show
that the OFIR estimator can also operate fast, we next
compare the batch and iterative OFIR filters to the KF
in terms of the computation time using the same com-
puter and software. The results are shown in Fig. 2.
Definitely, the batch OFIR structure is worst, espe-
cially when IV is set such that the computation time
exceeds the sampling time; that is wh&nh > 8 in
Fig. 2. But the iterative OFIR algorithm demonstrates
quite good properties for real-time applications, al-
though it still loses to the KF. Note that the iterative
OFIR algorithm can operate as fast as the KF if to or-
ganize iterations using parallel computing.
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6 Conclusions

In this paper, we have developed an approach to pro-
vide fast iteration computation of OFIR estimates of
time-variant systems using recursions. As a special
feature of the algorithm proposed we notice that it is
more general than the KF. Namely, the KF appears
to be a special case of the iterative OFIR algorithm
when the averaging horizon is infinite. Simulations
have demonstrated that the iterative OFIR filter form
operates much fasted than batch form without affect-
ing the estimation accuracy.

The work of Y. S. Shmaliy was supported by the
Royal Academy of Engineering under the Newton Re-
search Collaboration Programme NRCP/1415/140.
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