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Abstract: - Combinatorial optimization systems theory prospected from rotational symmetry involves 
techniques for improving the quality indices of engineering devices or systems with non-uniform structure 
(e.g., controllable cyber-physical objects) concerning transformation swiftness, position accuracy, and 
resolution, using designs based on extraordinary geometric properties and structural excellence of 
combinatorial conformations, namely the concept of Ideal Ring Bundles.  Design techniques based on the 
underlying combinatorial theory provide configure one- and multidimensional systems with smaller amount 
elements than at present, while maintaining the other substantial operating characteristics of the systems.  
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1   Introduction  
Combinatorial optimization theory of systems 
covers several allied fields of science and 
technology, including software engineering, 
algorithm theory,  operations research,  machine 
learning, and computational complexity theory, as 
well as applied mathematics and theoretical 
computer science. The classic combinatorial theory 
involves fundamental concepts of modern algebra 
and geometry, difference sets in a finite group, 
finite projective planes and Hadamard matrices 
theory, cyclic incidence matrices and problematic 
of certain symmetrical balanced incomplete block 
designs, orthomorphisms of groups and orthogonal 
Latin squares, [1]. In paper [2], the study of some 
permutations allows the discovery of unrelated  
classes. A multinomial function, describing a 
system with multi- input and multi-output systems, 
has the coefficients for parameters, [3]. The 
objective of the work is to test suitable sets of 
famous classes concerning a small subset of such 
functions. Many number of original models, 
conceptions, parallel algorithms, platforms, 
applications and processing gears, relate to 
improving the assessment of big data technology, 
[4], [5], [6], [7], [8], [9], [10]. This paper deals with 
techniques for improving the quality indices of 
controllable cyber-physical systems and vector 
processing, such as transformation speed, resolving 
ability, minimizing machinery memory and 

computing resources, using designs based on the 
combinatorial optimization systems theory, as well 
as structures created on difference families with 
applications a combinatorial approach, [11], Galois 
fields [12],  and mathematical system’s theory 
based on the idea of “perfect” multidimensional 
combinatorial construction, namely concept of 
Ideal Ring Bundles (IRBs), [13]. Theoretical 
research into the combinatorial configuration’s 
properties led to better understanding of the role of 
rotational symmetries  in the structurization of the 
IRBs. In mathematics, a finite field or Galois field 
is a field that contains a finite number of 
elements. As with any field, a finite field is a set on 
which the operations of multiplication, addition, 
subtraction and division. Modern combinatorial 
theory and system design connect with appropriate 
constructions, such as “Golomb rulers” [14], 
manifolds [15] and connecting algebra through 
geometry [16]. A new approach to a better 
understanding of remarkable properties of the 
“perfect” multidimensional structures based on the 
Golden ratio [17] and relationships of rotational 
symmetry spatial multidimensional configurations 
[13]. Symmetries and Curvature Structures are 
embedded in general relativity, [18]. 
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2 Optimum Combinatorial Structures 
 

2.1  Optimum Combinatorial Sequences  
The “well-ordered” chain distributed elements in a 
sequence are known to be very profitable for 
finding optimal solutions for wide classes of 
technological problems. 

 

2.1.1 Sums on a Chain- Ordered Numbers 

Let us compute all L sums of ordered-chain 
numbers in the n-stage sequence of positive 
integers {k1, k2, . . ., kn}, where the sums of 
connected sub-sequences of the sequence 
enumerate the set of integers from 1 to L.  The 
maximum number of distinct sums on ordered-
chain numbers is  

L = n · (n+1)/2                           (1) 
 

2.2   Ring Numerical Structures 
Next we regard the n-stage ordered-chain sequence 
of positive integers {k1, k2, . . ., kn}, where kn is 
followed by k1, so that the sequence {k1, k2, . . ., kn} 
turns from chain to n-stage ring numerical 
structure. Here unlike of ordered-chain a sum of 
connected sub-sequences on a ring numerical 
structure can have any length from 1 to n -1 as its 
starting point, adding the sum of all n integers. So, 
the maximum number of distinct sums S of the ring 
numerical structure is 

S = n (n –1) +1                       (2) 
 

2.2.1   Ideal Ring Bundles  

Ideal Ring Bundles are cyclic sequences of positive 
integers that form perfect partitions of a finite 
interval [1, S] of integers. The sums of consecutive 
sub-sequences of an Ideal Ring Bundle enumerate 
the set of integers [1, S] exactly once. Here is an 
example of an IRB with n=5 and S=5(5-1)+1=21, 
namely {1,5,2,10,3}. To see this, we observe: 
1=1       6=1+5       11=3+1+5+2       16=2+10+3+1 
2=2       7=5+2       12=2+10             17=5+2+10 
3=3       8=1+5+2   13=10+3             18=1+5+2+10 
4=3+1   9=3+1+5   14=10+3+1        19=10+3+1+5 
5=5     10=10          15=2+10+3        20=5+2+10+3 

                                                        
21=1+5+2+10+3 

 
2.2.2  Two-Dimensional  Ideal Ring Bundles 

Let’s consider n -stage cyclic sequence {K1, K2, …, 
Ki, …, Kn}, K1= (k11, k12), K2 =(k21, k22), ..., Ki=(ki1, 
ki2), …., Kn=(kn1, kn2) of 2-stage (t=2) sub-
sequences of the sequence, where we require all 
two-dimensional modular (mod m1, mod m2) vector 
sums form two-dimensional coordinate grid of 

sizes m1×m2 over a toroidal surface, m1· m2 = S -1. 
This combinatorial configuration is named the two-
dimensional Ideal Ring Bundle (2-D IRB).  Here 
are four variants of two-dimensional IRBs with S 
=7, n = 3, m1= n –1 = 2,  m2 = n = 3:   
(a) {(1,0),(1,1),(1,2)};    (b) {(0,1),(0,2),(1,0)};     
(c) {(0,1),(0,2),(1,2)};     (d)  {(0,1),(0,2),(1,1)}  
 

The fact that addition and multiplication allow 
linear algebraic operations for such finite groups. 
For example, the variant (a) of two-dimensional 
IRB {(1,0),(1,1),(1,2)} forms following 2-D vector 
sums modulo m1= 2,  m2 = 3:   
 
 
 
 
 

Therefore, two-dimensional IRB 
{(1,0),(1,1),(1,2)}  generates a coordinate grid 2×3 
over a toroidal surface with a common reference 
point (0,0): 
 

(1,0) (1,2) (1,2) 
(0,0) (0,1) (0,2) 

                           
The next we see result of multiplying IRB   

{(1,0),(1,1),(1,2)}  by vector (1,2): 
 

 
 

 
  

Here we see transformation IRB 
{(1,0),(1,1),(1,2)}  into myself. Taking the same 
conversion for variants (b), (c), and (d), we obtain 
finally the next result:  (a) × (1,2)   (a);  (b) × 
(1,2)  (b);  (c) × (1,2)   (d);  (d) × (1,2)  (c). 

Hence, the set of four 2-D IRBs {(a), (b), (c), 
(d)} form both two isomorphic (a, b), and two non-
isomorphic (c, d) modifications of the 2-D IRB. We 
call this the cyclic two-dimensional IRB group. 
Note, that each of these variants makes it possible 
to obtain  m1 ∙ m2 = 6 varied 2-D IRBs.   

 
2.2.3  Multidimensional  Ideal Ring Bundles 

Multidimensional ideal ring bundles form a t-

manifold coordinate system immersed in (t+1)-
dimensional no real space without self-intersection 
of coordinate axes. A t-dimensional coordinate 
system (t > 2) with t axes is named the manifold 
coordinate system m1×m2 ×…×mt. The principal 
property of coordinate grid  m1  m2 … mt  over a 
t- manifold surface is n-stage sequence {K1, K2, …, 
Ki, …, Kn}, K1= (k11, k12,…, k1t), K2 =(k21, k22,…, 
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k2t), ..., Ki=(ki1, ki2, …, kit), …., Kn=(kn1, kn2,…, knt) 
of t-stage sub-sequences of the sequence, where we 
require a set modulo sums taking t- modulo (m1, m2 
,.…, mt ) enumerates all coordinates of the t- 
manifold surface. We call this perfect t-manifold 
coordinate system m1  m2 … mt  with 
information parameters S, n, mi  (i = 1, 2, …, t).  It 
is a t-dimensional image surface involving spatially 
disjointed reference t-axes.  A planar projection of 
t-dimensional manifold coordinate axes m1, m2, …, 
mt  for grid m1×m2 ×…×mt with common point “+” 
illustrates Figure 1.  

 
Fig. 1: A planar projection of t-dimensional 
manifold coordinate axes m1, m2, …, mt  for grid 
m1×m2 ×…×mt with common point “ ” 
 

Here S is an order of spatial symmetry, n- 
number of t-stage sub-sequences of the n-sequence, 
and number of basic attribute-categories subset 
forming a complete set of t-dimensional vector data 
array. Hence, in each case, the t—dimensional IRB 
forms a manifold t-dimensional coordinate system. 
An t- dimensional perfect manifold coordinate 
system can be designed for configure t- 

dimensional optimized control systems or CAD. 
Therefore, all information about the t-dimensional 
vector data array of sizes m1  m2 … mt is 
embedded into the coordinate system.   
 
 
3  Glory to Ukraine Stars Ensembles  
Of very exciting property has been discovered in 
“Glory to Ukraine Star” (GUSs) ensembles as a 
new type of spatial combinatorial configuration, 
[18].  

Graphic representation of one paired seven-
pointed (n=7) GUS-configurations {(4,2), (0,2), 
(1,2), (0,4), (2,2), (3,2), (5,2), (4,2)} (black ring 
line) and {(4,2), (1,2), (2,2), (5,2), (3,2), (0,4), 

(0,2), (4,2)} (colour broken line) are shown in 
Figure 2. 

 
Fig. 2: Graphic representation of paired seven-
pointed (n=7) GUS-configurations {(4,2), (0,2), 
(1,2), (0,4), (2,2), (3,2), (5,2)} (black ring line) and 
{(4,2), (1,2), (2,2), (5,2), (3,2), (0,4), (0,2)} (colour 
broken line)  

 
The GUS-configuration {(4,2), (0,2), (1,2), 

(0,4), (2,2), (3,2), (5,2)} (black ring line) generates 
all n (n –1)= 42 two-dimensional ring sums, taking 
2D modulo (mod 6, mod 7) as follows:  

   1. (0,0) ≡ ((5,2)+(4,2)+(0,2)+(1,2)+(0,4)+(2,2));  
   2. (0,1) ≡ ((3,2) +(5,2)+(4,2)+(0,2)); 

3. (0,2) ≡ (0,2);  
   4. (0,3) ≡ ((1,2)+(0,4)+(2,2) +(3,2));  
   5. (0,4) ≡ (0,4); 
   6. (0,5) ≡ ((0,2)+ (1,2)+ (0,4)+ (2,2)+ (3,2)); 

7. (0,6) ≡ ((3,2)+(5,2)+(4,2)); 
   8. (1,0) ≡ ((3,2)+(5,2)+(4,2)+(0,2)+(1,2)+(0,4));  

9. (1,1) ≡ ((0,2)+ (1,2)+ (0,4));  
………………………………………………… 
42. (5,6) ≡ ((4,2)+(0,2)+(1,2)). 
  

The calculation procedures form m1 × m2 = 6×7 
grid, embracing a two-dimensional (t=2) toroid 
surface as being a coordinate system, where each 
point node from (0,0) to (5,6) occurs exactly once 
(R=1).   

The second of the paired GUS-configurations 
{(4,2), (1,2), (2,2), (5,2), (3,2), (0,4), (0,2)} (colour 
broken line) forms the same set of sums, taking 2D 
modulo (mod 6, mod 7):  

   1. (0,0) ≡ ((0,4)+(0,2)+(4,2)+(1,2)+(2,2)+(5,2));  
   2. (0,1) ≡ ((4,2)+(1,2)+(2,2)+(5,2));  

3. (0,2) ≡ (0,2);  
   4. (0,3) ≡ ((0,2)+(4,2)+(1,2)+(2,2)+(5,2));  
   5. (0,4) ≡ (0,4); 
   6. (0,5) ≡ ((5,2)+(3,2)+(0,4)+(0,2)+(4,2)); 

7. (0,6) ≡ ((0,4)+(0,2)); 

(0,4) 

    (0,2) 

 (2,2)        (3,2) 

     (5,2) 

(1,2) 
     (4,2) 

mt 

m1 

 m2 

mi 
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   8. (1,0) ≡ ((5,2)+(3,2)+(0,4)+(0,2)+(4,2)+(1,2);  
9. (1,1) ≡  ((0,2)+(4,2)+(1,2)+(2,2)); 
………………………………………………… 
42. (5,6) ≡ ((0,2)+(4,2)+(1,2)).  

 
We observe either of the GUS-configurations 

{(4,2), (0,2), (1,2), (0,4), (2,2), (3,2), (5,2)} (black 
ring line) and {(4,2), (1,2), (2,2), (5,2), (3,2), (0,4), 
(0,2)} (colour broken line) forms m1 × m2 = 6×7 
grid, embracing toroid surface as 2D coordinate 
system.  

Once more example of paired seven-pointed 
(n=7) GUS-configurations {(1,1), (1,3), (1,5), (1,0), 
(1,2), (1,4), (1,6)} (ring cycle), and {(1,1), (1,5), 
(1,2), (1,6), (1,3), (1,0), (1,4)} (star cycle) presents 
in Figure 3.  

 
 
Fig. 3:  Once more example of paired seven-
pointed (n=7) GUS-configurations, namely the 
{(1,0), (1,2), (1,4), (1,6), (1,1), (1,3), (1,5)} (ring 
cycle), and {(1,0), (1,4), (1,1), (1,5), (1,2), (1,6), 
(1,3)} (star cycle) 
 

   GUS-configuration {(1,1), (1,3), (1,5), (1,0), (1,2), 
(1,4), (1,6)} (ring cycle) forms the set of  2D vector 
sums (clockwise), taking 2D modulo (6, 7):  
1. (0,0) ≡ ((1,2)+(1,4)+(1,6)+(1,1)+(1,3)+(1,5));  
2. (0,1) ≡ ((1,1)+(1,3)+ (1,5)+(1,0)+ (1,2)+(1,4));  
3. (0,2) ≡ ((1,0)+(1,2)+(1,4)+(1,6)+(1,1)+(1,3)); 
4.  (0,3) ≡ ((1,6)+ (1,1)+ (1,3)+(1,5)+(1,0)+ (1,2)); 
5. (0,4) ≡ ((1,5)+(1,0)+ (1,2)+(1,4)+ (1,6)+(1,1)); 
………………………………………………… 
…………………………………………………  

41. (5,5) ≡ ((1,4)+(1,6)+ (1,1)+ (1,3)+(1,5); 
42. (5,6) ≡ ((1,0)+ (1,2)+(1,4)+ (1,6)+(1,1)). 

 
The second of the paired GUS-configuration 

{(1,1), (1,5), (1,2), (1,6), (1,3), (1,0), (1,4)} (star 
cycle) forms the set of  2D vector sums, taking 2D 
modulo (mod 6, mod 7):   

1. (0,0) ≡ ((1,4)+(1,1)+(1,5)+ 
(1,2)+(1,6)+(1,3));  

2. (0,1) ≡ ((1,3)+ (1,0)+(1,4)+(1,1)+ 
(1,5)+(1,2));  

3. (0,2) ≡ ((1,2)+(1,6)+(1,3) 
+(1,0)+(1,4)+(1,1)); 
4.  (0,3) ≡ ((1,1)+(1,5)+ 
(1,2)+(1,6)+(1,3)+(1,0)); 

5. (0,4) ≡ ((1,0)+(1,4)+ (1,1)+(1,5)+ (1,2)+(1,6)); 
………………………………………………… 
…………………………………………………  

41. (5,5) ≡ ((1,0)+(1,4)+ (1,1)+ (1,5)+(1,2); 
42. (5,6) ≡ ((1,3)+ (1,0)+(1,4)+ (1,1)+(1,5)). 
 

Each of the paired seven-pointed (n=7) GUS-
configurations, {(1,1), (1,3), (1,5), (1,0), (1,2), 
(1,4), (1,6)} (ring cycle), and {(1,1), (1,5), (1,2), 
(1,6), (1,3), (1,0), (1,4)} (star cycle) forms m1 × m2 

= 6×7 grid, embracing two-dimensional (t=2) 
toroid surface as coordinate system exactly once 
(R=1). 

The underlying examples of paired seven-
pointed (n=7) GUS-configurations evident that 
either of the combinatorial configurations {(4,2), 
(0,2), (1,2), (0,4), (2,2), (3,2), (5,2)}, {(4,2), (1,2), 
(2,2), (5,2), (3,2), (0,4), (0,2)}, {(1,1), (1,3), (1,5), 
(1,0), (1,2), (1,4), (1,6)},  {(1,1), (1,5), (1,2), (1,6), 
(1,3), (1,0), (1,4)} forms complete coordinate 
system m1 × m2 = 6×7 over toroid surface.  

Graphic representation of a set of paired seven-
pointed (n=7) GUS ensembles is illustrated Figure 
4. 

  

 
Fig. 4: Graphic representation of a set of paired 
seven-pointed (n=7) GUS ensembles 
 

Scientifically, the GUSs are the most perfect 
combinatorial configurations with favorable 
qualities of the structures and remarkable 
properties.   
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4   Conclusion  
Combinatorial optimization systems theory 
prospected from rotational symmetry provides a 
conceptual model of technical systems. Moreover, 
the optimization is embedded into the underlying 
model, which make it possible to configure systems 
with fewer elements than at present, while 
maintaining or improving on the other 
characteristics of the system. The theoretical 
connection between the theory of cyclic groups, 
and IRBs offers great opportunities for the 
development of advanced systems theory for 
configuring innovative devices and process 
engineering based on the remarkable mathematical 
properties and structural perfection of the IRBs. 
Application of optimized perfect manifold 
coordinate systems for information technologies 
provides new conceptual techniques for improving 
the quality indices of the technologies and 
management systems concerning transmission 
content, and compression of vector data, 
embodying reliability of vector data coding and 
processing under the minimized basis of manifold 
coordinate system. The essence of the technology is 
processing vector information in the database of 
manifold coordinate systems, where the basis is a 
set of coordinates smaller than the total number of 
coordinates of this coordinate system, which 
generates it by adding the latter. The theoretical 
connection between the rotational symmetry - 
asymmetry ensembles, and combinatorial 
optimization systems theory offers the great 
opportunities for the development of advanced 
systems engineering and information technologies 
under minimized manifold coordinate systems. 
Combinatorial optimization systems theory 
prospected from rotational symmetry allows 
expanding the applicability of the systems theory 
for the development of new mathematical methods 
and models in systems and control. 
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