
In quantum physics, the concept of the matter wave provides
an apparatus for the mathematical description of the position
of the particle and its Fourier conjugation momentum char-
acterizes the motion of the particle, position, and motion of
the particle intricately undividedly entangled and cannot be
sharply simultaneously known. According to Heisenberg, the
standard deviation of position ∆x and the standard deviation
of momentum ∆p cannot be known simultaneously more
precisely than ℏ

2 , where ℏ is the reduced Planck constant,
from an analytical perspective, it means that the pair position
and momentum related via Pontryagin conjugation, and the
wave functions in two dual orthonormal bases in the Hilbert
space are Fourier transform of one another, more generally, the
mathematical variant of the uncertainty principle states that a
function ψ and its Fourier transform F (ψ) cannot be highly
concentrated at the same time [2, 5, 8, 12]. The uncertainty
principle can be formulated in several different versions that
were proved by Hardy, Narayanan [22, 23], Morgan, Cowling-
Price [16], etc. see the references therein.

Since harmonic analysis is a classical brunch of mathemat-
ical science, there exists extensive literature on the subject
[2, 5, 8], however, mathematical aspects of the uncertainty
principle (the Heisenberg principle of quantum mechanics) are
still demanding additional investigations [1-7].

Following notations of D.L. Donoho and P.B. Stark [2], we
denote an integrable function on the locally compact Hausdorff
group G by ψ and its Fourier transform F (ψ) by ψ̂. Assume
that ψ ∈ Lp (G) is ε-concentrated on a measurable set T
and Fourier transform ψ̂ δ-concentrated on W then we have
obtained the uncertainty estimation in the form(

1 + δ

1− ε− δ

)p
µG (T ) µ̂ (U) ≥ 1

where µG is measure Haar on G and µ̂ is a Plancherel measure
on the set of irreducible unitary representations of G.

To define the Fourier transform F : L2 (G/K) →
⟨V (·)⟩(P, µ̂) = Υ on G/K we need to define a direct
integral decomposition ⟨V (·)⟩(P, µ̂) = Υ =

∫
⊕ V (ω) dµ̂ (ω)

of L2 (G/K). The direct integral
∫
⊕ V (ω) dµ̂ (ω) of the set

{V (ω)}ω of Hilbert spaces with respect to the measure µ̂ is
a space of measurable vector fields v ∈ V (ω) of the variable
ω such that

∥v∥L2
2 =

∫
P

∥v (ω)∥V (ω)
2dµ̂ (ω) .

Let G be a locally compact group and let π (ω) be a unitary
representation G on a Hilbert space V (ω) defined for every
ω, and mapping ω 7→ π (g, ω) be a measurable field of
mapping for every g ∈ G, then a unitary representation of
G on ⟨V (·)⟩(P, µ̂) is expressed by

π (ω) =

∫
⊕
(g, ω) dµ̂ (ω) .

The Fourier transform F : L2 (G/K) → ⟨V (·)⟩(P, µ̂) = Υ
is defined by F (ψ) (ω) = π (ψ, ω) v (ω), where unit vector
v (ω) ∈ V (π (ω)) = V (ω).

In its most general form, the Plancherel theory estab-
lishes that presume (G, K) is communicative and µ̂ is
its Plancherel measure then ∥ψ∥L2(G/K) = ∥F ()∥L2(G/K)

and the inverse Fourier transform is given by ψ (g) =
⟨⟨F (ψ) , π (g, ·) v (·)⟩V ⟩(P, µ̂).

We are going to compare loosely the uncertainty principle
for G/K with the classical uncertainty inequality of quantum
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mechanics. Let A and B be a pair of Hermitian operators
and let Ψ be a physical state of the quantum system. The
uncertainties of the operators A and B in the state Ψ is denoted
by ∆A and ∆B, respectively. Then, the classical uncertainty
inequality can be presented in the form∣∣∣∣〈Ψ ∣∣∣∣ 12i [A,B]

∣∣∣∣Ψ〉∣∣∣∣ ≤ ∆A ·∆B

or if we take A = x̂ and B = p̂ then obtain(〈
Ψ

∣∣∣∣ 12i [x̂, p̂]
∣∣∣∣Ψ〉)2

≤ (∆x)
2 · (∆p)2

since 1
2i [x̂, p̂] =

ℏ
2 we have

ℏ
2
≤ ∆x ·∆p.

If p = 2 then the uncertainty principle for G/K can be
rewritten as

1− ε− δ ≤ µG (T ) µ̂ (U) .

So, loosely, since position and momentum are conjugate
variables the right part of the classical equation is a special
case of the general theory, and for the left side, we have that
1 − ε − δ in the case of G/K corresponds to ℏ

2 of classical
case.

In the simple case of Rn, the Hardy uncertainty principle
can be considered for the Fourier transform given by

F (ψ) (χ) = ψ̂ (χ) = (2π)
−n

2

∫
Rn

exp (−iχ · x)ψ (x) dx,

and if ψ ∈ L1 (Rn) and∫
Rn

∫
Rn

exp (|χ · x|) |F (χ)| |ψ (x)| dxdχ <∞

then we have that necessary ψ = 0 almost everywhere.
The broader instance of Hardy’s principle is given by the

following statement: let G be a connected semisimple Lie
group with a finite center having a uniquely defined class of
Cartan subgroups, let K be a maximal compact subgroup of
G. The centralizer of the exponent A of a maximal abelian
subspace of positively defined Cartan-Killing form on the Lie
algebras of G, in K is denoted by M . Let ψ be a measurable
function on Gsuch that

|ψ (g)| ≤ c1 exp
(
−c2 ∥g∥2

)
for all g ∈ G, and the estimation

∥π (ψ, v, ṽ)∥ ≤ c̃1 (v) exp
(
−c̃2 ∥ṽ∥2

)
holds for all v ∈ M̂ and ṽ ∈ a∗, where c1, c2, c̃1 (v) , c̃2 are
constants. If the product c2c̃2 > 1

4 then the function ψ equals
zero almost everywhere.

The proof of the broader Hardy uncertainty principle em-
ploys that the Plancherel measure is supported on M̂ × a∗

then from the condition inequalities, we have π (ψ, v, ṽ) = 0
on M̂ × a∗ therefore the Hardy principle is proven.

Let G be a locally compact Hausdorff group equipped
with a Haar measure µ. We define the character χ of the
group G as a topological continuous group homomorphism
χ : G → U (1). For instance, if we assume that G is
an additive group then the character satisfies the condition
χ (g − h) = χ (g) (χ (h))

−1 for all g, h ∈ G.
Definition 1. The Fourier transform F of a function ψ ∈

L2 (G)
⋂
L1 (G) is given by

F (ψ) (χ) = ψ̂ (χ) =

∫
G

ψ (g)χ (g) dµ (g) . (1)

Definition 2. The topological group Ĝ consisting of all
characters χ : G→ U (1) on G with its natural operation
on multiplication is called a dual group of G.

Let G be a locally compact Hausdorff group equipped with
a Haar measure µ then one can uniquely define a Haar measure
µ̂ on the dual group Ĝ. The measure µ̂ is defined by µ̂ (χ) =∫
G
χ (g) dµ (g), this is a Fourier-Stieltjes transformation of

the measure µ.
Definition 3. The Fourier inversion transform F−1 of a

function ψ̂ ∈ L2
(
Ĝ
)⋂

L1
(
Ĝ
)

is defined by

ψ (g) = F−1
(
ψ̂
)
(g) =

((
ψ̂
))∨

(g) =

=
∫
Ĝ
ψ̂ (χ)χ (g) dµ̂ (χ) .

(2)

We denote M(G) the associative Banach algebra of all
measures on the σ-algebra of all Borel sets of a Hausdorff
topological locally compact group G. Let µ, η ∈ M(G), the
convolution of measures µ and η is defined by

(µ ∗ η) (D) =

∫
G×G

ϕD (g, h) dµ (g) dη (h) , (3)

where ϕD is an indicator of D, namely, ϕD (g, h) ={
1 if g, h ∈ D
0 if g, h ∈ G\D .

Convolution of the elements of L1 (G) is defined by

(ψ ∗ φ) (g) =
∫
G

ψ (h)φ
(
h−1g

)
dµ (h) , (4)

and agrees with the convolution of the measures when L1 (G)
is naturally embedded in M(G).

Straightforward calculation yields

F (µ ∗ η) (χ) = F (µ) (χ)F (η) (χ) = µ̂ (χ) η̂ (χ) . (5)

Let G be a unimodular locally compact Hausdorff group.
If the continuous homomorphism π from G into the group
U (H) of the unitary operators on the separable Hilbert space
H , such that mapping π : G→ U (H) satisfies conditions:
π (gh) = π (g)π (h) and π

(
g−1

)
= (π (g))

−1
= (π (g))

∗,
(??)
and the mapping g → π (g)x is continuous for all x ∈ H ,
then the homomorphism π is called a unitary representation
of G in H .

2. Fourier Transform 

3. The Plancherel Theory 
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Let us denote the right and left regular representations of
G on L2 (G) by

ρ (g)ψ (h) = ψ (hg) (6)

and
λ (g)ψ (h) = ψ

(
g−1h

)
(7)

respectively.
Assume that the group G is such that every primary

representation of the group G is a direct sum of copies of
irreducible representations. The matrix coefficient Λ of the
unitary representation π is a function Λ (ψ,φ) (g) given by

Λ (ψ,φ) (g) = ⟨π (g)ψ,φ⟩ (8)

for ψ,φ ∈ L2 (G) = H and g ∈ G. Let ψ = ej , φ = ek
then denote

πjk (g) = Λ (ej , ek) (g) = ⟨π (g) ej , ek⟩ , (9)

where the system {ej} is a basis of L2 (G) = H . Each element
Λπ is uniquely corresponded with a continuous function such
that for each finite-dimensional representation π there exists
a decomposition Λπ = ⊕1≤k≤n(π)Λπ ∗ mk where mk is an
irreducible idempotent, and so that ϕπ =

∑
k=1,..,n(π)mk and

ϕπ =
∑
k=1,..,n(π) ek. Let {ak}1≤k≤n(π) be a Hilbert basis in

Λπ ∗m1 such that the condition ak ∈ mk ∗ Λπ ∗m1 holds.
For every finite-dimensional representation π, we define a

matrix Mπ (g) of n (π)× n (π)-dimension with coefficients

aij (g) = (n (π))
−1
(
ai (g) ∗ aj (g−1)

)
(10)

for 1 ≤ i ≤ n (π) and 1 ≤ j ≤ n (π). So, we have aii = mi.
We define a linear span θπ of the matrix coefficients πjk,
which is a subspace of L2 (G).

We denote the set of all finite linear combinations of the
matrix coefficients of irreducible representations by θ, so θ is
a linear span of Λπ overall finite-dimensional representations
of the group G.

Theorem 1. The set θ constitutes an algebra.
Proof. Let π, π̃ ∈ Ĝ as equivalence classes of irreducible

representations then we have

πjk (g) = ⟨π (g) ej , ek⟩ (11)

and
π̃mq (g) = ⟨π̃ (g) ẽm, ẽq⟩ . (12)

The spaces H and H̃ are defined by choices of bases {ek}
and {ẽm} for πjk and π̃mq . The spaces H and H̃ can be
identified with Cn and Cñ, where n = dim (π) and ñ =
dim (π̃). Let Cn,ñ be a space of all matrices over C of n× ñ
dimension. Let T be an operator of unitary equivalence of π
and π̃ so that π̃ (g) = Tπ (g)T−1. The tensor product π ⊗ π̃
of representations π and π̃, on Cn,ñ is given by

(π ⊗ π̃) (g)T = (π) (g) T π̃
(
g−1

)
. (13)

Since π̃mq
(
g−1

)
= π̃qm (g) we obtain the statement of the

theorem

⟨(π ⊗ π̃) (g) ekq, ejm⟩ = πjk (g) π̃mq (g) (g) .

Theorem 2. The algebra θ is uniformly dense in Lp (G)
in the Lp norm for 1 < p <∞.

The proof of this theorem follows from the density of θ in
C (G).

The Peter-Weyl theorem states:

ψ (g) = F−1
(
ψ̂
)
(g) =

((
ψ̂
))∨

(g) =

=
∫
Ĝ
ψ̂ (χ)χ (g) dµ̂ (χ)

. (14)

first statement. The mapping F : L2 (G) → L2
(
Ĝ
)

defined by

F (ψ) (π) =

∫
ψ (g)Mπ

(
g−1

)
dµ (g) (15)

is an isometric isomorphism. For each element ψ ∈ L2 (G),
we have a representation

ψ =
∑
π n (π)

∑
i,k=1,...,n(π)

⟨⟨F (ψ) (π) (ei (π)) , (ek (π))⟩⟩ϕik (π) ,
(16)

where {ei (π)}i=1,...,n(π) is an orthonormal basis in Cn(π) and
coordinate functions ϕik are defined as

ϕik (π) (g) = ⟨Mπ (g) ei (π) , ek (π)⟩ (17)

for all g ∈ G and i, k = 1, ..., n (π).
second statement. Let G be a compact group then the inverse

Fourier transform F−1 : L2
(
Ĝ
)
→ L2 (G) is defined by

ψ (g) =
∑
π

n (π) tr (F (ψ) (π)Mπ (g)) (18)

for any Fourier transform F (ψ) ∈ L2
(
Ĝ
)

of ψ ∈ L2 (G)

and the series converges in L2.
Now, we can formulate an analog of the Plancherel theory.
Theorem (analog of Plancherel) 3. Let G be a uni-

modular locally compact Hausdorff group with a Haar
measure µ. Then a measure µ̂ on the dual group Ĝ is
uniquely defined by the measure µ. The Fourier transform
F : L2 (G)

⋂
L1 (G) → L2 (G) satisfies the equality∫

G

ψ (g)φ (g)dg =

∫
G

Tr
(
ψ̂ (π) (φ̂ (π))

∗
)
dµ̂ (π) (19)

for all ψ, φ ∈ L2 (G)
⋂
L1 (G).

More precisely, let ψ, φ ∈ L2 (G)
⋂
L1 (G) then

F (ψ ∗ φ) (π) = F (φ (π) )F (ψ (π)) is a classical trace class
for almost everywhere π so the trace of F (φ (π) )F (ψ (π))
is integrable on Ĝ.

The equality (19) expresses the unitarity of the Fourier
transform and can be rewritten in the form of the statement
that for each F (ζ), the inverse Fourier transform is given by

ζ (g) =

∫
G

Tr
(
π̂ (g) ζ̂ (π)

)
dµ̂ (π) (20)

since if we take ζ = φ∗ ∗ ψ and g = 1 then we obtain (19).
Lemma. Let ψ ∈ Lp (G) for all 1 < p <∞ then F (ψ) ∈

L
p

p−1 (G) so that ∥F (ψ)∥
L

p
p−1

≤ ∥ψ∥Lp .
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Below we will follow notations of the David L. Donoho
and Philip B. Stark [2] when it is convenient.

Let G be a locally compact Hausdorff group equipped with
a probabilistic Haar measure µG and K be a maximal compact
subgroup of G with a probabilistic Haar measure µK .

For any ψ ∈ Lp (G), we defined a measurable set T such
that

∥ψ − ψ1T ∥ ≤ ε ∥ψ∥ , (21)

where 1T is a characteristic function of the set T . The set T is
called ε-concentration set for the function ψ ∈ Lp (G), loosely
speaking it means that the support of the function ψ ∈ Lp (G)
is ε-close to the set T . Let the Fourier transform F (ψ) be
δ-concentrated on the measurable set W .

We define pair of operators

(PT (ψ)) (g) =

{
ψ (g) , g ∈ T,
0, g /∈ T

(22)

and
(QW (ψ)) (g) = F−1

(
1W ψ̂ (g)

)
, (23)

where F−1 denotes the inverse Fourier transform. The op-
erator QW partially returns the function ψ neglecting all
frequency information outside of the set W so that the function
QW (ψ) is the nearest function to ψ.

The convolution ψ ∗ φ of functions ψ and φ is given by

(ψ ∗ φ) (g) =
∫
G

ψ (h)φ
(
h−1g

)
dµG (h) . (24)

Let K\G/K be a double coset of G then the convolution
algebras C0 (K\G/K) and L1 (K\G/K) are subalgebras of
algebras C0 (G) and L1 (G) respectively.

Definition 4. For g ∈ G, the measure µg given by∫
G

ψ (h) dµg (h) =

∫
K

∫
K

ψ
(
kgk̃

)
dµK (k) dµK

(
k̃
)

(25)

is called a K-dually invariant probability measure.
Definition 5. If equality µg ∗ µh = µh ∗ µg holds for all

g, h ∈ G then (G, K) is called a Gelfand pair.
Straightforward consideration shows that (G, K) is a

Gelfand pair if and only if equality KgK · KhK = KhK ·
KgK holds for all g, h ∈ G.

The space M(G, K) is a Banach convolutive subalgebra of
Radon measures on G that are dual K-invariant.

A measure µ ∈ M(G, K) is a positive type relative K if
and only if µ

(
ψ (g) ∗ ψ (g−1)

)
≥ 0 for all ψ ∈ C0 (G, K).

The projection of C0 (G), M(G), and Lp (G) onto its
subspace C0 (K\G/K), M(K\G/K), and Lp (K\G/K) of
dual K-invariant functions and measure, respectively, we will
denote by ψ 7→ ψ# for functions and µ 7→ µ# for measures.

Definition 6. Let G be a locally compact communicative
group, the mapping Lp (G) 7→ Lq

(
Ĝ
)

given by

ψ̂ (χ) =

∫
G

ψ (g)χ
(
g−1

)
dµG (g) (26)

is called a spherical transport of the function ψ, here χ ∈ Ĝ,
p+ q = pq, p > 1.

Now, we are going to define the class of continuous func-
tions that are quasi-weights for spherical measures.

Definition 7. A continuous function ω : G→ C is called
a zonal spherical function if the Radon measure dµ (g) =
ω
(
g−1

)
dµG (g) satisfies the following conditions:

1. measure µ is dual K-invariant namely µ
(
kEk̃−1

)
=

µ (E) for all measurable subsets E ⊆ G;

2.µ (ψ ∗ φ) = µ (φ)

∫
G

ψ (g) dµ (g) .

The set of all zonal spherical functions is denoted by
S (G,K) and the subset positive functions of S (G,K) by
P (G,K).

Such measures dµ (g) = ω
(
g−1

)
dµG (g) are called spher-

ical.
For ψ ∈ C0 (K\G/K) we define D (ψ) =

{z (ψ) ∈ Cψ : |z (ψ)| ≤ ∥ψ∥L1}. Since, for
ψ ∈ C0 (K\G/K), the mapping

ω 7→
∫
G

ψ (g)ω
(
g−1

)
dµG (g) = ψ̂ (ω) (27)

is an injection, we have P (G,K) ⊂
⋂
D (ψ).

Theorem (Godement) 4.
1. Let µ ∈ M(G, K) be a positive type relative K measure

then there exists a uniquely define positive Radon measure
µ̂ that coincides with the spherical Fourier transform F (µ)
of the measure µ.

2. Let ψ ∈ C0 (K\G/K) then there exists a uniquely
define positive Radon measure µ̂ on P (G,K) such that
∥ψ∥L2 =

∥∥∥ψ̂∥∥∥
L2

.
From definitions and simple considerations, we obtain the

following statement.
Statement. 1. Assume φ ∈ P (G) such that φ (1) = 1 then

there exist a uniquely define representation space (V, π), π
is a unitary irreducible representation of G, and a uniquely
define unit cyclic vector v ∈ V such that φ (g) = ⟨v, π (g) v⟩
holds for all g ∈ G. 2. Assume π is a unitary irreducible
representation of Gand a unit vector v ∈ V is spanned by
(V, K, π) then ⟨v, π (g) v⟩ ∈ P (G) and ⟨v, π (1) v⟩ = 1.

So, each density-function ω ∈ P (G) defines representation
space (V (ω) , π (ω)), and a vector v (ω) ∈ V (ω) such that
equality ω (g) = ⟨v (ω) , π (g, ω) v (ω)⟩V holds for all g ∈ G.

Definition 8. The mapping F : L1 (G/K) →
⟨V (·)⟩(P, µ̂) = Υ given by F (ψ) (ω) = π (ψ, ω) v (ω) is
called the Fourier transform of the function ψ ∈ L1 (G/K)
on G/K.

In the last definition, ⟨V (·)⟩(P, µ̂) is understood as a direct
integral with the Plancherel measure µ̂.

Theorem (Plancherel-Godement) 5. Let (G, K) be
Gelfand and Abelian then the Fourier transform satisfies
the equalities

ψ (g) = ⟨⟨F (ψ) , π (g, ·) v (·)⟩V ⟩(P, µ̂) (28)

4. The Generalized Heisenberg Principle 
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and

∥F (ψ)∥Υ = ∥ψ∥L2(G/K) (29)

for all ψ ∈ L2 (G/K).
Definition 9. The mapping F−1 : Υ → L1 (G/K) given

by F−1 (ζ) (g) = ⟨⟨ζ (·) , π (g, ·) v (·)⟩V ⟩(P, µ̂) is called the
inverse Fourier transform of the function ζ on G/K.

Theorem (Heisenberg principle) 6.
Let ε, δ ≥ 0. Let function ψ ∈ Lp (G/K) be ε-

concentrated on T = TK ⊂ G in Lp-norm and satisfies
the condition there exists a function ψU ∈ Lp (G/K) such
that sup p (F (ψU )) ⊂ U and ∥ψ − ψU∥Lp ≤ δ ∥ψ∥Lp . Then(

1 + δ

1− ε− δ

)p
µG (T ) µ̂ (U) ≥ 1. (30)

Proof. First, we show that

∥PQ∥pLp ≤ µG (T ) µ̂ (U)

where operators are defined by

(PT (ψ)) (g) =

{
ψ (g) , g ∈ T,
0, g /∈ T

and

(QW (ψ)) (g) = F−1 (1W (Fψ (g))) .

Indeed, we have

PQψ (g) = 1T (g)F−1 (1W (Fψ) (g)) =
= 1T (g)

∫
G

∫
P
ψ (h) 1W (ω)〈

v (ω) , π
(
h−1g, ω

)
v (ω)

〉
V (ω)dµ̂ (ω) dµG (h) =

=
〈
ψ (·) , 1T (g)F−1 ((ω 7→ 1W (ω) v (ω)) (h−1g))

〉
L2
,

since, by Riesz-Thorin theorem, for all ψ ∈ Lp (G/K) and
v ∈ V p, we have ∥F (ψ)∥Lq ≤ ∥ψ∥Lp and

∥∥F−1 (v)
∥∥
Lq ≤

∥v∥Lp , thus Holder and Titchmarsh inequalities yield

∥PQψ∥pLp ≤
≤ ∥ψ∥pLp

∥∥F−1 ((ω 7→ 1W (ω) v (ω)))
∥∥q
Lq µG (T ) ≤

≤ µG (T ) µ̂ (U) ∥ψ∥pLp .

Second, there is the estimation

1− ε− δ

1 + δ
≤ ∥PQ∥Lp .

Indeed, using the conditions, we estimate

∥ψ∥Lp − ∥PQψ∥Lp ≤ ∥ψ − PQψ∥Lp ≤
≤ ∥ψ − PQψ∥Lp + ∥Pψ − PψU∥Lp +
+ ∥PQψU − PQψ∥Lp ≤
≤ ε ∥ψ∥Lp + δ ∥ψ∥Lp + δ ∥ψ∥Lp ∥PQψ∥Lp ,

so, we obtain 1 − ε − δ ≤ (1 + δ) ∥PQ∥Lp that proves the
Heisenberg principle.

Let G be a connected semisimple real Lie group such that
there exists an analytic diffeomorphism from the manifold K×
A × N to group G according to the rule (k, a, n) 7→ kan,
decomposition KAN is called the Iwasawa decomposition of
the group G, where the dimension of A is equal to the real
rank of G. The group K is closed and contains the center
of G, Imag (K) under the adjoint representation of Gis a
maximal compact subgroup of the adjoint of G; subgroups A
and N are simply connected. The associated minimal parabolic
subgroup of G is MAN . Let g and a be Lies algebras of
G and A, respectively, the norms ∥·∥ correspond to the a and
dual algebra a∗ relative to the inner product induced by the
Killing form of g.

Let an irreducible unitary representation v of M being
presented as a left translation on Vv ⊂ C (M) where Vv is
finite-dimensional. Let ṽ be an element of the complexification
a∗C of a∗.

Loosely said the Hardy uncertainty principle maintains that
the function ψ and its Fourier transform F (ψ) cannot be
simultaneously both rapidly decreasing.

Theorem 7. Let a measurable on G function ψ satisfies
the conditions:

|ψ (k1ak2)| ≤ c1 exp
(
−c2 |log (a)|2

)
(31)

for all k1, k2 ∈ K and a ∈ A, and the following estimation

∥π (ψ, v, ṽ)∥ ≤ c̃1 (v) exp
(
−c̃2 |ṽ|2

)
(32)

for all v ∈ M̂ and ṽ ∈ a∗, where c1, c2, c̃1 (v) , c̃2 are
constants. If the product c2c̃2 > 1

4 then the function ψ
equals identically to zero.

Proof. We denote

ψρ,ρ̃ (g) = dim (ρ) dim (ρ̃)∫
K

∫
K

χρ (k1)χρ̃ (k2)ψ (k1gk2) dµK (k1) dµK (k2) ,

where ρ and ρ̃ are irreducible representations of K.
Employing conditions and remarks π (ψρ,ρ̃, v, ṽ) =

Pρπ (ψ, v, ṽ)Pρ̃ here Pρ and Pρ̃ are the projections of L2 (K)
on the sum of all submodules, which are isomorphic to the ρ1
and ρ2 weight modules. Let 0 < c2 (v) < c2and take c̃2 so
that c2 (v) c̃2 > 1

4 , we have

∥π (ψρ,ρ̃, v, ṽ)∥ ≤ c5 exp

(
|ṽ|2

4c2 (v)

)
for v ∈ M̂ and ṽ ∈ a∗C .

Applying the Naimark equivalent, there is a quotient repre-
sentation π̃ (v, ṽ) of π (v, ṽ) to close quotient subset V1/V0,
there exists a densely define intertwining operator (π, Vπ) 7→
(π̃ (v, ṽ) , V1/V0) on the domain of which π (ψρ,ρ̃) = 0, from
the properties of quotient representation, by continuity, we
have π (ψρ,ρ̃) = 0 on Vπ . By summing over all ρ and ρ̃,
we have π (ψ) = 0 for all representations of G, applying
Plancherel theory, we obtain ψ = 0 [19].

5. The Hardy Uncertainty Principle 

EQUATIONS 
DOI: 10.37394/232021.2023.3.6 Mykola Ivanovich Yaremenko

E-ISSN: 2732-9976 48 Volume 3, 2023



[1] N. Arkani-Hamed, T.-C. Huang, and Y. Huang, Scattering amplitudes
for all masses and spins, JHEP 11 (2021), 070.

[2] D. L. Donoho & P. B. Stark, Uncertainty principles and signal recovery,
SIAM J. Applied Math. 49 (1989), 906–931.

[3] V. Shtabovenko, R. Mertig, and F. Orellana, New features and improve-
ments, Comput. Phys. Commun. 256 (2020), 107478.

[4] L. de la Cruz, B. Maybee, D. O’Connell, and A. Ross, Classical Yang-
Mills observables from amplitudes, JHEP 12 (2020), 076.

[5] C. L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9
(1983), 129–206.

[6] R. Monteiro, D. O’Connell, D. P. Veiga, and M. Sergola, Classical
solutions and their double copy in split signature, JHEP 05 (2021), 268.

[7] Mariusz P. Dabrowski and Fabian Wagner, Asymptotic Generalized
Extended Uncertainty Principle. Eur. Phys. J. C, 80:676, (2020).

[8] M. J. Lake, A New Approach to Generalised Uncertainty Relations. 8
(2020).

[9] P. and F. Wagner, Gravitationally induced uncertainty relations in curved
backgrounds. Phys. Rev. D, 103:104061, (2021).

[10] L. Petruzziello, Generalized uncertainty principle with maximal observ-
able momentum and no minimal length indeterminacy, Class. Quant.
Grav. 38 no. 13, (2021), 135005.

[11] S. P. Kumar and M. B. Plenio, On Quantum Gravity Tests with
Composite Particles, Nature Commun. 11 no. 1, (2020), 3900.

[12] K. T. Smith, The uncertainty principle on groups, SIAM J. Appl. Math.
50 (1990), 876–882.

[13] M.I. Yaremenko, Calderon-Zygmund Operators and Singular Inte-
grals, Applied Mathematics & Information Sciences: Vol. 15: Iss. 1,
Article 13, (2021).

[14] B. Krotz, J. Kuit, E. Opdam, and H. Schlichtkrull, The infinitesimal
characters of discrete series for real spherical spaces, Geom. Funct. Anal.
30 (2020), 804–857.

[15] K. Smaoui, K. Abid, Heisenberg uncertainty inequality for Gabor
transform on nilpotent Lie groups. Anal Math 48, 147–171 (2022).

[16] Cowling, M.; Sitaram, A.; Sundari, M. Hardy’s uncertainty principle on
semisimple groups. Pacific J. Math. 192 (2000), no. 2, 293–296.

[17] B.K. Germain, K. Kinvi, On Gelfand Pair Over Hypergroups, Far East
J. Math. 132 (2021), 63–76.
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