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Abstract: - In this paper, we consider | -periodical functions pcs(m @) and psn(m @), which

are defined on the curve given by the equation: |x° +|y|” =1,

p>1on R’ as functions of its

length. Considering pcs(mé&) and psn(mé) as an independent functional system, we

construct the theory similar to Fourier analysis with the proper weights. For these weights, we
establish an analogous of the Riemannian theorem. The adjoint representations are introduced
and dual theory is developed. These Fourier representations can be used for approximation of

the oscillation processes.
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Introduction
A curved line given by the equation

x|” +]y|” =1 on R*-plane is called a p-curve
and denoted by Cp . Let us denote the length of
p-curve by | . We introduce a pair of C'-
smooth functions pcs(&) and psn(¢) of the

real argument @ e[o, I ] defined as

pcs(d)=x for all 6eR (1)

and

psn(@)=y for all OeR, (2)

where coordinates X and y belongsto p -
curve, i.e. bound by the equation |x|” +|y|* =1,
so that

|
psn(0) = pcs(z”] =0 and

|
pcs(0) = psn (Z"J =1, and
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|psn(6)|" +|pes(0)" =1 for all O<R.(3)
These functions satisfy the integral identity
psn(6) pes(6) =

= J((pes(6))” ~(psn(6))" )do
p -Fourier transform
Assume f e L” [0, Ip] and let us write a

(4)

Fourier-type series with appropriate weights on
the interval [O,I ] as

f(x)=
=a,+ . (a,pcs(mx)+b, psn(mx)), )
m=1,2,...
with some real coefficients a,,a,,b,,..,a,,b,,....

By usual means. integrating the identity
(3) over the period |, we obtain

I ; I oo
£|pcs(0)| dH:!|psn(0)| de_E (6)
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and
1
aozl_jf(x)dx (7
po
Next we have
ZI_-[ ) pes (mx)| pes (mx)|” "Fdx (8)
and
m:%j ) psn(mx)|psn(mx)" " dx.  (9)
0

Thus, we obtain the mapping of the
functions f eLP [O,Ip] in the set of the

infinite series according to the formula

f(x)_—.[

! f (y) pes(my)|pes(my) " pes (mx) +

+'j: .
0

dx+

(y) psn(my)|psn (my)|p*2 psn (mx)

(10)

Statement (analogous Riemannian
theorem) 1. Assuming g is an integrable

function over an arbitrary interval [a,b]cR
then

Lm[g psn(mx)‘psn(mx)‘p_zdx:o (11)
and

rLlﬂlj.g pes (mx pcs(mx)‘pf2 dx=0. (12)

Theorem (adjoint) 2. Let g be an

integrable function over an arbitrary interval
[a,b] =R then there are

,!1'330.[9 ) psn(mx)dx =0 (13)
and
rLimjg pcs (mx dx 0. (14)
Adjoint series
Assume f eL® then f|f|"" e LP and

we can write
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OO0 =g+
5 a, pcs(mx)|p mx)|p72+ (15)
mi2..| b psn(mx)|psn(mx)|p*2 |
where &,,4,,b,,....4,b,,... defined as follows
|
.17
& =|—j £ )| f (X" dx, (16)
po
IP
a, zlij £ ()| F ()7 pes(mx)ax (17)
p o
and
IP
b, :IEJ £ ()| F () psn(mx)ax. (18)
p o

The morphism from the real line
to the complex plane Epp:R —Cp

We introduce a function Epp:R —Cp,
which maps from the real line to the p -curve
on the complex plane as follows

Epp (i0)=pcs(&)+ipsn(6), OeR (19)
and dual function

Epq (i6) = pcs(6)+i psn(6),
feR, p=q
assume that p is renaming q. The function
Epp: R — Cp is a surjective morphism of the

topological groups from the real line R to the
p -curve Cp and covering the space of the p -

curve Cp. Incase p=2, the function Epp isa

classical exponent on the complex plane of the
imaginary argument.

. (20)

From formula (19), we have

pcs(6) :%(Epp (16)+Epp (i
and

psn(6) =%(Epp (i6)—Epp (i

We introduce an integral transformation
Tp of afunction f LM L" inthe form

6)), 6eR

6)), 0<R.
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"f(2)=
% (21)
J' Epp(-1,id-x) f (x)dx=Tp(f)(1)
where | is a length of the p -curve Cp.
This integral transformation Tp is a

linear mapping relative to the function f andin
case p=2 coincides with the Fourier
transformation.

If p=2 then the integral transformation
of function g

jf Epp(l,i4-x)g(4)d2=Rp(g)(x) (22)

coincides with the inverse Fourier transform, in
the general case it is not necessarily true since
the dual structure does not coincide with the
natural complex structure, the inverse transform
is not always given by formula (22).

We define the inverses integral

transformation Tp™* of a function °f (1) as
f(x)=To™(*f)(x) (23)
for all transforms °f (4).

So, we introduce two types of mappings:
the first is an analog of the Fourier transform

Tp and its inverse Tp™, second is an analog of
the inverse Fourier transform Rp and we can

easily define its inverse Rp™.  These

morphisms do not have the structure of the
group except for p=2.

Generalization of the Wigner
function

Let functions wel’(R") and

pel?(R") then we introduce a general

Wigner function W_ (1, ¢)(x, p) as any quasi-

probability distribution, which satisfies the

following conditions:
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1. jnw,,(y/,go)(x, p)dp = (X)@(X);
anq(l//,(ﬂ)(X’ p)dx =

=Tp(v (p))TP(2(p)).

As a consequence of the first condition,
we have

J;HW” (v, @)(x, p)dpdx =(y ()& (x)) .

X

For a pair of functions y L°(R") and
@< L7(R") such that (y|p)=0, we define a
density o in the point (x, p) by

P (% D)= (% p) = (mﬁ)x, p)

The probability density function is a
homogeneous function of degree one so that
Piv.io(XP)=p, ,(x p) for all complex

A#0.
Let us introduce the generalization of
the Weyl guantization by

(3w)(2)= [ Epp(1yi (4, x))w (x)ax.

where o is a symplectic form.
We define an operator

V (4)=Epp(,i o((4 x).(Q.P))).
where Q is position operators and P is a
momentum.
The Weyl quantization Dp(y)(¢) is
defined by
Dp(y)(#) =((Sow) () ()4())

for any test function ¢ .

We estimate [Dp(y)(¢)] <[5, I

Similarly to the classical case, the new Weyl
quantization is a linear mapping so that

Dp(ay + Bp)=aDp(y)+ADp(p)
holds for all complex numbers «, 5.

Definition. The Schwartz space is a
space of all functions such that

Volume 2, 2022



EQUATIONS
DOI: 10.37394/232021.2022.2.17

l//eC‘”(R") ; }

S(R")= sup|x°a5y (x)| <o Va,aeN"U{0}

xeR"

Now, let us consider a case when
Epp = Exp. The exponent function satisfies the

characteristic identity

Exp(a+b)=Exp(a)Exp(b) so the Weyl

product has the property
Dp(w#¢)=Dp(v)Dp(p)

for some function v, ¢.

The symbol # denotes a non-
commutative product (often called Weyl

product) so that Dp(w#¢)=Dp(y)-Dp(¢)
for some functions.
Let us assume K, and K, are kernels

for the integral operators A and B
respectively. So, we have

Dp(Dp ™ (A)¢)(x) =
exp(—27i(z—x) p)e" x

R‘LW”(KA)(%(X+Z, gp)]qﬁ(z)dpdz _
exp(—27zi(z—x+y)p)x
|

an KA(%(Z+X+ y), %(z+x— y))gﬁ(z)dpdzdy’

we take Dp(w)=A then y=Dp~(A) and
calculate

KA(X+§Z, x—%zj:g‘”(F‘ly/)(x, z),

thus

0P (Dp(1))(x. P) = (x. P).
Generally  speaking, the product
K, Ky eS(R"xR") does not commute. So,

we obtain the following lemma.

Lemma 1. Let K, be a kernel of an
operator Ae BL(LZ(R"), LZ(R”)). Then the

mapping Dp™ is an inverse to Weyl
quantization so that Dp~A=¢"W(K,) and
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A= Dp(g”\N(KA)); the Weyl kernel is given

K, :F;[EXp(_Z”i(Z_X) p)z//(%(x+z,5p)jdp

zgn(F(l//))(%[X+Z, ﬂjj

&

D™ (Dp (1)), p) =

e"(W(K,))(x p)=w(x p)
holds for y e L*(R").

Lemma 2. Let K, and K; be integral

kernels of the operators A and B respectively.
Then the product

(KaKg)(% 2) =(K, (%) Ky ( 2)) is
correctly defined and is a kernel of the
operator; in other words

o:S(R"xR”)xS(R”XR”)—)S(R”xR”).
Proof. Let us denote the multi-indices

by a, a, b, f €N, then we estimate

x*2°0707 (K, Kg) (X, z)‘ =

x*2°0%0” <KA(X’ ) Ke (- Z)>‘

<

X*2°0507 K, (X, ) Kg (- 2)

<
x*2°0707 K, (%, ) Ky (4 z)‘>=
<

Ll

< Constlsup
.eR"

x*2°0707K 5 (%, ) Ky (- z)‘+

+Const2 max sup x*2°0707 K, (%, ) Ky (4 z)‘ <

c=2n _pn

< Constl

x*2°0707 K, (%, ) Ky (4 Z)H00 +

+Const2 max x*2°0707 K, (X, ) Kg (+ 2)

0’

Next, we exchange the order of the
supremum and integration and obtain
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sup <‘xazbajafKA (%, ) Kg (- z)‘> <

x, zeR"

< sup [x*z°0507K , (%, ) K (- z)‘> =

x, zeR"

20207 K (%, ) Kg (- z)‘

X, zeR"

S0, we have

: baiazﬂKA(x’ ) Kg (" Z)‘

Ll

<

X, zeR"

<C(1)

|_1

"2°0507K, (X, ) Kg (+ z)‘+

X, zeR" -eR"

c(2)

‘C‘ 2n X, zeR" -eR"

thus, we obtain K,[K, € S(R"xR").

For the Weyl system, we can formulate
the following Weyl quantization theorem.

Theorem. Let functions y, p S(R™)

then the function y#peS(R™) and such

that satisfies the equality

Dp(y #¢)=Dp(v)Dp(¢),
where
(w#p)(x p)=

exp(27ria((x, p).(z+2, 77+ﬁ)))><

exp(Z;zi?ga((z n).(2, n))jx

Proof. Assume w,peS(R™) and

employ the definition of Dp, we have
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@] (2,5

Now, we are going to establish that
l//#(peS(RZ")
(v#p)(x p)=

2i ((z,m), -
_E eXp(Zﬂ;o{(z,n) Dx

(Fw)(zn)(Fo)(--(zm)/]

(x. p)=

z,1)

so y#¢ belongs S(R™").
Let us denote K, and K, kernels,

which belong to S(R*"), then we have
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(D ()Dp(¢’)¢)(x)
°K )(X’ V() ), =
+2)$(2))) =Dp(w#p)(x).

Next, using the properties of the

exponential function, we have
(w#e)(x p)=

- J;n(exp(Zﬂia((X. p).(z.m)+(Y, g)))x
2ni§a((z,f7),(y’€))jx
272'%9(7((2177)’(2' ﬁ))jx
27zé ((y:5), (V@))X

7)e(9, g’)) dzdrdydcdZdridyds =

p)))x
y/(i,ﬁ)(p((x, p)+§(z,77)DdzdndZdﬁ.

By changing variables

(v.€)=(x p)+Z(z7),

the proof of the theorem.
From  semigroup  properties  of
exponential function follows: let a be a symbol

of S(Rz”) then the Weyl operator is given by

exp

exp

exp

v (Z,

=R!n(exp(ZﬁiO'((z,n),(Zyﬂ) (x,
we are completing

A

Ay ()~
(LJH a(%(xu), pjx

7 osf Lo senlyia)

the kernel of the Weyl operator A is

Ki(xy)=

el gons),

and the symbol is written as
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a(x, p)=
exp —lp-z K (x+12 x—lzj
7 M2t 2
These formulae are circular via to the
semigroup properties.
Since
-ICR(XO’ pO)(‘//(X)):
i (24)
exp 2; Po-(X=%) [ (2%, —X)
the Weyl operator can be written in the form
Ay (x)=
(25)

Kﬁﬂa(z, P)Te (2 P)(v (),

Statement. The Weyl operator extends

to the continuous operator
A:s'(R")—>s'(R").
Indeed, Since aeS(R*) the function

for all

a(z, p)x“oTe (z, p)yw € S(R™)
functions y eS(R") and all multi-indices

a € N" therefore

x“afA(//(x)‘<oo.
Weyl established that correspondence

between symbols a and Weyl operators A is

one-to-one and linear, unit symbol corresponds
to the identity operator on S’(R”). Thus the
set of all Weyl operators coincides with the set
of all symbols on S(R"®R"). The Weyl

operators are pseudo-differential operators with

rapidly decreasing kernels.
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Since the Weyl operator can be rewritten
as

(z.p)
(26)
so that the kernel of the Weyl operator A can

be calculated by the formula
Ki(xy)=

mlciliens)

(27)

then, the symbol can be represented as

a(x p)=

exp —lp-z K(x+lz x—lzj - @)
n M2 2],

The last three formulae are circular.

A Weyl
Theorem 4. Let A<>a be the Weyl

correspondence then

1. for aeS(R"@R") it is necessary
and sufficient
K;(x,y)eS(R"®R") and
Alw (x)=(K; (x 2)y (2)),

2. themap ar A extends to an

isomorphism
S'(R"®R")—> L(S(R”), 5'(R")),

where L(S(R"),S’(R”)) is the
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space of continuous linear
operators from S(R") to S'(R").
Proof. The theorem follows from the
Schwartz kernel theorem.

Theorem 5. Let the Weyl operator A

corresponds to the symbol

~ Weyl

aeL'(R”®R”), 1<r<2 so A<sa, then
there is a constant Const(r) such that the
inequality

a

|Av] e = Const (Ol ey 22)

holds for all y  L*(R").
From this theorem follows that for all
symbols aeL*(R"@R") corresponding Weyl

operators are L*-bounded. However, there are

examples of the symbols

aeL'(R”®R”), 2<r on which L

boundness is ruined so that Weyl operators A

are not L*- bounded for these symbols
acl'(R"®R"), 2<r.
The complete analysis of L?- regularity

for Weyl operators can be made in terms of the
Calderon -Zygmund theory.

Theorem 6. Let A be trace-class Weyl
operator on L*(R") corresponded to symbol
acl (R"®R"), 1<r<2.Thenfor A>0 it
is necessary and sufficient that

Fa(x p)=

<exp(ia((x, p). (%, ﬁ)))a()”(, f’)>(i' 9
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is continuous and such that the matrix with

entries
exp(—%na((xj, p;)s (% pk))JX
Fa((x: py) = (% po))

Is positive semidefinite for all possible sets of

(%0 PL)s (%0 Po)s o (X0 Py ) (R
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