
Fixed point theorems for a new nonlinear mapping in Hilbert Spaces

Abstract: This study presents a new class of nonlinear mappings in Hilbert space. We establish demiclosed princi-
ples and fixed point theorems for this nonlinear mapping. Some works of literature are improved on and expanded
upon by the results that this study presents.
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1 Introduction and Preliminaries
Throughout this paper, we denote byN the set of pos-
itive integers and by R the set of real numbers. Let
H be a real Hilbert space with inner product ⟨., .⟩ and
norm ∥.∥, respectively.

Let be H be a real Hilbert space and M be a
nonempty closed convex subset of H, and F : M →
M be a mapping. A point z ∈ M is called a fixed
point ofF : M → M if z = Fz. We denote Fix(F)
the set of a fixed points of F .

A mapping F : M → M is called nonexpansive
if

∥Fu−Fv∥ ≤ ∥u− v∥
for all u, v ∈ M. F is called quasi-nonexpansive if
Fix(F) ̸= ∅ and

∥Fu− z∥ ≤ ∥u− z∥
for all u ∈ M and z ∈ Fix(F). If F : M → M is
nonexpansive mapping and the set Fix(F) ̸= ∅, then
F is quasi-nonexpansive. It is well-known that the
set Fix(F) of fixed points of a quasi-nonexpansive
mapping F is closed and convex, [1], [2].

The following demiclosed principle for nonexpan-
sive mappings in Hilbert spaces was provided in 1965
by [3].

Theorem 1.1 Let M be a nonempty closed convex
subset of a real Hilbert space H. Let F be a non-
expansive mapping of M into itself, and let {un} be
a sequence in M. If un → z and ∥un − Fun∥ = 0,
then Fz = z.

The following fixed point theorem for nonexpansive
mappings in Hilbert spaces was provided in 1971 by
[4].

Theorem 1.2 Let M be a nonempty closed convex
subset of a real Hilbert space H. Let T be a non-
expansive mapping ofM into itself, Then {Fnu} is a
bounded sequence for some u ∈ M iff Fix(F) ̸= ∅.

In a real Hilbert space, the following result was pro-
vided in 1980 by [5].

Theorem 1.3 Let M be a nonempty closed convex
subset of a real Hilbert space H.Then the following
conditions are equivalent.

(1) Every nonexpansive mapping ofM into itself has
a fixed point in M;

(2) M is bounded.

A firmly nonexpansive mapping is an essential exam-
ple of a nonexpansive mapping in a Hilbert space. A
mapping F : M → M is said to be firmly nonex-
pansive if

∥Fu−Fv∥2 ≤ ⟨u− v,Fu−Fv⟩

for all u, v ∈ M, [3], [6], [7].
Nonspreading mapping was first introduced in

2008 by [8]. They also obtained a common fixed
point theorem for a commutative family of non-
spreading mappings in Banach spaces, as well as a
fixed point theorem for a single nonspreading map-
ping. A mapping F : M → M is called nonspread-
ing, [8], if

2∥Fu−Fv∥2 ≤ ∥Fu− v∥2 + ∥Fv − u∥2

for all u, v ∈ M.

An extension of Theorem 1.2 for nonspreading
mapping in Hilbert spaces was made by [8]. An ex-
tension of Ray’s type theorem for nonspreading map-
ping in Hilbert spaces was made in 2010 by [9].
Also, the demiclosed principles were extended for
nonspreading mappings by [10]. In Hilbert spaces,
the following two nonlinear mappings introduced by
[11], are said to be TJ − 1, TJ − 2; see also, [12]. A
mapping F : M → M is called a TJ − 1 mapping,
[11], if

2∥Fu−Fv∥2 ≤ ∥u− v∥2 + ∥Fu− v∥2
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for all u, v ∈ M. A mapping F : M → M is called
a TJ − 2, [11], mapping if

3∥Fu−Fv∥2 ≤ 2∥Fu− v∥2 + ∥Fv − u∥2

for all u, v ∈ M. Similar results to the above theo-
rems were also obtained for TJ −1 and TJ −2map-
pings, [11]. Motivated by the above works, we intro-
duce a new nonlinear mappings in Hilbert spaces.
Definition 1.4 Let M be a nonempty closed convex
subset of a Hilbert space H. We say F : M → M
is a new nonlinear mapping if there exists α, β ∈ R
with 0 ≤ α+ β ≤ 2 such that

2∥Fu−Fv∥2 ≤ α∥Fu− v∥2 + β∥Fv − u∥2

+ (2− α− β)∥u− v∥2

for all u, v ∈ M.

Remark 1.5 Especially with special choices ofα and
β, the nonlinear mapping as defined in Definition 1.4
becomes nonspreading mapping, TJ − 1 mapping,
TJ−2mapping and nonexpansive mapping. Indeed,
in Definition 1.4, we know that if we choose
(1) α = β = 1 for all u, v ∈ M , then F is a non-

spreading mapping;

(2) α = 1, β = 0 for all u, v ∈ M, then F is a
TJ − 1 mapping;

(3) α = 4
3 , β = 2

3 for all u, v ∈ M, then F is a
TJ − 2 mapping.

(4) α = 0, β = 0 for all u, v ∈ M, then F is a
nonexpansive mapping.

We can also show that if u = Fu, then for any v ∈
M,

2∥u−Fv∥2 ≤ α∥u−v∥2+β∥Fv− u∥2

+ (2− α− β)∥u− v∥2

(2− β)∥u−Fv∥2 ≤ (2− β)∥u− v∥2

∥u−Fv∥2 ≤ ∥u− v∥2.

This means that the nonlinear mapping as de-
fined in Definition 1.4 with a fixed point is quasi-
nonexpansive mapping.

Let ℓ∞ be the Banach space of bounded sequences
with the supremum norm. A linear functional µ on
ℓ∞ is called a mean if µ(e) = ||µ|| = 1, where e =
(1, 1, 1, ....). For u = (u1, u2, u3, ....), the value µ is
also denoted by µn(un). A Banach limit on ℓ∞ is an
invariant mean, that is, µn(un) = µn(un+1). If µ is
a Banach limit on ℓ∞, then for u = (u1, u2, u3, ...) ∈
ℓ∞, liminfn→∞un ≤ µnun ≤ limsupn→∞un. In
particular, if u = (u1, u2, u3, ...) ∈ ℓ∞ and un →
a ∈ R, then we have µn(un) = µn(un+1) = a. For
details, [7].

Proposition 1.6 LetM be a nonempty closed convex
subset of a Hilbert space H. Let α, β be the same as
in Definition 1.4. Then, F : M → M is a nonlinear
mapping if and only if

∥Fu−Fv∥2 ≤ α− β

2− β
∥Fu− u∥2 + ∥u− v∥2

+
2⟨Fu−u, α(u−v) + β(Fv−u)⟩

2− β

for all u, v ∈ M.

Proof. We have that for u, v ∈ M,

2∥Fu−Fv∥2 ≤ α∥Fu− v∥2 + β∥Fv − u∥2

+ (2− α− β)∥u− v∥2

= α∥Fu−u∥2+2α⟨Fu−u, u−v⟩+α∥u−v∥2

+β∥Fv −Fu∥2 + 2β⟨Fv −Fu,Fu− u⟩
+β∥Fu− u∥2 + (2− α− β)∥u− v∥2

= (α+ β)∥Fu− u∥2 + β∥Fu−Fv∥2

+(2− β)∥u− v∥2

+2α⟨Fu−u, u−v⟩+2β⟨Fv−Fu,Fu−u⟩
= (α+ β)∥Fu− u∥2 + β∥Fv −Fu∥2

+(2− β)∥u− v∥2 + 2α⟨Fu− u, u− v⟩
+2β⟨Fv−u, u−Fu⟩−2β⟨Fu−u, u−Fu⟩

= (α− β)∥Fu− u∥2 + β∥Fu−Fv∥2

+(2− β)∥u− v∥2

+2⟨Fu− u, α(u− v) + β(Fv − u)⟩.

We have

∥Fu−Fv∥2 ≤ α−β

2−β
∥Fu−u∥2 + ∥u−v∥2

+
2⟨Fu−u, α(u−v)+β(Fv− u)⟩

2− β
.

Hence, the proof is completed.

Remark 1.7 If α = β = 1 , then Proposition 1.6 is
reduced to Lemma 3.2 in [10]. In the sequel, we need
the following lemmas as tools.

Following the similar argument as in the proof of The-
orem 3.1.5, [7], we get the following result.

Lemma 1.8 Let M be a nonempty closed convex
subset of a real Hilbert space H, and let µ be a Ba-
nach limit. Let {un} be a sequence with un ⇀ z.
If u ̸= z, then µn∥un − z∥ < µn∥un − u∥ and
µn∥un − z∥2 < µn∥un − u∥2.

The following fixed point theorem was proven using
Banach limits.
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Theorem 1.9 , [11]. Let H be a Hilbert space, let
M be a nonempty closed convex subset ofH, and let
F be a nonlinear mapping of M into itself. Suppose
that there exists an element u ∈ M such that Fnu is
bounded and

µn∥Fnu−Fv∥2 ≤ µn∥Fnu− v∥2, ∀v ∈ M
for some Banach limit µ. Then , F has a fixed

point in M.

2 Main results
In this section, we study the fixed point theorems,
demiclosed principles for nonlinear mappings in
Hilbert spaces.

2.1 Fixed point theorems
Theorem 2.1 Let M be a nonempty closed convex
subset of a real Hilbert space H , F be a nonlinear
mappings defined in Definition 1.4 .Then, Fix(F) ̸=
∅ if and only if {Fnz} is bounded for some z ∈ M.

Proof. Since F : M → M is a nonlinear mapping if
there exist α, β ∈ R with 0 ≤ α+ β ≤ 2 such that

2∥Fu − Fv∥2 ≤ α∥Fu − v∥2 + β∥Fv − u∥2 +
(2− α− β)∥u− v∥2

for all u, v ∈ M. If Fix(F) ̸= ∅ , then Fnz = z
for z ∈ Fix(F). So {Fnz} is bounded. We show
reverse. Take z ∈ M such that {Fnz} is bounded.
Let µ be a Banach limit. Then for any v ∈ M and
n ∈ N ∪ {0}, we have

2∥Fn+1z −Fv∥2 ≤ α∥Fn+1z − v∥2

+β∥Fv −Fnz∥2

+(2− α− β)∥Fnz − v∥2

for any v ∈ M. Since {Fnz} is bounded, we can ap-
ply a Banach limit µ to both sides of inequality. Then
we have

µn(2∥Fn+1z −Fv∥2) ≤ µn(α∥Fn+1z − v∥2

+ β∥Fv −Fnz∥2

+ (2−α−β)∥Fnz−v∥2)
µn(2∥Fn+1z−Fv∥2) ≤ µn(α∥Fn+1z−v∥2)

+ µn(β∥Fv −Fnz∥2)
+ µn((2−α−β)∥Fnz−v∥2)

(2− β)µn∥Fnz −Fv∥2 ≤ αµn∥Fnz−v∥2

+(2−α−β)µn∥Fnz−v∥2

(2− β)µn∥Fnz−Fv∥2 ≤ (2− β)µn∥Fnz − v∥2

for all v ∈ M. By Theorem 1.9, then we have that
Fix(F) is nonempty.

As a direct consequence of Theorem 2.1, we have
the following

Theorem 2.2 Let M be nonempty bounded closed
convex subset of a Hilbert space H and let F be a
nonlinear mapping from M to itself. Then T has a
fixed point.

Using Theorem 2.1, we can also prove the following
well-known fixed point theorems. We first prove a
fixed point theorem for nonexpansive mappings in a
Hilbert space.

Corollary 2.3 Let M be a nonempty closed convex
subset of a real Hilbert spaceH ,F be a nonexpansive
mappings. Then, Fix(F) ̸= ∅ if and only if {Fnz} is
bounded for some z ∈ M.

Proof. If α = 0, β = 0 in Theorem 2.1, (0, 0)-
nonlinear mapping of M into itself is nonexpansive.
By Theorem 2.1, F has a fixed inM.

The following is a fixed point theorem for non-
spreading mappings in a Hilbert space.

Corollary 2.4 Let M be a nonempty closed convex
subset of a real Hilbert spaceH ,F be a nonspreading
mappings .Then, Fix(F) ̸= ∅ if and only if {Fnz} is
bounded for some z ∈ M.

Proof. If α = 1, β = 1 in Theorem 2.1, (1, 1)-
nonlinear mapping of M into itself is nonspreading.
By Theorem 2.1, F has a fixed inM.

The following is a fixed point theorem for TJ − 1
mappings in a Hilbert space.

Corollary 2.5 Let M be a nonempty closed convex
subset of a real Hilbert space H , F be a TJ − 1
mappings .Then, Fix(F) ̸= ∅ if and only if {Fnz} is
bounded for some z ∈ M.

Proof. If α = 1, β = 0 in Theorem 2.1, (1, 0)-
nonlinear mapping of M into itself is TJ − 1. By
Theorem 2.1, F has a fixed in M.

The following is a fixed point theorem for TJ − 2
mappings in a Hilbert space.

Corollary 2.6 Let M be a nonempty closed convex
subset of a real Hilbert space H , F be a TJ − 2
mappings .Then, Fix(F) ̸= ∅ if and only if {Fnz} is
bounded for some z ∈ M.

Proof. If α = 4
3 , β = 2

3 in Theorem 2.1, (43 ,
2
3)-

nonlinear mapping of M into itself is TJ − 2. By
Theorem 2.1, F has a fixed in M.

2.2 Demiclosed principles
Theorem 2.7 Let H be a Hilbert space and let M
be a nonempty closed convex subset of H. Let F
be a nonlinear mapping defined in Definition 1.4 of
M into itself such that Fix(F) ̸= ∅. Then F is
demiclosed,i.e.,un ⇀ z and un − Fun → 0 imply
z ∈ Fix(F).
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Proof. Let un be a sequence in K with un ⇀ z and
un − Fun → 0 as n → ∞. Then un and Fun are
bounded. Suppose z ̸= Fz. From Opial’s condition,
[13], we have

lim inf
n→∞

∥un − z∥2 < lim inf
n→∞

∥un −Fz∥2

= lim inf
n→∞

(∥un −Fun∥2

+∥Fun−Fz∥2 + 2⟨un−Fun,Fun−Fz⟩)
≤ lim inf

n→∞
(∥un −Fun∥2

+
α− β

2− β
∥Fun − un∥2 + ∥un − z∥2

+
2⟨un −Fun, α(un − z) + β(Fz − un)⟩

2− β

+2⟨un −Fun,Fun −Fz⟩)
= lim inf

n→∞
∥un − z∥2.

This is a contradiction. Hence we get the conclusion.
We have the following results as special of Theo-

rem 2.7.

Corollary 2.8 , [10]. Let H be a Hilbert space and
let M be a nonempty closed convex subset of H. Let
F be a nonspreading mapping of M into itself such
that Fix(F) ̸= ∅. Then F is demiclosed,i.e.,un ⇀ z
and un −Fun → 0 imply z ∈ Fix(F).

Proof. If α = 1, β = 1 , (1, 1)-nonlinear mapping
ofM into itself becomes nonspreading. By Theorem
2.7, we get the conclusion.

Corollary 2.9 , [11]. Let H be a Hilbert space and
let M be a nonempty closed convex subset of H. Let
F be a TJ − 1 mapping of M into itself such that
Fix(F) ̸= ∅. Then F is demiclosed,i.e.,un ⇀ z and
un −Fun → 0 imply z ∈ Fix(F).

Proof. If α = 1, β = 0 , (1, 0)-nonlinear mapping of
M into itself becomes TJ − 1. By Theorem 2.7, we
get the conclusion.

Corollary 2.10 , [11]. Let H be a Hilbert space and
let M be a nonempty closed convex subset of H. Let
F be a TJ − 2 mapping of M into itself such that
Fix(F) ̸= ∅. Then F is demiclosed,i.e.,un ⇀ z and
un −Fun → 0 imply z ∈ Fix(F).

Proof. If α = 4
3 , β = 2

3 , (
4
3 ,

2
3)-nonlinear mapping of

M into itself becomes TJ − 2. By Theorem 2.7, we
get the conclusion.

2.3 Weak convergence theorem
Theorem 2.11 Let H be a Hilbert space and let M
be a nonempty closed convex subset of H. Let F be

a nonlinear mapping defined in Definition 1.4 of M
into itself such that Fix(F) ̸= ∅. Let {ςn} be a real
sequence in (0, 1). Let {un} be defined by{

u∈ M chosen arbitrary ,
un+1 = (1− ςn)un + ςnFun, ∀n ∈ N ,

Assume that lim inf
n→∞

ςn(1 − ςn) > 0, then un ⇀ z for
z ∈ Fix(F).

Proof. For any z ∈ Fix(F) and all u ∈ M, we
considerF nonlinear mapping defined Definition 1.4,
i.e., 2∥Fu−Fz∥2 ≤ α∥Fu−z∥2+β∥Fz−u∥2+(2−
α−β)∥u−z∥2 , then we have ∥Fu−z∥2 ≤ ∥u−z∥2.

Therefore we get for each n ∈ N , ∥Fun − z∥ ≤
∥un − z∥. Now

∥un+1 − z∥2 = ∥((1− ςn)un + ςnFun)−z∥2

= (1−ςn)∥un − z∥2+ςn∥Fun−z∥2

−ςn(1−ςn)∥Fun−un∥2

≤ (1− ςn)∥un−z∥2+ςn∥un−z∥2

−ςn(1− ςn)∥Fun − un∥2

= ∥un−z∥2−ςn(1−ςn)∥Fun−un∥2.

Hence {∥un − z∥} is a nonincreasing sequence and
lim
n→∞

∥un − z∥ exists. Besides, we know that

ςn(1−ςn)∥Fun−un∥2 ≤ ∥un−z∥2 − ∥un+1−z∥2.

This implies that lim
n→∞

∥Fun − un∥ = 0. Now, it
is enough to show that {un} has a unique weak sub-
sequential limit in Fix(F). Let {unj

} and {unk
} be

two subsequences of {un}, converge weakly to z and
w, respectively. Then lim

n→∞
∥Fun − un∥ = 0 and

I−F is demiclosed at zero by Theorem 2.7, where I
is identity mapping. This implies that (I−F)z = 0.
That is, F(z) = z; similarly F(w) = w. Next we
prove the uniqueness. Suppose that z ̸= w. Then by
the Opial’s condition, [13], we have

lim
n→∞

∥un−z∥ = lim
j→∞

∥unj
−z∥< lim

j→∞
∥unj

−w∥

= lim
n→∞

∥un−w∥= lim
k→∞

∥unk
−w∥

< lim
k→∞

∥unk
−z∥= lim

n→∞
∥un−z∥.

This leads to a contradiction. So, z = w. Therefore
un ⇀ z. This completes the proof.

2.4 Example for nonlinear mapping as
defined in Definition 1.4.

Example 2.12 The following example shows that F
is a nonlinear mapping as defined in Definition 1.4.

Define
F : [0, 10] → [0, 10]
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by Fu =
{ 0, 0 ≤ u < 1

0.005, u ≥ 1
Indeed, F is a nonlinear mapping as defined in Def-
inition 1.4. Especially with special choices of α and
β, the nonlinear mapping as defined in Definition 1.4
becomes nonspreading mapping, TJ − 1 mapping,
TJ − 2 mapping and nonexpansive mapping. If we
choose

(1) α = β = 1 for all u, v ∈ M , then F is a non-
spreading mapping;

(2) α = 1, β = 0 for all u, v ∈ M , then F is a
TJ − 1 mapping;

(3) α = 4
3 , β = 2

3 for all u, v ∈ M , then F is a
TJ − 2 mapping;

(4) α = 0, β = 0 for all u, v ∈ M , then F is a
nonexpansive mapping.

Table 1: To verify that F is a nonlinear mapping de-
fined in Definition 1.4, consider the following cases:
Cases α, β u, v Definition 1.4
1 11

10 ,
9
10 0.3, 10 0.00005≤110.07832

2 11
10 ,

9
10 10, 0.5 0.00005≤90.26952

3 1
100 ,

199
100 1.2, 0.2 0.00005 ≤ 2.85698

4 1
200 ,

99
100 0.9, 1.1 0.00005 ≤ 0.83926

5 0 , 2 0.9, 1.1 0.00005 ≤ 1.60205
6 2 , 0 0.9, 1.1 0.00005 ≤ 2.42000
7 1

200 ,
99
100 1, 0.2 0.00005 ≤ 1.63339

8 2 , 0 1, 0.2 0.00005 ≤ 0.07605
9 0 , 2 1, 0.2 0.00005 ≤ 2
10 1

200 ,
99
100 0.9, 10 0.00005≤84.51706

11 1
200 ,

99
100 0.99, 9.99 0.00005 ≤82.86452

12 1
200 ,

99
100 1.01, 0.99 0.00005 ≤ 1.01515

Table 2: To verify that F is a nonspreading mapping
for α = 1, β = 1, consider the following cases:
Cases α, β u, v Nonspreading
1 1, 1 1.01 , 0.99 0.00005 ≤ 1.99032
2 1, 1 0.99 , 1.01 0.00005 ≤ 1.99032
3 1, 1 1.2 , 0.2 0.00005 ≤ 1.47802

Table 3: To verify that F is a TJ − 1 mapping for
α = 1, β = 0, consider the following cases:
Cases α, β u, v TJ − 1
1 1, 0 1.01 , 0.99 0.00005 ≤ 0.97062
2 1, 0 1.2 , 0.2 0.00005 ≤ 1.03802
3 1, 0 0.99 , 1.01 0.00005 ≤ 1.02050

Table 4: To verify that F is a TJ − 2 mapping for
α = 4

3 , β = 2
3 , consider the following cases:

Cases α, β u, v TJ − 2
1 4

3 ,
2
3 1.01 , 0.99 0.000075 ≤ 2.96055

2 4
3 ,

2
3 1.2 , 0.2 0.000075 ≤ 1.51605

3 4
3 ,

2
3 0.99 , 1.01 0.000075 ≤ 3.01042

Table 5: To verify that F is a nonexpansive mapping
for α = 0, β = 0, consider the following cases:
Cases α, β u, v Nonexpansive
1 0, 0 1.01 , 0.99 0.005000 ≤ 0.02000
2 0, 0 1.2 , 0.2 0.005000 ≤ 1.00000
3 0, 0 0.99 , 1.01 0.005000 ≤ 0.02000

3 Conclusion
In this paper we introduce a new class of nonlinear
mappings in Hilbert space. We prove fixed point the-
orems and demiclosed principles for this nonlinear
mapping. Furthermore, we have given an example of
a nonlinear mapping as defined in Definition 1.4. It
is shown that for various α and β values, this map-
ping satisfies the inequality given in Definition 1.4 as
mentioned in Table 1. Especially with special choices
of α and β, the nonlinear mapping as defined in Def-
inition 1.4 becomes nonspreading mapping(Table 2),
TJ − 1 mapping(Table 3), TJ − 2 mapping(Table 4)
and nonexpansive mapping(Table 5).

References:
[1] W. G. Dotson, Jr, Fixed points of quasi-

nonexpansive mappings, J. Austral. Math.
Soc, 13, 1972, 167-170.

[2] S. Itoh and W. Takahashi, The common
fixed point theory of single-valued map-
pings and multi-valued mappings, Pac. J.
Math., 79, 1978, 493-508.

[3] F. E. Browder, Fixed point theorems for
noncompact mappings in Hilbert spaces,
Proc Nat Acad Sci USA., 53, 1965, 1272-
1276. doi:10.1073/pnas.53.6.1272.

[4] A. Pazy, Asymptotic behavior of contrac-
tions in Hilbert space, Israel J Math., 9,
1971, 235-240, doi:10.1007/BF02771588.

[5] W. O. Ray, The fixed point property
and unbounded sets in Hilbert space,
Trans. Amer. Math. Soc., 258, 1980,
531-537, doi:10.1090/S0002-9947-1980-
0558189-1.

EQUATIONS 
DOI: 10.37394/232021.2023.3.20 Seyi̇t Temi̇r

E-ISSN: 2732-9976 164 Volume 3, 2023



[6] K. Goebel andW. A. Kirk, Topics in Metric
Fixed Point Theory, Cambridge University
Press, Cambridge, 1990.

[7] W. Takahashi, Nonlinear Functional Anal-
ysis. Fixed Point Theory and its Applica-
tions, Yokohama Publishers, Yokohama,
2000.

[8] F. Kohsaka and W. Takahashi, Fixed point
theorems for a class of nonlinear mappings
related to maximal monotone operators in
Banach spaces, Arch.Math., 91, 2008, 166-
177, doi:10.1007/s00013-008-2545-8.

[9] W. Takahashi, Nonlinear mappings in equi-
librium problems and an open problem
in fixed point theory, Proceedings of the
Ninth International Conference on Fixed
Point Theory and Its Applications, pp. 177-
197, Yokohama Publishers, 2010.

[10] S. Iemoto and W. Takahashi, Approximat-
ing common fixed points of nonexpansive
mappings and nonspreading mappings in a
Hilbert space, Nonlinear Anal., 71, 2009,
2082-2089. doi:10.1016/j.na.2009.03.064.

[11] W. Takahashi and J. C. Yao, Fixed point
theorems and ergodic theorems for non-
linear mappings in Hilbert spaces, Tai-
wanese J. Math., 15, 2011, 457-472.

[12] Lai-Jiu Lin, Chih-Sheng Chuang and Zenn-
Tsun Yu, Fixed point theorems for some
new nonlinear mappings in Hilbert spaces,
Fixed Point Theory and Applications,
2011, 2011:51.

[13] Z. Opial, Weak convergence of successive
approximations for nonexpansive map-
pings, Bull. Amer. Math. Soc., 73, 1967,
591-597.

Contribution of Individual Authors to the 
Creation of a Scientific Article (Ghostwriting 
Policy) 
The author contributed in the present research, at all 

stages from the formulation of the problem to the 

final findings and solution. 

    

Sources of Funding for Research Presented in a 
Scientific Article or Scientific Article Itself 
No funding was received for conducting this study. 

  
Conflict of Interest
The author has no conflict of interest to declare that 

is relevant to the content of this article.  

 
Creative Commons Attribution License 4.0 
(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 

Creative Commons Attribution License 4.0 

https://creativecommons.org/licenses/by/4.0/deed.en

_US 

EQUATIONS 
DOI: 10.37394/232021.2023.3.20 Seyi̇t Temi̇r

E-ISSN: 2732-9976 165 Volume 3, 2023


	 Introduction and Preliminaries
	 Main results
	 Fixed point theorems
	 Demiclosed principles
	 Weak convergence theorem 
	 Example for nonlinear mapping as defined in Definition 1.4.

	Conclusion



