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Abstract: In this paper, we derive an upper bound on the Kolmogorov distance between the 

distribution of a sum of indicator random variables and a standard normal distribution by using the 

size-bias method. Also, we give lower and upper bounds for distribution function of sum of 

indicator random variables in two special points. 
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1. Introduction 
 
   Size bias occurs famously in waiting-time 

paradoxes, undesirably in sampling schemes, and 

unexpectedly in connection with Stein’s method, 

tightness, analysis of the lognormal distribution, 

Skorohod embedding, infinite divisibility, and 

number theory [1,4]. For a non-negative random 

variable X  with <)(= XE , we say a 

random variable sX  has the size-biased 

distribution with respect to X  if  

)),((=))(( sXfXXf EE   

For all R)[0,:f  such that 

|<)(| XXfE  [2]. 
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2. Define a vector ij
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s YYY  

)(=  has the size-biased 

distribution with respect to Y  (see Section 2.4 
in [2]). For an indicator random variable I , 
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    The paper is organized as follows. In Section 

2, we show the simple calculations related to the 

sum of indicator random variables on a random 

permutation. Section 3 is devoted to the proofs of 

our results. We use the size-bias method to prove 

Theorem 2 and get an upper bound on the 

Kolmogorov distance between the distribution of 

sum of indicator random variables and a standard 

normal distribution. Also, we give lower and 

upper bounds for distribution function of n  in 

two special points. To emphasize the practical 

usefulness of our results, we note that n  is 

related to the number of leaves in tree structures. 

In the other words, the expectation and variance 

of n  is important for studying of random trees. 
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2. Preliminaries 
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Theorem 1 [4] Let X  be a nonnegative 

random variable with mean and variance   

and 
2 , respectively, both finite and positive. 

Suppose 
sX  has the size-biased distribution 

with respect to X  which satisfies 

CXX s  ||  for some constant 0>C  with 

probability one. Let 2=
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Such concentration of measure results are applied 

to a number of new examples: the number of 

relatively ordered subsequences of a random 

permutation, sliding window statistics including 

the number of m -runs in a sequence of coin 

tosses, the number of local maxima of a random 

function on a lattice, the number of urns 

containing exactly one ball in an urn allocation 

model, and the volume covered by the union of 

n  balls placed uniformly over a volume n  

subset of 
dR .  
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3. Main Results 
 

In this section, an upper bound on the 

Kolmogorov distance between the distribution of 

a sum of indicator random variables and a 

standard normal distribution is obtained by using 

the size-bias method. Also, the lower and upper 

bounds for distribution function of sum of 

indicator random variables in two special points 

is given. 

The Wasserstein distance between any 

two probability measures   and   on 

))(,( RBR  is defined as follows  
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where 

|}||)()(:|:{:= yxyhxhhH RR . 

For random variables X  and Y , the 

Kolmogorov distance between their distributions 

is defined as  
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Also, for a random variable X  with Lebesgue 

density bounded C  [7],  
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Proof. Choose an index J  uniformly at random 

from the set 1}{1,..., n , then size-bias 1, JJI  

by letting it equal to one, and take the remaining 

summands conditional on 1=1, JJI . We can 

realize 1=1, JJI  by adjusting the order of Jt  

and 1Jt  such that 1> JJ tt , and 
s

n  denotes 

the number of descents in t  after adjusting the 

order of Jt  and 1Jt . Then for 1=J ,  
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Theorem 3  We have  






 1.<      0,

1>     1,
=)

2

1
(lim

s

s
s

n
F

nn

 

 

Proof . Since 0>n , then 0=)
2

1
( s
n

F
n


  

for 0s . Also  

).
1)/12(2

1)1)((
(=)

2

1
(






n

sn
Fs

n
F T

n
 

From Theorem 2 and the definition of 

Kolmogorov distance,  

.
1

)
1)/12(2

1)1)((
()

1)/12(2

1)1)((
(

4

1


























n
n

sn
F

n

sn
F ZT O

 

From (11) and (12), the proof is completed.  
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