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Abstract: In the work reported herein, we propose a direct relaxation-iteration technique for the solution 
of a highly unstable parameter-sensitive nonlinear boundary value differential equation known as the 
Troesch problem. It arises in the confinement of plasma column by radiation pressure. The proposed 
technique is based on an SOR successive relaxation method and guarantees that convergence is 
achieved straightforwardly. Numerical experiments conducted to investigate the overall influence of 
sensitivity parameter on the solution profiles confirm the relative advantage of the proposed numerical 
technique over previous methods. 
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 1. Introduction 

Some models which are based on algorithms 
that seek equilibrium states sometimes do not 
converge. These include the Newton method 
and some of its variants. For convergence to be 
achieved, model parameters need to be adjusted 
or totally new approaches devised. This can 
pose a huge numerical challenge especially 
when large calculations need to be done. 
However, the Newton-Raphson iteration does 
converge easily when the initial guess is very 
close to a projected equilibrium but not very far 
away from it. Far from equilibrium, the 
algorithm can either get stuck in a local 
minimum or exhibit a chaotic behavior as the 
computation proceeds. The Jacob matrix which 
is simply the derivative of the function gets very 
small, yields a large inverse singular matrix 
which may be accompanied by imaginary 
eigenvalues and limit cycles.  

 We shall now turn our main focus to the theme 
of this work namely to seek equilibrium or 
bounded solutions for  a parameter based 
nonlinear highly sensitive second order 
differential equation known as the Troesch 
problem. The motivation to avoid the 
computation of the Jacobian matrix together 
with its variants as well as other restrictions that 
are indicative of Newton-type approaches is 

deliberate. However, the major thrust here is to 
devise a simple iteration based numerical 
technique that can handle a range of sensitivity 
parameter values in such a way that 
computation initiated anywhere in the solution-
space will eventually converge.   

Throesch equation is a highly sensitive 
nonlinear boundary value problem given by 
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 where   is  highly sensitive and is known as 
the Troesch parameter, . Equation (1) is 
applicable to the investigation of the 
confinement of plasma column by radiation 
pressure [1] as well to the study of porous 
electrodes [2]. Robert and Shipman [3] 
obtained its closed form solution in terms of the 

Jacobi elliptic functions  sc u m  ; which is  

expressed as: 
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where  ' 0 2 1 2u m   ; m satisfies the 

transcendental equation  
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The variables , and m   are related to each 
other by the integral. 
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It was observed that the dependent variable 

 u x  has a singularity   
,

0sc x u  which  

occurs at   1 2 ln 16 1x m  . This makes 

the solution of equation (1) a difficult task for 
numerical methods. Many attempts have been 
made to overcome this challenge. A good many 
of them can be found in [4-9]. In the present 
paper, we develop a direct and simple iteration  
numerical technique to handle the Troesch  

2.Numerical formulation  

The SOR method and its modifications is one 
of the most highly used iteration technique for 
handling a system of equations [10-12]. The 
main thrust of this method relies on the 
swapping of old and new values of the 
dependent variables at grid points as well as the 
application of an iteration parameter whose 
optimum value is determined. The number of 
iterations implemented within a certain error 
tolerance serve as criteria for determining the 
performance of the scheme.  In addition, a finite 
difference  discretization coupled with  
straightforward iteration simplify the whole 
procedure  and provide  a complexity reduction 
approach.  

 Fundamentally, let us consider a matrix :  

   5Ax b D L U x      

where ,D L andU  refer to the diagonal, 
lower and upper components of matrix A. The 

Jacobi iteration technique to solve a system of 
equations is given as :  
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From equation (6), we obtain the Gauss-Seidel 
method which is written as : 
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for 1,2,3.....k n  where k   is the iteration 
counter. 

Further modification of equation (7) by 
introducing a relaxation parameter, yields the 
SOR iteration method: 
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The vector based representation of the SOR 
technique is finally given as: 
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In this work the SOR is modified to deal with 
large sparse systems that come with the 
discretization of nonlinear differential 
equations represented compactly as 
  0F u in n

R   The methodology is 
demonstrated by iteration on a discretized 
system of equations while achieving accurate 
convergent results and low computer memory. 
Applying the FDM discretization, equation (1) 
is written as  
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 We can now derive the nonlinear analog of  the 
SOR method for nonlinear differential 
equations involving tridiagonal positive 
definite matrices . For any 

 0 0 0 0 0
1 2 3, , .......... nu u u u u  . In the process, we 

generate  a sequence for iteration step. At 
convergence or ‘steady state’  

     1 11k k

i iu u a

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where  1k

iu
 is the solution of  

        1 2 3, , .......k k k k

i nF u u u u .  

Recast equation (11a)  to read
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Simple algebraic manipulation yields : 
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where  is a relaxation parameter. For 
replacement SOR, equation (12) is adjusted to 
read: 
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The algorithm for the computation of equation 
(12b) adopting the method developed in this 
work is given below. 

i. Initialize 0 6, 10iu    
ii. Set BCs,    
iii. 2: 1for i n  , iterate equation           

(12) 
iv. Implement convergence test 

   1k k

i iu u 

   

v. If iteration converges, break 
iteration and display numerical 
output 

vi.   Otherwise continue until 
convergence 

Different values of the relaxation parameter are 
run to finally determine the optimal  . For this 
problem, this was found to be 1.85.  

 

 3. Results and discussions 

We verify the accuracy and convergence of the 
proposed numerical technique. Unless 
otherwise stated, a  grid size of .025h   and a 
convergence tolerance error of 610e   are 
employed. In  Fig. 1 we display the graphical 
results for  1,3,5,6  .   

 

 

Fig.1 Numerical Solution Profiles 

As   increases, the profiles become flatter  and 
tend towards initiating a boundary layer  at the 
right end boundary. This the major reason why 
the Troesch problem poses a considerable 
numerical challenge fora certain range of   
values. 

 Fig. 2 shows the convergence profile for errors 
between current and previous iterations for 

5  . The profile decreases remarkably and 
shows a downward linear trend .The small kink 
in the region of iteration equals 50 indicates the 
number of iterations it took the computation to 
stabilize. 

  

Fig. 2 Infinity norm of error  between old and 
new values . 

Next, the absolute errors obtained by 
comparing the numerical results with the semi-
analytic homotopy perturbation results of  [13]   

for 3,5 6and   are displayed in Figs. 3, 4 
and 5 
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Fig. 3 :Absolute error for 3    

 

Fig. 4: Absolute error for 5    

 

Fig. 5 Absolute error for 6    

 It can be observed that as the value of the 
sensitivity parameter   increases, the 
boundary layer effect and the accompanying 
high gradients become more prominent at the 
right endpoint  1x  .  While maximum 

absolute error is attained in the vicinity of the 
middle of the problem domain for 3  , The 

maximum absolute error is very much close to 
the rightside boundary for 5,6    

  Tables 1-4 compare the numerical results with 
those found in literature. The results displayed 
so far confirm that though the algorithm is 
direct, simple and straightforward, it is 
computationally appealing and also 
competitive with those reported in scientific 
literature.   

  4. Conclusion 

In the work reported herein, we provided an 
SOR based solution for the Troesch problem. 
Besides, we presented a comparison between 
the numerical solution and similar work 
reported in scientific literature.  Both the 
graphical and tabular illustrations of the 
solutions show that the method can be relied on 
to provide good results for a modest range of 
the Troesch sensitivity parameter    . 
Moreover it has been shown [13] that due to the 
nonlinear term   sinh u x  which is not 

analytic, some techniques like Laplace, 
homotopy, variation methods can not handle 
the Troesch problem for values of 5   . This 
however, is below the sensitivity values 
considered in this study. 

  On the whole we have provided  an algorithm 
that comes with a simple formulation, and is 
free from restrictive numerical requirements.   
There is practically no need for the  
computation of the Jacobian matrix. In addition 
the requirement for first guesses to  be close the 
to equilibrium domain is relaxed. While it is not 
the aim of this work to replace the more 
conventional approaches with the algorithm 
developed herein, It can be used as the starting 
point or predictor for Newton’s based methods 
where the initial values may start far away from 
the solution and lead to unphysical results. 
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Table 1.  Troesch problem 0.5    

X Exact  HPM [13] ADM [14] Current work 

0.1 0.0959443493 0.0959443155 0.0959383534 0.0959489113 

0.2 0.1921287477 0.1921286848 0.1921180592 0.1921369383 

0.3 0.2887944009 0.2887943176 0.2887803297 0.2888055809 

0.4 0.3861848464 0.3861847539 0.3861687095 0.3861979059 

0.5 0.4845471647 0.4845470753 0.4845302901 0.4845611944 

0.6 0.5841332484 0.5841331729 0.5841169798 o.5841466643 

0.7 0.6852011483 0.685201943 0.6851868451 0.6852120551 

0.8 0.7880165227 0.7880164925 0.7880055691 0.7880225823 

0.9 0.8928542161 0.8928542059 0.8928480234 0.8928526032 

 

 

Table 2.  Results of Troesch problem 1.0    

X Exact  HPM [13] ADM [14] Current  work 

0.1 0.0846612565 0.0846607585 0.084248760 0.0844894176 

0.2 0.1701713582 0.1701704581 0.169430700 0.1701788828 

0.3 0.2573939080 0.2573927827 0.256414500 0.2581006216 

0.4 0.3472226551 0.3472217324 0.346085720 0.3479004515 

0.5 0.4405998351 0.4405989511 0.439401885 0.4411998845 

0.6 0.5385343980 0.5385339413 0.537365700 0.5380350371 

0.7 0.6421286091 0.6421286573 0.641083800 0.6421286957 

0.8 0.7526080939 0.7526085475 0.751788000 0.7526085475 

0.9 0.8713625196 0.8713630450 0.870908700 0.8713634502 
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Table 3.  Results of Troesch problem 5.0    

x Doha [15] Collocation [14] B-spline [16] This work 

0.1 --------------- ----------------- ------------------- .00478801573 

0.2 0.01078872 0.00762552 0.01002027 0.0107890233 

0.3 --------------- --------------- --------------------- 0.0195483593 

0.4 0.03338672 0.03817903 0.03099793 0.0332747853 

0.5 --------------- ---------------- -------------------- 0.0555475126 

0.6 --------------- ----------------- ------------------- 0.0922139919 

0.7 --------------- ------------------ ------------------- 0.1534122341 

0.8 0.25956596 0.23252435 0.24170496 0.2586613278 

0.9 0.45706638 0.44624551 0.42461830 0.4558409106 

 

 

Table 4.  Results of Troesch problem 6.0    

x  HPM [13] Current Work 
0.1 0.0090475673 0.0019069772 
0.2 0.0045760732 0.0045284096 
0.3 0.0088028222 0.0083469019 
0.4 0.0163568079 0.0164225025 
0.5 0.0299907268 0.0301148429 
0.6 0.0548272882 0.0550539664 
0.7 0.1004821099 0.1008938682 
0.8 0.1864571511 0.1872231560 
0.9 0.3633244286 0.3649032771 
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